New SO₂ Iron-Containing Cluster Compounds [PPN]₂[Fe₃(CO)₉(μ_3 , η^2 -SO₂)], [PPN]₂[Fe₃(CO)₈(μ -SO₂) μ_3 -S], [PPN]₂[Fe₃(CO)₈(μ -SO₂)(μ_3 -CCO)], and [PPN]₂[Fe₂(CO)₆(μ -SO₂)₂] from Heterometal Precursors

R. W. Eveland, C. C. Raymond, T. E. Albrecht-Schmitt, and D. F. Shriver*

Northwestern University, Department of Chemistry, Evanston, Illinois 60208

Received July 2, 1998

Sulfur dioxide reacts with [PPN]₂[MFe₃(CO)₁₄] (M = Cr, Mo, W) (PPN = bistriphenylphosphonium iminium) to produce [PPN]₂[Fe₃(CO)₉(μ_3 , η^2 -SO₂)] (I) and [PPN]₂[Fe₃(CO)₈(μ -SO₂) μ_3 -S] (II), which were characterized by infrared spectroscopy, ¹³C NMR, and X-ray crystallography. Further reaction of I with sulfur dioxide results in the formation of II in 48% yield. Reaction of SO₂ with [PPN]₂[Fe₄(CO)₁₃] yields [PPN]₂[Fe₂(CO)₆(μ -SO₂)₂] (III) which was characterized by infrared spectroscopy, ¹³C NMR, mass spectrometry, and X-ray crystallography. One equivalent of sulfur dioxide with [PPN]₂[MFe₃(CO)₁₄C] (M = Cr, W) produces [PPN]₂[Fe₃(CO)₈(μ -SO₂)-(μ_3 -CCO)] (IV), which on further reaction with SO₂ gives the known cluster [PPN]₂[Fe₃(CO)₇(μ -SO₂)₂(μ_3 -CCO)] (V). An excess of sulfur dioxide with [MFe₃(CO)_nC]^{x-} (M = Cr, W: *n* =13, *x* = 2; M = Rh: *n* = 12, *x* = 1; M = Mn: *n* = 13, *x* = 1) produced V as the only identified product. Crystallographic data for I·0.5CH₂Cl₂: monoclinic, *Cc* (no. 9), *a* = 29.7648(3) Å, *b* = 14.6496(1) Å, *c* = 21.7620(3) Å, *β* = 123.397(1)°, *V* = 7922.3 Å³; *Z* = 4. Crystallographic data for III·NCCH₃: monoclinic *P*₂₁ (no. 4), *a* = 10.0295(5) Å, *b* = 26.356(1) Å, *c* = 14.1032(7) Å, *β* = 94.691°, *V* = 3715.6(3) Å³; *Z* = 4.

Introduction

Sulfur dioxide is a π -acid ligand that reacts with many metal carbonyl compounds to give sulfur dioxide complexes.^{1–3} An interesting feature of this chemistry is the variety and number of bonding modes which SO₂ can adopt, including η^1 -pyramidal, [IrCl(CO)(PPh₃)₂(SO₂)],^{4.5} η^1 planar [OsHCl(CO)(PCy₃)₂(SO₂)], and η^2 in [Rh(NO)(SO₂)(PPh₃)₂].⁶ When two or more metals are present, SO₂ can bridge a metal—metal bond or form a bridge between metal centers that are not supported by a metal—metal bond. Sulfur dioxide may bridge metal atoms through both sulfur and oxygen as with [Mo(CO)₂(PPh₃)(py)(μ -SO₂)]₂.⁷ A few heterometallic SO₂-containing clusters are known, such as the late d-block clusters [Os₃Pt(μ -H)₂(μ -SO₂)(CO)₁₀(PCy₃)]⁸ and [Pt₃Au₂Cl(SO₂)₂(PCy₃)₃(P{p-C₆H₄F}₃)].⁹

The goals of the present research were to explore the synthesis and structures of new metal cluster compounds formed by the interaction of sulfur dioxide with metal carbonyl clusters, and the reactions of sulfur dioxide ligands in these clusters. The reactivity of the SO₂ ligand has been reviewed,¹⁰ with emphasis on the reduction of coordinated SO₂ to other sulfur oxides or elemental sulfur.^{11–15} Recent results in this laboratory show that

- (1) Schenk, W. A. Angew. Chem., Int Ed. Engl. 1987, 26, 98-109.
- (2) Mingos, D. M. P. Trans. Met. Chem. (London) 1978, 3, 1-15.
- (3) Ryan, R. R.; Kubas, G. J. Struct. Bonding Berlin 1981, 46, 47.
- (4) Vaska, L. Acc. Chem. Res. 1968, 1, 335.
- (5) La Placa, S. J.; Ibers, J. A. Inorg. Chem. 1966, 5, 405.
- (6) Moody, D. C.; Ryan, R. R. Inorg. Chem. 1977, 16, 2473.
- (7) Jarvinen, G. D.; Kubas, G. J.; Ryan, R. R. J. Chem. Soc., Chem. Com. 1981, 7, 305–6.
- (8) Ewing, P.; Farrugia, L. J. *Organometallics* **1989**, *8*, 1665–73.
- (9) Mingos, D. M. P.; Oster, P.; Sherman, D. J. J. Organomet. Chem. 1987, 320, 257-66.
- (10) Kubas, G. J. Acc. Chem. Res. 1994, 27, 183-90.
- (11) Lang, R. F.; Ju, T. D.; Hoff, C. D.; Bryan, J. C.; Kubas, G. J. J. Am. Chem. Soc. 1994, 116, 9747–8.
- (12) Kubas, G. J.; Ryan, R. R. Inorg. Chem. 1984, 23, 3181-3.

the acylation of an S–O bond in $[HFe_3(CO)_9(\mu_3,\eta^2-SO_2)]^{1-}$ followed by reduction with NaPh₂CO causes cleavage of an S–O bond and produces SO and S containing clusters (eq 1).¹⁶

In the present research we explored the reaction of SO₂ with heterometallic carbonyl clusters, $[MFe_3(CO)_{14}]^{2-}$ (M = Cr, Mo, W), and heterometallic carbide clusters $[MFe_3(CO)_nC]^{x-}$ (M = Mn, Cr, W, Rh) with the thought that new types of metal reactivity might result.

Experimental Section

General Procedures and Materials. All manipulations were carried out with standard Schlenk techniques under a prepurified N_2 atmosphere or on a high vacuum line. Solids were handled in the oxygen-free N_2 atmosphere of a drybox. Solvents were distilled from appropriate drying agents before use. Solutions of the starting metal complex were freeze– pump–thaw degassed three times before SO₂ was introduced on a high vacuum line; the sulfur dioxide was used as received from Matheson. Infrared spectra were recorded on a Bomem MB-Series FTIR spectrometer at 2 cm⁻¹ resolution. Solution spectra were obtained in matched

- (13) Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc. **1985**, 107, 6138–40.
- (14) Karet, G. B.; Stern, C. L.; Cody, J. A.; Lange, S. J.; Pell, M. A.; Slebodnick, C.; Shriver, D. F. J. Organomet. Chem. 1995, 495, 33-
- (15) Bogdan, P. L.; Sabat, M.; Sunshine, S. A.; Woodcock, C.; Shriver, D. F. Inorg. Chem. 1988, 27, 1904–10.
- (16) Karet, G. B.; Stern, C. L.; Norton, D. M.; Shriver, D. F. J. Am. Chem. Soc. 1993, 115, 5, 9979–85.

10.1021/ic980762j CCC: \$18.00 © 1999 American Chemical Society Published on Web 02/18/1999

39

air-free cells with CaF₂ windows; solid samples were prepared as Nujol mulls between KBr plates. Gaseous products were analyzed by infrared spectroscopy in a 10 cm gas cell with KBr windows. Raman spectra were recorded with a Bio-Rad FT Raman Spectrometer operating at 1064 nm excitation. The ¹H and ¹³C NMR spectra were acquired on a Varian Unity 400+ spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C. CD₂Cl₂ was dried over P₂O₅ and was used as an internal standard. Mass spectra were determined at Washington University Mass Spectrometry Resource (St. Louis MO) or by Northwestern University Analytical Services Laboratory. Elemental analyses were performed by Elbach Analytical Laboratories, Engelskirchen, Germany.

The clusters [PPN]₂[MFe₃(CO)₁₄] (M = Cr, Mo, W), [PPN]₂[WFe₃-(CO)₁₃C], [PPN]₂[CrFe₃(CO)₁₃C], [PPN][MnFe₃(CO)₁₃C], [PPN]₂[RhFe₃-(CO)₁₂C], [PPN]₂[Fe₄(CO)₁₃], [PPN]₂[Fe₃(CO)₇(SO₂)₂(CCO)], [PPN]₂[Fe₅(CO)₁₃(SO₂)], [PPN]₂[Fe₆(CO)₁₅C(SO₂)], [PPN][HFe₃(CO)₉(SO₂)], [PPN]₂[Fe₃(CO)₉(SO)], [PPN]₂[Ru₃(CO)₉(SO₂)], and [PPN]₂[Ru₃(CO)₉(SO₂)] were prepared by published procedures.^{14-16,18-20} ([PPN]⁺ is bis(triphenylphosphine)iminium.) Trifluoromethanesulfonic acid (HSO₃-CF₃, HOTf) was purchased from Aldrich and used without further purification.

Reaction of $[PPN]_2[MFe_3(CO)_{14}]$ (M = W, Cr, Mo) 1:1 with SO₂. Sulfur dioxide (2.53×10^{-4} mol) was condensed onto a frozen solution containing 0.399 g (2.19 \times 10⁻⁴ mol) of [PPN]₂[WFe₃(CO)₁₄] in 10 mL of CH₂Cl₂. The solution was warmed to room temperature and stirred for 3 h. Gaseous products were collected by low-temperature condensation and identified by infrared spectroscopy as CO₂ and CO. Solvent was removed under vacuum, and W(CO)6 was removed by sublimation. The remaining products were separated from the reaction mixture by dissolution of the solids in 10 mL of THF followed by addition of 20 mL of Et₂O, which resulted in formation of red solids and a light red solution. The red solution was removed by filtration. This process was repeated three times. The solid product consisted primarily of [PPN]₂[Fe₃(CO)₉(SO₂)] (I), which forms red, platelike crystals from 5:1 Et_2O/ CH_2Cl_2 (41% yield based on iron). Solvent was removed from the filtrate to produce a brown solid, which was dissolved in acetone. Subsequent slow diffusion of pentane into this solution yielded red-brown crystals of the new compound [PPN]2[Fe3-(CO)8(SO2)S] (II) (18% yield based on iron). Similar procedures were used for the reaction of SO2 with [PPN]2[MoFe3(CO)14] and [PPN]2- $[CrFe_3(CO)_{14}]$, where **I** and **II** were the products.

Infrared spectra for [PPN]₂[Fe₃(CO)₉(SO₂)] (**I**) reveal ν_{CO} (CH₂Cl₂) 2016(w), 1947(vs), 1920(m), 1782(w, br) cm⁻¹; ν_{CO} (THF) 2011(w), 1939(vs), 1916(m), 1785(w, br) cm⁻¹; ν_{CO} (Nujol) 2011(m), 1958(sh), 1938(vs), 1913(s), 1783(w, br) cm⁻¹, and ν_{SO} at 1162 and 902 cm⁻¹. An electrospray mass spectrum of **I** displayed a parent peak at 483 m/z and additional peaks corresponding to successive loss of four CO ligands. ¹³C NMR spectra were collected from 20 to -80 °C in CD₂Cl₂, and the chemical shifts at 20 °C showed terminal carbonyls at 225.76 and 221.61 ppm. Elemental analysis of **I**: Calcd (Found) for C₈₁H₆₀N₂Fe₃SO₁₁P₄: C 62.3 (62.1), H 3.87 (3.71), N 1.79 (1.75).

The infrared spectra for CH₂Cl₂ solutions of [PPN]₂[Fe₃(CO)₈(SO₂)S] (**II**) contain CO stretching bands at 2011(m), 1964(s), 1916(vs), 1842-(m) cm⁻¹. In mulls the CO frequencies are 1996, 1961, 1908, 1841 cm⁻¹, and ν_{SO} at 1066 cm⁻¹. The electrospray mass spectrum of **II** contains a parent peak at 487 *m*/*z* and lower mass peaks corresponding to the successive loss of three CO ligands. The ¹³C NMR spectra of **II** were collected from 20 to -60 °C in CD₂Cl₂. Chemical shifts at -60 °C were observed at 200.97, 198.65, 198.01, 197.38 (terminal CO), and 190.65 (μ -CO) ppm. Elemental analysis of **II**: Calcd (Found) for C₈₀H₆₀N₂Fe₃P₄O₁₀S₂: C 62.61 (62.01), H 3.86 (3.80), N 1.83 (1.80), S 4.18 (4.12).

- (17) Kubas, G. J.; Wasserman, H. J.; Ryan, R. R. Organometallics 1985, 4, 2012-21.
- (18) Horwitz, C. P.; Holt, E. M.; Shriver, D. F. *Inorg. Chem.* **1983**, *23*, 2491–9.
- (19) Hriljac, J. A.; Holt, E. M.; Shriver, D. F. Inorg. Chem. 1987, 26, 2943– 9.
- (20) Whitmire, K.; Ross, J.; Cooper, C. B. I.; Shriver, D. F. Inorg. Synth. 1982, 21, 66–9.

Reaction of [PPN]₂[**MFe**₃(**CO**)₁₄] (**M** = **W**, **Cr**, **Mo**) with Excess **SO**₂. Sulfur dioxide (5.80 × 10^{-4} mol) was condensed onto a frozen solution containing 0.252 g (1.38×10^{-4} mol) of [PPN]₂[WFe₃(CO)₁₄] in 15 mL of CH₂Cl₂. The solution was warmed to room temperature and stirred overnight. Carbon dioxide was identified as a gaseous reaction product. The iron-containing products of this reaction, **I** and **II**, were separated and purified as described above. Similar procedures were used for the reaction of SO₂ with [PPN]₂[MoFe₃(CO)₁₄] and [PPN]₂[CrFe₃(CO)₁₄].

Reaction of [PPN]₂[Fe₄(CO)₁₃] with SO₂. Sulfur dioxide (7.58 × 10^{-4} mol) was condensed onto a frozen solution containing 0.278 g (1.67 × 10^{-4} mol) of [PPN]₂[Fe₄(CO)₁₃] in 15 mL of CH₂Cl₂. As the solution warmed to room temperature, the color changed from red to red-brown and gas was evolved. The solution was stirred overnight, and both carbon monoxide and carbon dioxide were identified as gaseous products by their IR spectra. Solvent was removed under vacuum, and the solids were redissolved in 10 mL of CH₃CN, and subsequent addition of 70 mL of Et₂O with vigorous stirring gave a red solid and a red-brown solution which were separated by filtration. The vacuum-dried red solid was redissolved in 7 mL of CH₃CN and layered with 50 mL of Et₂O. Ruby-red crystals of [PPN]₂[Fe₂(CO)₆-(SO₂)₂] (**III**) resulted (ca. 10% yield).

Infrared spectra for $[PPN]_2[Fe_2(CO)_6(SO_2)_2]$ (III) revealed ν_{CO} (CH₂Cl₂) 2021(s), 1993(vs), 1981(vs), 1953(vs) cm⁻¹, and ν_{SO} at 1018 cm⁻¹; ν_{CO} (Nujol) 1996, 1986, 1941 cm⁻¹, and ν_{SO} at 1017 cm⁻¹. The electrospray mass spectrum displays a parent peak at 408.7 m/z for III + H. Elemental analysis III: Calcd for Fe₂S₂P₄N₂C₇₈O₁₀H₆₀ (Found) C 63.09(62.83); H 4.07 (3.91); N 1.89 (2.04); S 4.32 (4.50). A ¹³C NMR of an enriched sample of III shows a single peak at 155.5 ppm at 20 °C.

Reaction of [PPN]₂[**Fe**₃(**CO**)₉(**SO**₂)] (**I**) with HSO₃CF₃. A 1.30 μ L aliquot (1.47 × 10⁻⁵ mol) of HSO₃CF₃ was added to a solution of 23.0 mg (1.47 × 10⁻⁵ mol) [PPN]₂[Fe₃(CO)₉(SO₂)] in 5 mL of CH₂Cl₂. The color of the solution immediately changed from ruby-red to brown, and infrared spectra indicated the formation of the known compound [PPN][HFe₃(CO)₉(SO₂)] (**VI**)¹⁶ in quantitative yield.

Reaction of [PPN]₂**[Fe**₃(**CO**)₉(**SO**₂)**] with 1 SO**₂. Sulfur dioxide (8.04 × 10⁻⁵ mol) was condensed onto a frozen solution containing 0.116 mg (7.46 × 10⁻⁵ mol) of [PPN]₂[Fe₃(**CO**)₉(**SO**₂)**] in 10 mL of CH**₂Cl₂. The solution was warmed to room temperature and stirred for 3 h, and CH₂Cl₂ was removed under vacuum. Carbon dioxide was identified as the gaseous reaction product by IR spectroscopy. [PPN]₂-[Fe₃(**CO**)₈(SO₂)**S**] (**II**) (0.0562 g, 48% yield based on iron) was separated from the remaining solids by repeated dissolution of the crude product in 5 mL portions of THF followed by addition of 10 mL of Et₂O to precipitate solids which were then removed by filtration. The solid was collected and dried under vacuum to give **II**.

Reaction of [PPN]₂**[WFe**₃**(CO)**₁₃**C] with 1 SO**₂. Sulfur dioxide (1.61 $\times 10^{-4}$ mol) was condensed onto a frozen solution containing 0.260 g (1.46 $\times 10^{-4}$ mol) of [PPN]₂**[WFe**₃**(CO)**₁₃**C]** in 20 mL of CH₂Cl₂. The mixture was warmed to room temperature, stirred for 2 h, reduced to 5 mL under vacuum, and crystallized by addition of 40 mL of Et₂O followed by vigorous shaking to give red-brown solids and a light red-brown solution. The solids were collected by filtration and redissolved in 10 mL of THF, and this solution was layered with 60 mL of Et₂O to give long, thin red plates of the new compound [PPN]₂[Fe₃(CO)₈-(SO₂)(CCO)] **(IV)**. Tungsten hexacarbonyl was identified in the filtrate.

Infrared spectra for [PPN]₂[Fe₃(CO)₈(SO₂)(CCO)] (**IV**) show ν_{CO} (CH₂Cl₂) 2036 (s), 1985 (vs), 1948 (vs), 1908 (s),1805 (w), 1774 (w) cm⁻¹, and ν_{SO} at 1020 cm⁻¹; ν_{CO} (Nujol) 2033, 1978, 1950, 1894, and 1760 cm⁻¹, and ν_{SO} at 1064 and 1025 cm⁻¹. The FAB mass spectrum displays a parent peak at 497 *m/z* and peaks for progressive loss of four CO ligands. The ¹³C NMR spectra was obtained in CD₂Cl₂/CFCl₃ from 25 to -120 °C, and the chemical shifts at -40 °C were δ 272.5 (2) (m-CO); 216.4, 210.1, 215.6, 213.1 (1:1:2:2) (terminal COs); 165.6 (CCO); and 2.2 ppm (CCO). Elemental analysis calcd (found) for C₈₂H₆₀N₂Fe₃SP₄O₁₁: C, 62.62 (62.34); H, 3.84 (4.02); N, 1.78 (1.85); Fe, 10.65 (10.65); S, 2.04 (2.10).

Similar procedures were employed in the reaction of $[PPN]_2[CrFe_3-(CO)_{13}C]$ with 1 equiv of SO₂ to produce Cr(CO)₆ and **IV**. [PPN][RhFe₃-

Table 1. Crystal Data for $[PPN]_2[Fe_3(CO)_9(SO_2)] \cdot 0.5CH_2Cl_2$ and $[PPN]_2[Fe_2(CO)_6(SO_2)_2] \cdot 1NCCH_3$ (III)^{*a*}

formula	C ₈₁ H ₆₁ N ₂ O ₁₁ P ₄ SClFe ₃	$C_{80}H_{63}N_3O_{10}P_4S_2Fe_2$
formula weight	1603.26	1526.0
a	29.7648(3)	10.0295(5)
b	14.6496(1)	26.356(1)
С	21.7620(3)	14.1032(7)
α	90	90
β	123.397(1)	94.691(1)
γ	90	90
$V(Å^3)$	7922.3(2)	3715.6(3)
space group, Z Cc	<i>Cc</i> , 4	$P2_1, 4$
$T(^{\circ}C)$	25	-178
λ (Å)	0.71073	0.71073
$\rho_{\rm calcd} ({\rm g}~{\rm cm}^{-3})$	1.344	1.364
μ (mm ⁻¹)	0.742	0.594
R1	0.0505	0.0684
wR2	0.1180	0.1756

^{*a*} R1 = $(\Sigma ||F_o| - |F_c||)/\Sigma |F_o|$, wR2 = $[(\Sigma w(F_o2 - F_c2)^2)/\Sigma w(F_o2)^2]^{1/2}$, $w = 1/[\sigma^2(F_o2) + (z_1, P)^2 + z_2P]$ where $P = (F_o2 + 2F_c2)/3$, z_1, z_2 = weighting and extra extinction.

 $(CO)_{12}C$ and $[PPN][MnFe_3(CO)_{13}C]$ do not react with one equivalent of SO₂ after stirring for 2 days at room temperature.

Reaction of [PPN]₂**[WFe**₃**(CO)**₁₃**C] with Excess SO**₂. Sulfur dioxide (4.14 × 10⁻⁴ mol) was condensed onto a frozen solution containing 0.136 g (7.54×10^{-5} mol) [PPN]₂[WFe₃(CO)₁₃C] in 10 mL of CH₂Cl₂. The solution was warmed to room temperature and stirred for 2 h. An infrared spectrum taken at this time indicated the presence of the known compound [PPN]₂[Fe₃(CO)₇(SO₂)₂(CCO)] (**V**) in apparently quantitative yield.

Reaction of [PPN][RhFe₃(CO)₁₂C], [PPN]₂[CrFe₃(CO)₁₃C], or [PPN]-[MnFe₃(CO)₁₃C] with excess SO₂ gave V as the only identified ironcontaining product. The reaction times used were 9, 18, and 48 h, respectively.

Reaction of [PPN]₂[**Fe**₃(**CO**)₈(**SO**₂)(**CCO**)] (**IV**) with 1 **SO**₂. Sulfur dioxide (1.20×10^{-5} mol) was added to a frozen solution containing 0.0160 g (1.01×10^{-5} mol) of **IV** in 10 mL of CH₂Cl₂. The solution was warmed to room temperature and stirred for 2 h. Infrared spectra indicate that the reaction went cleanly and completely to the bis-SO₂ product **V**.

Reaction of [PPN]₂[Fe₄(CO)₁₃C] with 1 SO₂. Sulfur dioxide (1.55 \times 10⁻⁵ mol) was added to 0.0216 g (1.29 \times 10⁻⁵ mol) of [PPN]₂[Fe₄-(CO)₁₃C] in 5 mL of CH₂Cl₂. The solution was warmed to room temperature and stirred for 2 h. An IR spectrum showed only starting material and bis-SO₂ product **V**, with no evidence for the presence of the mono-SO₂ species **IV**.

Structure Determination of [PPN]₂[Fe₃(CO)₉(SO₂)] (I)·0.5CH₂Cl₂. A clear, dark red, pyramidal crystal was mounted on a glass fiber with epoxy resin, and data were collected at room temperature, because the crystals crack at low temperature. A complete hemisphere of data was collected on a Siemens SMART-CCD diffractometer. The intensity data was collected with 30 s frame times and interpreted with SAINT.²¹ The initial unit cell parameters were determined from several frames of data, but were redetermined using all of the unique data, Table 1. The structure was solved and refined using SHELXTL, and an absorption correction was performed using SADABS.^{22,23} Hydrogen atoms were placed in idealized positions and refined with a riding model. Because of the method used by SADABS, no transmission factors are reported for the corrected data. The systematic absences indicate a C-centered monoclinic cell, containing a c-glide. Initial structure refinements in Cc(no. 9) proceeded smoothly, but there were 16 systematic absence violations (all of which are weak reflections with large standard deviations). Because of these violations and the "perils of Cc"24,25 a closer inspection of the data was made, which showed

(25) Marsh, R. E. Acta Crystallogr. 1997, B53, 317-22.

that the cell did not have higher symmetry. Also, the structure did not refine properly in C2/c (no. 15). A check of the Flack parameters indicated the correct absolute structure.²⁶

Structure Determination for [PPN]₂[Fe₂(CO)₆(μ -SO₂)₂]-1NCCH₃ (III). A red-orange crystal of III was mounted under N₂ on a Bruker SMART1000-CCD diffractometer. The intensity data were collected with 15 s frame times and interpreted with SAINT.²⁷ The initial unit cell parameters were determined from several frames of data, but were redetermined using all of the unique data. An absorption correction was applied with SADABS,² and the structure was solved and refined as a racemic twin, using SHELXTL. Hydrogen atoms were placed in idealized positions and refined with a riding model. Because of the method used by SADABS, no transmission factors are reported for the corrected data.

Results and Discussion

Reaction of [MFe₃(CO)₁₄]²⁻ with SO₂. [PPN]₂[MFe₃(CO)₁₄] (M = Cr, Mo, W) react with SO₂ to give CO, CO₂, M(CO)₆, [PPN]₂[Fe₃(CO)₉(SO₂)] (**I**), [PPN]₂[Fe₃(CO)₈(SO₂)S] (**II**), and other unidentified metal carbonyl compounds (eq 2). In contrast, [HFe₃(CO)₉(SO₂)]⁻ (**VI**) is synthesized by the direct reaction

of an excess of SO₂ with [HFe₃(CO)₁₁]⁻. Reaction of $[Fe_3(CO)_{11}]^{2-}$ with SO₂ has been reported to produce a complex mixture of unidentified products.²⁸ Salts of dianions I and II were separated by partial solubility differences in 1:2 THF/ Et₂O. Previous research has shown that under an atmosphere of CO. heterometallic carbonyl clusters may undergo cleavage into lower nuclearity compounds.^{29,30} In the current work, CO released by the replacement reaction by SO₂ leads to the formation of the thermodynamically stable homometallic carbonyls $M(CO)_6$ (M = Cr, Mo, W), along with iron-sulfurcontaining carbonyl clusters. Excision of the heterometal also is seen in reactions of [MFe₃(CO)₁₄]²⁻ where strong proton sources, such as HOTf, give $[HFe_3(CO)_{11}]^-$ and $Fe_3(CO)_{12}$ as products.31 Similarly, [Fe3(CO)10(COMe)]- is obtained from reaction of $[MFe_3(CO)_{14}]^{2-}$ (M = Cr, W) with strong methylating agents, either MeOTf or (CH₃)₃OBF₄. In both reactions, the heterometal is lost as $M(CO)_6$.

Reaction of I with additional SO₂ gives II in 48% yield (eq 3) plus CO₂. The formation of CO₂ may occur by transfer of oxygen from SO₂ to cluster bound carbonyl ligands, but the details of the reduction of SO₂ to sulfide ligand are uncertain.

To the best of our knowledge, this is a rare example of CO

(27) Bruker SAINT-NT; Bruker, Ed.: Madison, WI, 1998.

(29) Horwitz, C. P. Unpublished results

⁽²¹⁾ Siemens SAINT-PC; Siemens, Ed.: Madison, WI, 1996.

⁽²²⁾ Sheldrick, G. M. J. Appl. Crystallogr., in press.

⁽²³⁾ Sheldrick, G. M. SADABS, Program for Absorption Correction of Area Detector Data; Sheldrick, G. M., Ed.: Gottingen, Germany, 1996.

⁽²⁴⁾ Baur, W. H.; Kassner, D. Acta Crystallogr. 1992, B48, 356-69.

⁽²⁶⁾ Flack, H. D. Acta Crystallogr. 1983, A39, 876-81.

⁽²⁸⁾ Karet, G. B. Unpublished results.

⁽³⁰⁾ Geoffroy, G. L. Acc. Chem. Res. 1980, 13, 469-86.

Figure 1. Thermal ellipsoid plot of $[Fe_3(CO)_9(SO_2)]^{2-}$ (I) at 30% probability.

Table 2.	Selected Bond Leng	gths (Å) and	Angles	(deg)	for
[PPN] ₂ [Fe	$e_3(CO)_9(SO_2)]$ (I)				

Fe1-C2	1.72(1)	Fe1-C3	1.77(1)
Fe1-C1	1.80(1)	Fe1-O10	2.14(1)
Fe1-S10	2.441(5)	Fe1-Fe3	2.605(2)
Fe1-Fe2	2.619(2)	Fe2-C6	1.748(8)
Fe2-C4	1.75(1)	Fe2-C5	1.791(8)
Fe2-S10	2.125(4)	Fe2-Fe3	2.615(2)
Fe3-C8	1.70(1)	Fe3-C9	1.71(1)
Fe3-C7	1.78(1)	Fe3-S10	2.157(4)
S10-O10	1.32(2)	S10-O11	1.55(1)
C1-01	1.13(1)	C2-O2	1.18(1)
C3-O3	1.17(1)	C4-O4	1.15(1)
C5-O5	1.158(8)	C6-O6	1.154(8)
C7-O7	1.16(1)	C8-O8	1.18(1)
C9-O9	1.18(1)		
Fe1-Fe2-Fe3	59.70(4)	O10-S10-O11	115(1)
Fe1-Fe3-Fe2	60.23(4)	Fe1-C1-O1	175.7(8)
Fe2-Fe1-Fe3	60.07(4)	Fe1-C2-O2	174.6(7)
Fe1-S10-Fe2	69.6(1)	Fe1-C3-O3	175(1)
Fe1-S10-Fe3	68.7(1)	Fe2-C4-O4	176(1)
Fe2-S10-Fe3	75.3(1)	Fe2-C5-O5	176.9(7)
Fe1-S10-O10	86.4(7)	Fe2-C6-O6	176.1(6)
Fe2-S10-O10	116.9(7)	Fe3-C7-O7	178.5(7)
Fe2-S10-O11	115.1(7)	Fe3-C8-O8	176(1)
Fe3-S10-O10	116.1(8)	Fe3-C9-O9	178(1)
Fe3-S10-O11	112.9(6)		

acting as a reducing agent toward SO₂ in organometallic species. Another example is the reaction of SO_2 with $Cp_2Mo_2(CO)_6$ where CO from the molybdenum complex reduces SO₂ to give CO₂ and sulfido complexes.¹⁰ Similarly, reaction of SO₂ with CpMo(CO)₃H yielded CpMo(CO)₃(SO₂H), CO, CO₂, SO₂, and COS. It is likely that the CO_2 is formed by oxidation of CO by SO₂ or the SO₂H derived species. In previous work, a reducing agent had to be added to elicit reduction of the SO₂ ligand, as shown in eq 1. For example, the reaction of $[HFe_3(CO)_9(SO_2)]^-$ (VI) with NaPh₂CO yields the sulfur monoxide adduct, [Fe₃(CO)₉-(SO)]²⁻, while acetylation of the SO₂ ligand followed by reduction with NaPh₂CO is required to form the sulfide cluster, $[Fe_3(CO)_9(S)]^{2-}$ (eq 1).¹⁶ Intermediates are not typically seen or isolated in the reduction of SO₂ to lower sulfur oxides or elemental sulfur.¹⁰ In the present work, we find that pure I reacts with SO_2 to give the partially reduced species II. Also, compound I reacts rapidly with 1 equiv of trifluoromethanesulfonic acid to give the known cluster [PPN][HFe₃(CO)₉(SO₂)] (VI) in a quantitative yield.

The structure of **I**, Figure 1 and Table 2, is similar to that of $[HFe_3(CO)_9(SO_2)]^-$ (**VI**); both contain a μ_3,η^2 -SO₂ and both have nine terminal carbonyls. The μ_3,η^2 -SO₂ bonding mode for **I** gives rise to S–O stretches at 1162 and 902 cm⁻¹ (Nujol) which are in the expected range.¹⁰ The electron count in both **I**

Figure 2. Proposed structure of $[Fe_3(CO)_8(SO_2) (\mu_3-S)]^{2-}$ (II).

Figure 3. Thermal ellipsoid plot of $[Fe_2(CO)_6(SO_2)_2]^{2-}$ (III) at 50% probability.

and VI can be understood if the S- and O-coordinated SO₂ ligand is counted as a four-electron donor. The S-O bond lengths for I are 1.55(1) Å for the exo oxygen and 1.32(2) Å for the metal bound S–O, and the O–S–O angle is $110.3(6)^{\circ}$. The protonated version of I, VI, has bond lengths of 1.62(1) Å for the exo and 1.434(9) Å for the metal bound S–O bonds, respectively, and a more open O-S-O angle of 119°. The S-O bond lengths for **I** are more typical of other η^2 -sulfur dioxide compounds, where the uncoordinated, or exo, S-O bond is longer than the S–O bond which caps the trimetal face of the cluster.² Examples which follow the expected trend are $[Ru_3(CO)_9(SO_2)]^{2-}$ (S-O = 1.54(5) Å and 1.452(7) Å), [Rh- $(CO)_4(SO_2)_3(P(OPh)_3)_4]$ (S-O = 1.47(1) Å, 1.44(2) Å, 1.43-(2) Å, 1.50(2) Å),³² and $[Pd(SO_2)_4(Ph_3As)_5]$ (S-O = 1.438(7) Å, 1.476(7) Å, 1.489(8) Å, 1.438(8) Å.).³³ Even though the structures of I and VI were determined at different temperatures, there are a few metric comparisons that are informative and statistically relevant. The hydride ligand in IV leads to a longer metal-bound S-O distance as well as an increase in the Fe-Fe bond length from 2.615(2) Å for I to 2.649(3) Å for VI. Also, Fe1–O10 is 0.10 Å longer than the Fe–O bond in VI.

Isotopically enriched **I** and **II** were prepared by stirring a methylene chloride solution of the cluster under an atmosphere of ¹³CO. The ¹³C NMR spectrum of [PPN]₂[Fe₃(CO)₉(SO₂)] (**I**) shows fluxional behavior from 20 to -80 °C. At low

- (31) Horwitz, C. P.; Shriver, D. F. Adv. Organomet. Chem. 1984, 23, 219-305.
- (32) Briant, C. E.; Theobald, R. C.; Mingos, D. M. P. J. Chem. Soc., Chem. Commun. 1981, 963.
- (33) Burrows, A. D.; Mingos, D. M. P.; Powell, H. R. J. Chem. Soc., Dalton Trans. 1992, 261.

Figure 4. Reaction scheme for $[MFe_3(CO)_nC]^{2-}$ with SO₂.

temperatures, no peaks attributable to bridging carbonyls are present, in agreement with the solid state structure. At 20 °C, the metal carbonyl carbon resonances nearly coalesced to a single peak at 221.6 ppm. The ¹³C NMR spectrum of [PPN]₂-[Fe₃(CO)₈(SO₂)S] (**II**) displays integrated intensities with a 2:2:4 ratio for edge-bridging carbonyls, carbonyls opposing the μ -SO₂, and carbonyls on iron adjacent to SO₂. No CO fluxionality was observed in the temperature range from 20 to -60 °C.

Several sets of data were collected on crystals of **II** with a SMART-CCD diffractometer, but the crystals diffracted weakly and the anion was disordered which resulted in a poor data set. The proposed structure for **II**, Figure 2, contains a μ_3 -sulfide which acts as a four-electron donor and a μ -SO₂ which donates two electrons resulting in an electron precise cluster. The ν_{SO} stretch at 1066 cm⁻¹ indicates the presence of a bridging SO₂ in the product, in agreement with the proposed structure.

The reaction of [Fe₄(CO)₁₃]²⁻ with excess SO₂ produces $[Fe_2(CO)_6(SO_2)_2]^{2-}$ (III). This result is similar to observations with other iron-carbonyl clusters, where the iron-iron bond is easily cleaved by SO₂, leading to mono- and bimetallic compounds.¹⁵ Red, translucent plates of [PPN]₂[Fe₂(CO)₆(SO₂)₂] (III) were grown for the X-ray crystal structure determination by the slow diffusion of diethyl ether into an acetonitrile solution of III, and crystal data are presented in Table 1. The structure of III, Figure 3, contains two edge-bridging sulfur dioxide ligands, and the terminal carbonyls adopt an eclipsed configuration. A similar compound, [Fe₂(CO)₈(SO₂)], prepared from iron nonacarbonyl, has one edge-bridging SO2.34-36 The Fe-Fe bond distance for III (2.621(3) Å) is significantly shorter than that of $[Fe_2(CO)_8(SO_2)]$ (2.717(4) Å) and slightly longer than the Fe-Fe bond distance for diiron nonacarbonyl (2.46 Å); additional bond length data are provided in Table 2. The O-S-O angles for III (110.2(3), and $110.2(4)^{\circ}$) are less than

(34) Braye, D. E.; Hubel, W. Angew. Chem., Int. Ed. Engl. 1963, 2, 217-8.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for $[PPN]_2[Fe_2(CO)_6(SO_2)_2]\cdot 1NCCH_3$

Fe1-Fe2	2.636(1)	Fe2-C4	1.788(8)
Fe1-C1	1.774(8)	Fe2-C5	1.799(7)
Fe1-C2	1.824(6)	Fe2-C6	1.813(7)
Fe1-C3	1.793(7)	Fe2-S1	2.235(2)
Fe1-S1	2.192(2)	Fe2-S2	2.203(2)
Fe1-S2	2.241(2)	C4-O4	1.143(8)
C1-01	1.147(9)	C5-O5	1.146(8)
C2-O2	1.116(8)	C6-O6	1.116(9)
C3-O3	1.144(7)	S2-O9	1.482(6)
S1-07	1.466(5)	S2-O10	1.463(5)
S1-O8	1.455(5)		
07-51-08	110.2(3)	09 - 82 - 010	110.2(4)
Fe1-C1-O1	178.0(7)	Fe2-C4-O4	179.0(6)
Fe1-C2-O2	169.7(6)	Fe2-C5-O5	172.0(7)
Fe1-C3-O3	176.0(7)	Fe2-C6-O6	178.1(8)
Fe1-S1-Fe2	73.08(6)	Fe1-S2-Fe2	72.77(6)
S1-Fe1-S2	83.30(7)	S1-Fe2-S2	83.17(7)

those for $[Fe_2(CO)_8(SO_2)]$ (113.9(7)°). The ¹³C NMR spectrum of **III** displays a single carbonyl peak at 156 ppm from 20 to -80 °C.

Reaction of [MFe₃(CO)_nC]^{*x***-} + SO₂ (M = Cr, W:** *n* **=13,** *x* **= 2; M = Rh;** *n* **= 12,** *x* **= 1; M = Mn:** *n* **= 13,** *x* **= 1). Prior research in this group has shown that the reaction of 4 equiv of SO₂ with [Fe₄(CO)₁₂C]²⁻ produces the bis-sulfur dioxide cluster V in 80% yield (Figure 4).¹⁵ In the current investigation of the reaction of SO₂ with heterometallic, iron carbonyl clusters we find that 1 equiv of SO₂ reacts with [PPN]₂-[CrFe₃(CO)₁₃C] or [PPN]₂[WFe₃(CO)₁₃C] to give the monosulfur dioxide adduct [PPN]₂[Fe₃(CO)₈(SO₂)(CCO)] (IV**).

Reaction of 4–6 equiv of SO₂ with $[MFe_3(CO)_nC]^{x-}$ (M = W, Cr, Rh, Mn, or Fe) produces the bis-SO₂ compound V as the only sulfur dioxide-containing product. Similarly, the mono-SO₂ adduct **IV** reacts with 1 equiv of sulfur dioxide to give the bis-SO₂ product V. Figure 4 summarizes the reactivity of heterometallic iron carbides with SO₂. In the reaction of the heterometallic, carbide clusters $[MFe_3(CO)_{13}C]^{2-}$ (M = W, Cr) with SO₂ the heterometal is extruded from the cluster as M(CO)₆. For the reactions of SO₂ with $[MFe_3(CO)_xC]^{x-}$ (M =

⁽³⁵⁾ Meunier-Piret, J.; Van Meerssche, M. Bull. Soc. Chim. Belg. 1967, 76, 374–99.

⁽³⁶⁾ Field, D. S.; Newlands, M. J. J. Organomet. Chem. 1971, 27, 221-30.

Table 4. Raman Stretching Frequencies for Sulfur Dioxide Compounds

compound	$ u_{ m CO}~(m cm^{-1})^a$	$\nu_{\mathrm{SO}} (\mathrm{cm}^{-1})^a$
[Fe ₃ (CO) ₉ (SO ₂)] ²⁻	2013(m), 1914(s), 1892(vs), 1973(s, sh)	
$[Fe_3(CO)_8(SO_2)S]^{2-}$	2062(s), 1958(vs), 1918(m), 1903(m), 1842(m, br) ^c	
$[Fe_2(CO)_6(SO_2)_2]^{2-}$	$1960(w), 1929(s), 1916(s), 1902(w)^c$	
$[Fe_3(CO)_7(SO_2)_2(CCO)]^{2-}$	2045(s), 1983(s), 1943(sh), 1924(vs) 1821(m)	
$[HFe_3(CO)_9(SO_2)]^-$	2068(s), 1966(vs), 1953(vs), 1910(m), ^c 2068(s)1973(vs), 1931(sh) ^b	
$[Fe_3(CO)_9(SO)]^{2-}$	2012(m), 1993(w), 1923(sh), 1897(vs), 1868(s)	
$[Fe_5(CO)_{13}(SO_2)]^{2-}$	2037(s), 1976(s), 1953(s), 1929(vs), 1897(s), 2041(s), 1976(sh), 1937(vs) ^b	
$[Fe_6(CO)_{15}C(SO_2)]^{2-}$	2038(s), 1955(sh), 1943(vs), 1931(sh)	1046(s)
[Ru ₃ (CO) ₉ (SO ₂)] ²⁻	2044(s), 2003(m), 1976(vs), 1956(vs), 1845(w, br) ^c	1055(m)
$[Ru_3(CO)_7(SO_2)_3]^{2-}$	2060(w), 2044(s), 2002(sh), 1965(vs), 1950(sh), 1840(w,br) ^c	1056(m)

^a Solid sample, all as [PPN]⁺ salts. ^b CH₂Cl₂. ^c Sample fluoresces.

Mn, Rh), the fate of the heterometal cluster was not determined. A mono-SO₂ compound is not observed in our reaction of 1 equiv of SO₂ with $[Fe_4(CO)_{12}C]^{2-}$; instead the only products are the known compound $[PPN]_2[Fe_3(CO)_7(SO_2)_2(CCO)]$ (V)¹⁵ and the starting material $[Fe_4(CO)_{12}C]^{2-}$.

Characterization of [PPN]₂[Fe₃(CO)₈(SO₂)(CCO)] (IV). Clear, dark red crystals of [PPN]₂[Fe₃(CO)₈(SO₂)(CCO)] (IV) were grown from a THF solution layered with Et₂O. Several attempts were made to determine the X-ray crystal structure of **IV** (with $[PPN]^+$ and $[Et_4N]^+$ as counterions); however, both structures appeared to be severely disordered. The rough structural parameters from the X-ray data indicate an edgebridging SO₂ and two edge-bridging carbonyls. Infrared spectra for IV indicate a bridging carbonyl with a stretching frequency at 1774 cm⁻¹ in solution. An IR spectrum of IV contains an S-O stretching frequency at 1020 cm⁻¹, and in a Nujol mull $v_{\rm SO}$ bands are present at 1064 and 1020 cm⁻¹, indicating an S-bound bridging SO_2 ,¹⁰ where SO_2 is acting as a two-electron donor. The higher π acidity of SO₂ compared to that of CO is evidenced by the higher carbonyl stretching frequencies when SO_2 is substituted for CO. In the series $[Fe_3(CO)_9(CCO)]^{2-}$, IV, and V which contain 0, 1, and 2 bridging SO₂ ligands, ν_{CO} shifts to higher frequencies by approximately 20 cm⁻¹ for each SO₂ substitution.

A ¹³C-enriched sample of [PPN]₂[WFe₃(¹³CO)₁₃13C] was allowed to react with SO₂, and a ¹³C NMR of the resulting product, **IV**, indicates fluxional behavior between -120 °C and room temperature. Below -40 °C, the integrated intensities of the CO ligands are in the expected 2:1:1:2:2 ratio. The α and β carbons of the -CCO ligand are present at 165.6 and 2.2 ppm, respectively, and show J_{C-C} of 45.4 Hz. The ¹³C NMR signal for the α -carbon of CCO is not observed above -20 °C. When **IV** is heated above 35 °C, unidentified products result.

Raman Study. Raman stretching frequencies for several sulfur oxide-containing clusters are shown in Table 4. These spectra were collected on a FT instrument with 1064 nm excitation. Several of the samples were weakly fluorescent, while others decomposed under high laser intensities, making it difficult to obtain meaningful information. The S–O stretching frequencies were observable with all of the triruthenium clusters,

despite the fluorescence. Among the iron clusters, S–O stretches were observed in the Raman spectrum only for $[Fe_6(CO)_{15}(C)-(SO_2)]^{2-}$. Vibrations due to the $[PPN]^+$ cations may obscure some of the S–O stretches. The observed Raman stretching frequencies are identical to the infrared stretching frequencies.

Summary

The reaction of SO₂ with [MFe₃(CO)₁₄]²⁻ (M = Cr, Mo, W) result in loss of the heterometal and formation of triiron SO₂ and S-containing clusters. Similarly, the reaction of SO₂ with $[Fe_4(CO)_{13}]^{2-}$ results in cluster degradation and formation of the new bimetallic $[Fe_2(CO)_6(SO_2)_2]^{2-}$. The new ketenylidene compound, $[Fe_3(CO)_8(SO_2)(CCO)]^{2-}$, is formed in the reaction of 1 equiv of SO₂ with $[MFe_3(CO)_{13}C]^{2-}$ (M = Cr, W). The known compound $[Fe_3(CO)_7(SO_2)_2(CCO)]^{2-}$ is the product of the reaction of an excess of SO₂ with $[MFe_3(CO)_nC]^{x-}$ (M = Mn, Cr, W, Rh). The compound $[Fe_3(CO)_9(SO_2)]^{2-}$ (I) was identified as an intermediate in the formation of $[Fe_3(CO)_8(SO_2)S]^{2-}$ (II). This is a rare example in metal carbonyl cluster chemistry where CO acts as a reducing agent toward SO₂ to give a sulfido species.

Acknowledgment. We thank Susie Miller of Colorado State University, Charlotte Stern of Northwestern University, and Scott Wilson of the University of Illinois for their collection of crystallographic data. C.C.R. and T.E.A.S. thank Prof. J. A. Ibers for helpful discussions regarding the crystal structure determinations. We also thank G. Kubas of Los Alamos National Laboratory for helpful discussions. The research was sponsored by the Department of Energy grant DE-FG02-86ER13640.

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of $[PPN]_2[Fe_3(CO)_9(\mu_3, \eta^2-SO_2]$ (**I**), $[PPN]_2[Fe_3(CO)_8(\mu-SO_2 (\mu_3-S)]$ (**II**), and $[PPN]_2[Fe_2(CO)_6-(\mu-SO_2)_2]$ (**III**). This material is available free of charge via the Internet at http://pubs.acs.org.

IC980762J