Synthesis and Structure of NaZnSiO₃OH, a New Chiral Zincosilicate Framework Material

A. M. Healey, M. T. Weller,* and A. R. Genge

Department of Chemistry, The University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom

Received August 21, 1998

The structure of NaZnSiO₃OH, synthesized hydrothermally by reaction of Na₂ZnSiO₄ and NaOH, has been determined from single-crystal X-ray and powder neutron diffraction data (orthorhombic, space group $P2_12_12_1$, a = 7.6872(2) Å, b = 9.3899(2) Å, c = 5.155(1) Å, Z = 4). The structure has a framework constructed from ZnO₄ and SiO₃OH tetrahedra with bridging and trigonal oxygen atoms. Channels formed from eight-membered rings of tetrahedra house the sodium ions and are also partially blocked by moderately strongly hydrogen bonded OH groups.

Introduction

Inorganic solids with framework structures have important applications based around their ion exchange, adsorption, and catalysis properties. The number of zeolite structures has increased rapidly over the past few decades, and well over 100 structure types have been described.¹ Similar framework structures can be built from a variety of other, nonaluminosilicate, polyhedral units, though the majority of these are tetrahedral species such as PO₄, GaO₄, GeO₄, BO₄, and ZnO₄. Recently, attention has turned to framework materials constructed from other polyhedral MO_n units; these component ions are frequently octahedra, though in a few cases other species, for example, trigonal (BO₃) or five-coordinate species, Al(O,-OH)₅, can be employed.

In the case of four-coordinate, framework-forming species MO_4 , each of the oxygen atoms normally links between two polyhedra, giving rise to so-called "tecto" type structures. For six-coordinate species, e.g., $Ti(OX)_{6}$, the oxygens may be shared between two or more polyhedra or may be terminal units, hydroxyl or water molecules. In some framework structures, e.g., cloverite, pendent hydroxyl groups exist on tetrahedral sites.

Silicate chemistry shows a wide range of structural units extending from discrete SiO₄⁴⁻ units, in materials such as Na₄-SiO₄, to the three-dimensional structures of the tectosilicates, e.g., felspars, stuffed silicas, and aluminosilicate zeolites. Intermediate levels of linking of the SiO₄ units produce the metasilicates, orthosilicates, and other more complex silicate species. These silicate units can be bound in two- and three-dimensional frameworks as in, for example, the sorosilicate ACuSi₄O₁₀², which contains Si₂O₇ units linked together with CuO₄ groups to form infinite sheets. The orthosilicate species (SiO₃OH)³⁻ is known in a few structures but mainly as a discrete ion, for example, as in Afwillite Ca₃(SiO₃OH)·2H₂O;³ in framework-type structures it exists in Lovozerite, Na₂ZrSi₆O₁₅-(H₂O)₃(NaOH)_{0.5},⁴ but the SiO₃OH group is very uncommon as a building block in three-dimensional structures.

Frameworks containing the zincate anion, ZnO_4^{6-} , are also relatively uncommon, probably due to the ready hydrolysis of this species. Recently, Stucky and co-workers⁵ have described a number of zincophosphates where the presence of the higher charge on phosphorus helps offset the high framework charge caused by the presence of the divalent cation. Another feature of these materials is higher coordination numbers for oxygen due to the relatively weak interaction of oxygen with the divalent cation. Frameworks containing high levels of zinc based on zincosilicates are much rarer and limited mainly to the condensed cristabolite-type structures, e.g., $Na_2SiZnO_4^6$ and $Na_2-Zn_2Si_2O_7$.⁷ Generally, synthesis under nonhydrothermal or very basic conditions is required to form zincosilicates with high levels of zinc to avoid hydrolysis of the tetrahedral zincate group.

The aim of our current work is the incorporation of significant levels of zinc into materials based on linked tetrahedra in order to produce highly charged frameworks with enhanced ion exchange and catalytic properties. In this paper, we report the synthesis and structure determination of an unusual chiral framework structure containing the SiO₃OH unit with ZnO₄ tetrahedra.

Experimental Section

Synthesis. Na₂[ZnSiO₄] was synthesized hydrothermally in Teflonlined steel autoclaves from zinc oxide and sodium metasilicate pentahydrate in a 14 M sodium hydroxide solution. In a typical reaction, a temperature of 180 $^{\circ}$ C and a reaction time of 1 day was employed.

The sodium zincosilicate precursor, Na₂[ZnSiO₄], was further reacted in the same autoclaves with a dilute (2 M) sodium hydroxide solution over a range of reaction times to synthesize the new phase. The highest yields were found with the following reaction conditions: Na₂[ZnSiO₄] (2 g) reacted with aqueous sodium hydroxide (0.56 g in 8 mL) at 225 °C for 5 days. The reaction product was filtered, washed in distilled water, and dried at 90 °C overnight.

Under all conditions studied, a multiphase product was formed containing single crystals of the predominant NaZnSiO₃OH phase and

Meier, W. M.; Olson, D. H.; Baerlocher, Ch. Atlas of Zeolite Structure Types; International Zeolite Assosiation: Elsevier, 1996.

⁽²⁾ Hughes, E. M.; Pack, M. J.; Dann, S. E.; Weller, M. T. An. Quim. Int. Ed. 1997, 93, 233.

⁽³⁾ Saito, F.; Mi, G. M.; Hanada, M. N. J. Solid State Ion. 1997, 101, 37.

⁽⁴⁾ Ilyukhin, V. V.; Belov, N. V. Kristallogr. 1960, 5, 200.

⁽⁵⁾ Xianhui, B.; Pingyun, F.; Thurman, G. E.; Stucky, G. D. J. Solid State Chem. 1998, 136, 210.

⁽⁶⁾ Litvin, B. N.; Mel'nikov, O. K.; Ilyukhin, V. V.; Nikitin, A. V. Kristallogr. 1964, 9, 943.; Sov. Phys. Crystallogr. 1965, 9, 795.

⁽⁷⁾ Amirov, S. T.; Nikitin, A. V.; Ilyukhin, V. V.; Belov, N. V. Dokl. Akad. Nauk SSSR 1967, 177, 92.; Sov. Phys. Dokl. 1968, 12, 987.

 Table 1. X-ray Crystallographic Data Collection and Refinement Parameters for NaZnSiO₃OH

	NaZnSiO ₃ OH	
chemical formula	HO ₄ NaSiZn	
fw	362.92	
temperature	150 K	
space group	$P2_{1}2_{1}2_{1}(19)$	
a	7.664(1) Å	
b	9.370(2) Å	
С	5.148(2) Å	
V	369.7(1) Å ³	
λ	0.7071 Å	
Ζ	4	
$D_{ m calc}$	3.260 g cm^{-3}	
μ (Mo K α)	69.44 cm^{-1}	
R^{a}	0.0315	
$R_{ m w}{}^b$	0.0392	
$^{a}R = \sum (F_{obs} _{i} -$	$ F_{calc} _i)/\sum F_{obs} _i$. ^b R_w	=
$\sqrt{\left[\sum w_{i}(F_{obs} _{i}- F_{calc} _{i})^{2}/\sum w_{i} F_{obs} _{i}^{2}\right]}.$		

a small level of impurity in the form of a white powder. The crystals were easily separated and washed with distilled water to remove any of the second phase.

Characterization. Initial characterization was carried out on a wellground sample of the crystals using a Siemens D5000 powder X-ray diffractometer, producing copper $K_{\alpha 1}$ radiation with wavelength $\lambda =$ 1.5406 Å. Data were collected in the 2θ range 5–60° over 1 h. Further structural analysis was carried out using the following techniques. Powder neutron diffraction data were recorded on a well-ground sample of crystals using the POLARIS instrument at the Rutherford Appleton Laboratory, Oxfordshire; the sample was loaded into a 7 mm vanadium can, and a run time of 4 h at 298 K was used. As a result of the low atomic percent of hydrogen in the compound, acceptable data could be obtained on a nondeuterated sample. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were undertaken using a Polymer Laboratories PL-STA 1500 simultaneous thermal analysis machine; ²⁹Si MAS NMR spectra were collected on a Bruker AM300 spectrometer using a sample spin rate of 4500 kHz. The infrared spectrum was recorded on a Perkin-Elmer Paragon 1000 FT-IR and SEM on a JEOL JSM-6400 analytical scanning electron microscope.

Powder X-ray Diffraction. The data recorded were used to establish the unit cell dimensions using the TREOR⁸ computer package. The material was found to be orthorhombic, with cell parameters a = 7.696-(2) Å, b = 9.403(2) Å, and c = 5.168(1) Å. The second phase formed under the synthesis conditions was identified as Na₂Zn₂Si₂O₇, originally reported in 1966 by Holland and co-workers.⁹

Single-Crystal X-ray Diffraction. Data collection used a Rigaku AFC7S four-circle diffractometer equipped with an Oxford Systems open-flow cryostat operating at 150 K and using graphite-monochromated Mo K α X-radiation ($\lambda_{max} = 0.71073$ Å). Data collection and refinement parameters are summarized in Table 1. No significant crystal decay or movement was observed. The structure was solved by direct methods¹⁰ and then developed by iterative cycles of full-matrix leastsquares refinement and Fourier difference syntheses, which located all non-hydrogen atoms in the asymmetric unit.11 All atoms were refined anisotropically with the exception of oxygen atoms, which were refined isotropically. While a number of possible sites for the hydrogen atom were identified, the location of this atom could not be determined unambiguously. The Flack parameter¹² was refined (0.008(14)), and this confirmed the correct choice of enantiomorph. Final refined atomic coordinates are given in Table 2. Supplementary Information, including the asymmetric unit and derived bond lengths and angles from this data set, has been deposited.

Table 2. Final Refined Coordinates and X-ray CrystallographicData Collection Parameters for NaZnSiO₃OH (esd Given inParentheses); Single-Crystal XRD

atom	X	Y	Ζ	$B^a/{ m \AA}^2$
Zn	0.11073(7)	0.98891(6)	0.0246(1)	0.19(1)
Si	-0.0155(2)	0.6611(1)	-0.0107(3)	0.24(3)
Na	-0.2078(3)	0.8342(2)	0.4705(5)	0.67(4)
O(1)	-0.0192(5)	0.6480(4)	0.6808(7)	0.19(6)
O(2)	-0.0384(4)	0.8256(3)	0.0804(7)	0.36(7)
O(3)	0.3322(5)	0.9293(4)	-0.1337(8)	0.44(7)
O(4)	-0.3331(4)	0.9088(3)	0.8906(7)	0.16(6)

 $\label{eq:eq:eq:eq:abs} \begin{array}{l} {}^aB_{\rm eq} = 8/3\pi^2(U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma \\ + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha). \end{array}$

Table 3. Final Refined Coordinates for NaZnSiO₃OH (esd Given in Parentheses); Powder Neutron Diffraction^{*a*}

atom	site	X	Y	Ζ	$B/\text{\AA}^2$
Zn	4a	0.1121(3)	0.9885(3)	0.0224(5)	0.29(4)
Si	4a	-0.0164(5)	0.6611(3)	-0.0073(7)	0.39(5)
Na	4a	-0.2041(6)	0.8327(6)	0.4771(9)	1.32(9)
O(1)	4a	-0.0199(4)	0.6486(3)	0.6776(5)	1.03(5)
O(2)	4a	-0.0379(3)	0.8259(3)	0.0755(4)	0.65(4)
O(3)	4a	0.3326(3)	0.9290(2)	-0.1304(5)	0.33(4)
O(4)	4a	-0.3351(4)	0.9079(3)	0.8902(6)	0.84(5)
Η	4a	0.2211(8)	0.3743(5)	0.5265(13)	2.11(9)
^{<i>a</i>} Space group $P2_12_12_1$: $a = 7.6872(2)$ Å, $b = 9.3899(2)$ Å, $c = 0.0000000000000000000000000000000000$					

5.1559(1) Å; $R_{\rm p} = 2.48\%$, $R_{\rm wp} = 1.58\%$, $\chi^2 = 1.188$.

 Table 4. Selected Derived Bond Lengths (Å); Powder Neutron Diffraction

Zn-O(1)	1.956(4)	Si-O(1)	1.629(4)
Zn-O(2)	1.932(3)	Si-O(2)	1.613(4)
Zn-O(3)	1.951(3)	Si-O(3)	1.602(4)
Zn-O(3)	1.996(4)	Si-O(4)	1.651(5)
Na - O(1)	2.462(6)	Na-O(3)	3.052 (6)
Na - O(1)	2.562(6)	Na-O(4)	2.459(6)
Na-O(2)	2.434(6)	Na-O(4)	2.494(6)
H-O(4)	1.026(8)	O(4)H•••O(2)	1.571(7)

Powder Neutron Diffraction. Single-crystal X-ray diffraction indicated the presence of a hydroxide group attached to the tetrahedral silicon atoms; however, the low X-ray scattering cross section of hydrogen made it impossible to accurately locate within the structure using this method. Powder neutron diffraction data were therefore recorded with the aim of determining the hydrogen atom coordinates. The data were refined with the GSAS¹³ computer package using the structure obtained from the single-crystal X-ray diffraction as the starting model. The framework and sodium ions refined with only slight adjustment to the atom positions and cell dimensions. A difference Fourier map was then used to locate the hydrogen atom present in the structure. An area of negative scattering ($b_{\rm H} = -3.34$ fm) was clearly visible at a distance of about 1 Å from the terminal oxygen (O4); these coordinates were entered into the structure as a hydrogen atom. The position of this final atom was refined through several cycles. The final stage of the refinement incorporated all the atoms' positional and thermal parameters together with a full analysis of the background and peak shape functions. The refinement converged yielding good R factors and a χ^2 of 1.188; the final atomic coordinates are detailed in Table 3, with important derived bond distances and angles being shown in Tables 4 and 5. The refined atomic coordinates were in all cases close to those found in single-crystal X-ray diffraction study. The final refinement profile fit is shown in Figure 1.

Thermal Analysis. A single weight loss of 5.0% was seen at 450 °C accompanied by an endothermic transition; see Figure 2. This is consistent with the decomposition of the hydroxide group and loss of half a water molecule per formula unit from the material (calculated weight 4.96%). Powder neutron diffraction data recorded above this

⁽⁸⁾ Werner, P. E. Z. Kristallogr. 1964, 120, 375.

⁽⁹⁾ Holland, A. E.; Segnit, E. R. Aust. J. Chem. 1966, 19, 905.

⁽¹⁰⁾ Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467.

⁽¹¹⁾ *TEXSAN, Crystal Structure Analysis Package*; Molecular Structure Corporation: Houston, TX, 1992.

⁽¹²⁾ Lack, H. D. Acta Crystallogr., Sect. A 1983, 39, 876.

⁽¹³⁾ Larson, A. C.; Von Dreele, R. B. GSAS General Structure Analysis System MS-H805; Los Alamos, NM87545, 1990.

 Table 5.
 Selected Derived Bond Angles (deg); Powder Neutron Diffraction

Figure 1. Final fit achieved to the powder neutron diffraction data. Crosses are observed data, the upper continuous line shows the calculated profile, and the lower continuous line shows the difference. Tick marks show reflection positions.

Figure 2. Thermogravimetric/differential thermal analysis data for the decomposition of NaZnSiO₃OH.

transition temperature showed a few broad reflections indicating that the framework had collapsed to yield a poorly crystalline product.

Discussion

The structure of NaZnSiO₃OH consists of an array of ZnO₄ and SiO₃OH tetrahedra; see Figure 3. These form eightmembered rings along the crystallographic *c* direction. The sodium ions are sited in these channels with five close contacts and one longer contact to the framework oxygens. The framework contains one oxygen site O(3), which is three coordinate to two zinc atoms and one silicon atom; see Figure 4. This higher coordinate site is not unexpected, given that an oxygen atom shared only between two framework zinc atoms is markedly underbonded with just two O–Zn interactions of around 1.95 Å. In stuffed silicas of the type A₂ZnSiO₄,

Figure 3. Structure of NaZnSiO₃OH viewed along the *c* direction. Tetrahedra: ZnO_4 (dark gray), SiO₃OH (mid gray). Atoms: sodium (medium gray), hydrogen (black).

Figure 4. Linking of the polyhedral units along the c direction. ZnO₄ are large black tetrahedra, and SiO₃OH are small gray tetrahedra.

interactions between the framework oxygen and the alkali metal cations help offset the underbonding of oxygen connected to zinc. Bond valence calculations on the four oxygen atoms give reasonable values between 1.82 and 2.03 Å. The framework also contains a short interaction between the tetrahedral atoms, a nonbonded zinc-silicon distance of 3.069(4) Å exists.

Crystallization of NaZnSiO₃OH in the noncentrosymmetric space group $P2_12_12_1$ produces a chiral structure and, as such, is one of a growing number of frameworks of this type. Other chiral frameworks, which have been described recently, are those of *d*-Co(en)₃[H₃Ga₂P₄O₁₆],¹⁴ tetrahedral cobalt phosphates,¹⁵ a decavanadium(V) cluster,¹⁶ NaZnPO₄·H₂O,¹⁷ and an extended nickel framework.¹⁸ In these systems, the chirality results from the adoption of one of the enatiomorphic space group pairs (e.g., $P4_332$ or $P4_132$) or the crystallization in a space group with no improper rotations. NaZnSiO₃OH belongs to the later class and the refinement of the Flach parameter to a value very close to zero confirms that the crystal studied in the single-crystal X-ray work was a single enantiomorph.

The SiO₃OH tetrahedra are reasonably regular, though the Si-O(4)H bond is significantly longer than the other three distances. The OH group points into the main eight-membered ring and the hydrogen forms a moderately strong hydrogen bond to oxygen on the opposite side of the channel; the hydrogen atom lies slightly off the O–O direction (O–H···O = 173.4°), typical behavior for this type of interaction. The observed OH stretching frequency of 2900 cm⁻¹ is also consistent with a moderately strong hydrogen bond with a decrease of 700 cm⁻¹ from the free OH value 3600 cm⁻¹.¹⁹

The ²⁹Si MAS NMR resonance frequency occurred at -66.30 ppm referenced to TMS. Previous ²⁹Si NMR resonance data on tectozincosilicates show that the SiO₄ group in these materials

- (14) Stadler, S. M.; Wilkinson, A. P. Chem. Mater. 1997, 9 (10), 2168.
- (15) Feng, P. Y.; Bu, X. H.; Tolbert, S. H.; Stucky, G. D. J. Am. Chem. Soc. 1997, 119 (10), 2497.
- (16) Oyaizu, K.; Tsuchida, E. J. Am. Chem. Soc. 1998, 120 (1), 237.
- (17) Harrison, W. T. A.; Gier, T. E.; Stucky, G. D.; Broach, R. W.; Bedard, R. A. Chem. Mater. 1996, 8, 145.
- (18) Kepert, C. J.; Rosseinsky, M. J. Chem. Commun. 1998, 1, 31.
- (19) Pimentel, G. C.; McClellan, A. L. *The Hydrogen Bond*; W. H. Freeman and company: San Francisco/London, 1960.

is generally found in the region 65–95 ppm.²⁰ The value found for NaZnSiO₃OH, lying at the bottom end of this range, is consistent with the orthosilicate-type SiO₃OH unit, with weaker deshielding of ²⁹Si by next nearest neighbor H⁺ as compared with Zn²⁺.

The presence of the SiO₃OH in a framework structure is uncommon, though it can be considered to form a building block of the Uranophane structure $Ca(UO_2)_2(SiO_3OH)_2(H_2O)_5$,²¹ where the orthosilicate groups bridge between the uranyl units. The pyramidal SiO₃OH³⁻ group may therefore be considered as an additional unit from which to construct framework structures, and attempts to construct different materials containing this

(21) Viswanathan, K.; Harneit, O. Am. Miner. 1986, 71, 1489.

species are in progress. The channel-like structure of NaZnSiO₃-OH may mean that exchange of the sodium ions or the protons may be possible and investigation of such behavior is also currently being undertaken.

Acknowledgment. We thank EPSRC for a grant in support of this work and Unilever and EPSRC for studentship support for A.M.H..

Supporting Information Available: Listings of single-crystal X-ray diffraction refinement parameters, derived bond lengths and angles, anisotropic thermal parameters, and the asymmetric unit. This material is available free of charge via the Internet at http://pubs.acs.org.

IC9810135

⁽²⁰⁾ Camblor, M. A.; Davis, M. E. J. Phys. Chem. 1994, 98, 13151.