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Introduction

Geminal dimetalated amines, phosphanes, and arsanes gained
increasing attention due to the expectation of a high reactivity
and unique solid-state structures. Power et al.1 reported the
molecular structure of a hexameric ether complex of a magne-
sium imide. The aryl substituent at the nitrogen atom has been
a phenyl1 or a naphthyl group.2 Furthermore, the high reactivity
allows the synthesis of a wide variety of derivatives.2 Dilithiated
phosphanes and arsanes are already published;3 however, they
are centered by an oxygen-centered lithium octahedron. The
tmeda complex of magnesium bis(phenylphosphanide) has been
known since 1987.4 Solvent-free magnesium bis[bis(trimethyl-
silyl)phosphanide] is trimeric in the solid state, but monomeric
and dimeric species are present in the gaseous phase and in
solution.5 This equilibrium explains the high reactivity for
example toward multiple bonds such as of nitriles and alkynes.6

The ether adducts are monomeric in solution and the solid state.7

Here, we report a solvent-free magnesium phosphandiide.

Results and Discussion

Magnesium dibutanide metalates quantitatively tri(tert-butyl)-
silylphosphane8 in a solvent mixture of heptane and toluene
according to eq 1. During the metalation reaction the solution

turns bright yellow. From this solution yellow cuboids precipi-

tate which are thermochromic. On heating, the yellow crystals
turn colorless at about 200-250 °C, whereas up to approxi-
mately 400°C no melting of1 is observed. The high symmetry
of the oligomeric compound is already shown NMR spectro-
scopically since all PSitBu3 moieties are chemically and
magnetically equivalent in a benzene-d6 solution. The31P singlet
at δ ) -263.8 as well as the absence of P-H stretching
frequencies in the IR spectrum prove the preparation of a
dimetalated phosphane.

Figure 1 shows the molecular structure and the numbering
scheme of hexameric1. The central core is a slightly distorted
hexagonal Mg6P6 prism shielded by the sterically demanding
tri(tert-butyl)silyl substituents. The benzene molecule originating
from the recrystallization is not shown. The trigonal pyramidal
coordination sphere of the magnesium atoms is responsible for
the high reactivity of this compound as for example the extreme
sensitivity against moisture and air. The phosphorus atoms
display a distorted tetrahedral coordination sphere. A similar
Sn6P6 prism was published by Driess et al.9 for hexameric tin-
(II) triisopropylsilylphosphandiide.

The hexagonal Mg6P6 prism of1 is disordered in the ratio of
0.824(3)/0.176(3) as stereoscopically displayed in Figure 2 with
the same orientation of the major product as shown in Figure
1. This static disordering of the Mg6P6 fragment occurs without
great influence on the aliphatic periphery. It can be best
described as an octahedral arrangement of the bulky tri(tert-
butyl)silyl substituents bonded to the phosphorus atoms. Above
of six of the octahedron faces the magnesium atoms are
positioned. Two opposite faces remain uncapped by metal
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6MgBu2 + 6H2PSitBu3 f [MgPSitBu3]6 + 12BuH (1)

Figure 1. Molecular structure and numbering scheme of hexameric
magnesium tri(tert-butyl)silylphosphandiide1. The ellipsoids represent
a probability of 40%. All methyl groups are omitted for clarity. The
atoms generated by the inversion center (-x + 1, -y, -z + 1) are
marked with an “A”. Selected bond lengths [Å]: Mg1-P1, 2.555(2);
Mg1-P2, 2.509(2); Mg1-P3A, 2.487(2); Mg2-P1, 2.486(2); Mg2-
P2, 2.503(2); Mg2-P3, 2.474(2); Mg3-P1A, 2.475(2); Mg3-P2,
2.473(2); Mg3-P3, 2.596(2); P1-Si1, 2.237(1); P2-Si2, 2.201(2); P3-
Si3, 2.235(1). Selected bond angles [deg]: P1-Mg1-P2, 100.58(7);
P1-Mg1-P3A, 102.14(8); P2-Mg1-P3A, 125.70(7); P1-Mg2-P2,
102.70(7); P1-Mg2-P3, 127.20(8); P2-Mg2-P3, 100.49(7); P1A-
Mg3-P2, 133.93(8); P1A-Mg3-P3, 101.31(7).
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atoms. The difference of these two molecules is the orientation
of the capped faces of the P6 octahedron.

For the following discussion the structural parameters of the
major component are considered. The Mg-P distances vary in
the narrow range between 2.473(2) and 2.509(2) Å within the
six-membered Mg3P3 cycle and between 2.503(2) and 2.596(2)
Å for the bond lengths between both the Mg3P3 cycles. These
values are similar to those observed for magnesium bis-
(phosphanides) with a four-coordinated metal center. The P-Si
bond lengths with a mean value of 2.224 Å lie in the expected
region and are approximately 4 pm shorter than in tetrameric
tin(II) tri( tert-butyl)silylphosphandiide with a central Sn4P4

heterocubane.10

Due to the solubility of1 in common organic solvents
reactivity studies are in progress. The isolation of1 provides a
well-characterized source for the dianiontBu3SiP2- in aromatic
hydrocarbons even in the absence of solvents with Lewis
basicity such as ethers. Therefore, no limitations such as the
handling at very low temperatures is necessary to avoid ether
cleavage reactions.

Experimental Section

Synthesis of 1.To a solution of 0.56 g oftBu3Si-PH2 (2.4 mmol)
in 20 mL of toluene, a 1M heptane solution of dibutylmagnesium was
added slowly. The clear solution turned yellow within the next 2 h.
After several days 1.43 g of yellow crystals of1 (0.94 mmol; yield
39%) precipitate at rt. Recrystallization from benzene yields a benzene
solvate. Mp> 400°C. 1H NMR (benzene-d6, 30°C): δ 1.36.13C{1H}
NMR (benzene-d6, 30 °C): δ 24.06 (SiC), 32.34 (Me).31P{1H} NMR
(toluene, 30°C): δ -293.8. IR (CsBr, Nujol): 1262 vw, 1179 vw,
1097 w, 1064 w, 1030 w, 1012 m, 932 w, 816 s, 759 vw, 727 w, 693
w, 647 vw, 627 w, 600 m, 565 s, 511 vs, 463 m, 458 m, 430 w, 410
w, 371 w, 329 vw, 302 vw. Elem. Anal. Calcd for Mg6P6Si6C72H162

(1528.26): C, 56.59; H, 10.68. Found: C, 55.90; H, 10.68.
Structure Determination of 1‚C6H6. Data were collected on a

STOE-IPDS diffractometer with graphite-monochromated Mo KR
radiation at-100°C using an oil-coated11 rapidly cooled crystal (2.18
< θ < 25.92°). Selected crystallographic data are summarized in Table

1. The structure was solved by direct methods and refined by full-
matrix least-squares onF2 using all data.12 All non-hydrogen atoms
were refined anisotropically with the exception of the minor Mg3P3

unit with a population factor of 0.176(3) (no restraints, 459 parameters).
The asymmetric unit also contains half of a benzene molecule. The
hydrogen atoms were considered on ideal positions at the corresponding
carbon atoms.
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Figure 2. Representation of the disordering model of1. Stereoscopic representation of the overlapping major (ellipsoids, solid bonds) and minor
components (empty balls, empty bonds) with the same orientation as shown in Figure 1. The population ratio of these molecules amounts to
0.824(3)/0.176(3).

Table 1. Crystallographic Data for1‚C6H6

empirical formula C78H168Mg6P6Si6
fw (g mol-1) 1606.35
T (°C) -100
space group P21/c (No. 14)
unit cell dimens

a (Å) 13.594(1)
b (Å) 23.177(2)
c (Å) 16.351(1)
â (deg) 104.59(1)

V (Å3) 4985.6(6)
Z 2
Fcalcd (g cm-3) 1.070
λ (Å) 0.710 73
µ (cm-1) 0.253
goodness-of-fit onF2 a 1.062
wR2 indices [onF2, all data]b 0.2263
R1 [onF2, I > 2σ(I)] 0.0756
residual dens (e Å-3) 1.23;-0.62

a s ) {∑[w(Fo
2 - Fc

2)2]/(No - Np)}1/2. b Definition of theR indices:
R1 ) (∑||Fo| - |Fc||)/∑|Fo|. wR2 ) {∑[w(Fo

2 - Fc
2)2]/∑[w(Fo

2)2]}1/2

with w-1 ) σ2(Fo
2) + (aP)2.
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