Protonation and Dehydration Reactions of the $Mn_4O_4L_6$ Cubane and Synthesis and Crystal Structure of the Oxidized Cubane $[Mn_4O_4L_6]^+$: A Model for the Photosynthetic Water Oxidizing Complex

Wolfgang F. Ruettinger, Douglas M. Ho, and G. Charles Dismukes*

Hoyt Laboratory, Chemistry Department, Princeton University, Princeton, New Jersey 08544

Received September 24, 1998

Synthesis of multinuclear manganese-oxo clusters is of current interest for applications to molecular magnets,¹ oxidation catalysis,² and bioinorganic chemistry in the area of photosynthetic water oxidation.³⁻⁷ The inorganic core of the photosynthetic water oxidase (WOC) is comprised of a cluster of composition Mn_4O_x - Ca_1Cl_y , in which only the stoichiometry of Mn and Ca are well established.^{8,9} It can be photooxidized by the photosystem II (PSII) reaction center to produce five oxidation states, differing by one electron each and designated S_0 , S_1 , ..., S_4 . Consequently, comparisons to Mn-oxo complexes have played a key role in suggesting possible core types such as the dimer-of-dimers^{8b,10} (Mn_2O_2)O(Mn_2O_2)ⁿ⁺, trigonal^{11a} Mn_4O_6ⁿ⁺, and butterfly^{3b} Mn_4O_2ⁿ⁺.

Herein we report the synthesis and crystal structure of the $Mn_4O_4^{7+}$ cubane core cluster compound $[Mn_4O_4L_6]^+$ (1⁺), obtained by an unusual dehydration/oxygenation route from $Mn_4O_4L_6$ (1), L = diphenylphosphinato = $Ph_2PO_2^-$. 1 and 1⁺ contain the first examples of the $Mn_4O_4^{6+/7+}$ cubane core and thus serve as important models for comparison to the S_3 (or S_1) and S_4 (or S_2) oxidation state of the WOC, respectively.

Complex 1 reacts with triflic acid, CF_3SO_3H (HOTf), or trimethylsilyltriflate, (Me₃Si)CF₃SO₃ (Me₃SiOTf), in the presence of HOTf and oxygen (vide infra) to form [Mn₄O₄L₆]OTf·CH₃-CN (1⁺OTf⁻), which was isolated in ~80% yield from a reaction mixture containing 1 + 2Me₃SiOTf + 2HOTf.¹⁵

- (a) Aubin, S. M. J.; Dilley, N. R.; Pardi, L.; Krzystek, J.; Wemple, M. W.; Brunel, L.-C.; Maple, M. B.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1998, 120, 4991–5004. (b) Aubin, S. M. J.; Wemple, M. W.; Adams, D. M.; Tsai, H.-L.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1996, 118, 7746–7754.
- (2) Gardner, K. A.; Mayer, J. A. Science 1995, 269, 1849-1851.
- (3) (a) Brudvig, G. W.; Crabtree, R. H. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 4586–4588. (b) Vincent, J. B.; Christou, G. Inorg. Chim. Acta 1987, 136, L41–L43.
- (4) (a) Wieghardt, K. Angew. Chem., Int. Ed. Engl. 1989, 28, 1153-1172.
 (b) Wieghardt, K. Angew. Chem., Int. Ed. Engl. 1994, 33, 725-726.
 (5) Christou, G. Acc. Chem. Res. 1989, 22, 328-335.
- (6) (a) Armstrong, W. In Manganese Redox Enzymes; Pecoraro, V. L., Ed.; VCH: New York, 1992; pp 261–286. (b) Pecoraro, V. L.; Baldwin, M. J.; Gelasco, A. Chem. Rev. **1994**, 94, 807–826. (c) Watkinson, M.; Whiting, A.; McAuliffe, C. A. J. Chem. Soc., Chem. Commun. **1994**, 2141–2142.
- (7) Ruettinger, W. F.; Dismukes, G. C. Chem. Rev. 1997, 97, 1-23.
- (8) (a) Debus, R. J. Biochim. Biophys. Acta 1992, 1102, 269–352. (b) Yachandra, V. K.; Sauer, K.; Klein, M. P. Chem. Rev. 1996, 96, 2927– 2950.
- (9) (a) Zaltsman, L.; Ananyev, G.; Bruntrager, E.; Dismukes, G. C. Biochemistry 1997, 36, 8914–8922. (b) Ananyev, G. M.; Dismukes, G. C. Biochemistry 1997, 36, 11342–11350.
- (10) Kirk, M. L.; Chan, M. K.; Armstrong, W. H.; Solomon, E. I. J. Am. Chem. Soc. 1992, 114, 10432–10440.
- (11) (a) Wang, S.; Tsai, H.-L.; Hagen, K. S.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1994, 116, 8376-8377. (b) Wang, S.; Folting, K.; Streib, W. E.; Schmitt, E. A.; McCusker, J. K.; Hendrickson, D. N.; Christou, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 305-306. (c) Wang, S.; Tsai, H.-L.; Streib, W. E.; Christou, G.; Hendrickson, D. N. J. Chem. Soc., Chem. Commun. 1992, 1427-1430. (d) Aromi, G.; Wemple, M. W.; Aubin, S. J.; Folting, K.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1998, 120, 5850-5851.
- (12) Manchandra, R.; Brudvig, G. W.; Crabtree, R. H. Coord. Chem. Rev. 1995, 144, 1–38.

Figure 1. X-ray crystal structure (ORTEP plot with 50% probability level) of 1^+OTf^- (phenyls and counterion omitted for clarity). Selected bond lengths (Å) and angles (deg): Mn(1)-Mn(4) 2.9038(4); Mn(1)-Mn(2) 2.9826(4); Mn(1)-Mn(3) 2.9126(4); Mn(2)-Mn(4) 2.8341(4); Mn(3)-Mn(4) 2.8588(4); Mn(2)-Mn(3) 2.8377(4); Mn(1)-O(1) 2.049-(2); Mn(1)-O(2) 1.9233(14); Mn(1)-O(3) 2.040(2); Mn(2)-O(1) 1.8923-(14); Mn(2)-O(3) 1.905(2); Mn(2)-O(4) 1.9151(14); O(1)-Mn(1)-O(2) 79.35(6); O(1)-Mn(1)-O(3) 77.58(6); O(1)-Mn(2)-O(3) 84.84(7).

The crystal structure of the inner core of $1^+OTf^-\cdot CH_3CN^{14}$ is shown in Figure 1. The cubane cluster shows a significant trigonal distortion from tetrahedral symmetry compared to 1, creating a trigonal pyramidal Mn₄ core with shorter Mn₂₋₄–O and longer Mn₁(apical)-Mn₂₋₄(base) bond lengths vs 1. The mean of the three Mn₁(apical)-Mn₂₋₄(base) distances in 1^+OTf^- is 2.933 Å vs 2.844 Å for the three Mn_{2,3}(base)-Mn_{3,4}(base) vectors. The short Mn-Mn distances are 0.08–0.14 Å shorter than found in 1 and 0.2–0.1 Å longer than in typical dinuclear [Mn₂O₂]^{3+/4+} cores.¹² The Mn-O distances reveal elongation around Mn₁ (avg. 2.004 Å) vs Mn₂₋₄-O(oxo) (avg. 1.8948 Å) and 1.952 Å for the Mn-O(oxo) in 1. Also, the narrower O-Mn-O angles around Mn₁ (77.58–79.35°) vs Mn₂₋₄ (82.13–84.8°) indicate a trigonally

- (13) (a) Ruettinger, W.; Campana, C.; Dismukes, G. C. J. Am. Chem. Soc. 1997, 119, 6670–6671. (b) Zheng, M.; Dismukes, G. C. Inorg. Chem. 1996, 35, 3307–3319.
- (14) Crystals were grown by slow evaporation of a reaction mixture containing 0.3 mM 1 in CH₂Cl₂ and 0.6 mM Me₃SiOTf and HOTf (as 10 mM solutions in CH₃CN). A dark brown prism (0.55 × 0.25 × 0.20 mm) was mounted on a glass fiber. Data collection was done with a ENRAF NONIUS Kappa CCD system equipped with a molybdenum-target X-ray tube. A total of 84 775 reflections were measured (2.2 < Θ < 30.03), of which 22 301 were independent (*R*_{int} = 0.0380). Refinement of the structure in the *P*¹ space group was done by full-matrix least-squares fitting on *F*² for all reflections except for 8 with very negative *F*² and converged at *R*₁ = 4.03%. Crystal data for 1⁺OTf⁻: triclinic *P*1; *a* = 13.8831(1) Å, *b* = 16.7261(2) Å, *c* = 18.7014(2) Å, α = 110.2338(4)°, β = 97.9111(6)°, γ = 102.5313(6)°; *Z* = 2; *V* = 3868.88(7) Å³; *d*(calc) = 1.525 g cm⁻³; *T* = 298 K. Tables of atomic coordinates and anisotropic displacement factors and ORTEP drawings of the unit cell can be found in the Supporting Information.
- (15) See the Supporting Information.

Figure 2. X-band EPR spectra (9.42 GHz) of (A) 0.5 mM 1^+OTf^- in CH₂Cl₂ frozen solution and (B) electrochemically oxidized (E = 1.4 V vs Ag/Ag⁺, Pt electrode) solution of 0.3 mM 1 in CH₂Cl₂/100 mM TBAP. Measurement conditions: Bruker ESP300 spectrometer with Oxford 900 cryostat and TE102 cavity; T = 7 K; mod. freq 100 kHz; mod. amp 20 G; MW power 20 mW.

extended C_{3v} distortion. The coordinates are consistent with assignment of Mn₁ as Mn(III) and Mn_{2,3,4} as Mn(IV). No obvious tetragonal elongation or compression of the Mn–O bonds is observed for Mn(III) in the crystal, in contrast with the carbox-ylato-bridged trigonally distorted cubanes with the [Mn₄O₃X]⁶⁺ core (μ_3 -X = F⁻, Cl⁻, Br⁻, OH⁻),¹¹ where axial Jahn–Teller elongations are observed for the three Mn(III) ions.

Unlike 1, 1+OTf⁻ has a paramagnetic ground state and solutions exhibit intense EPR spectra, as shown in Figure 2A. The signal intensity obeys the Curie law between 7 and 29 K with zero-field splitting and no resolved ⁵⁵Mn hyperfine structure, indicating an odd-spin ground state ($S \ge 3/2$), possibly a highspin ground state analogous to [Mn₄O₆Cl]⁶⁺ complexes in the III, IV oxidation state.^{1a} Electrochemical oxidation of 1 at a platinum electrode ($E_{1/2} = 1.4$ V vs NHE, Figure S3)^{13a} also produces 1^+ , as seen by its EPR signal in Figure 2B. An additional species forms under electrolysis which exhibits a 400 G broad signal at g = 2, presumed to arise from a Mn(II) decomposition product. Other oxidants such as NOBF₄ or Cl₂ also oxidize 1 to 1^+ , as evidenced by EPR spectra, but the product always contains contamination from other species, in particular Mn(II). 1 can be recovered quantitatively from solutions of 1^+OTf^- by addition of reductants such as triethylamine or many common solvents such as MeOH, EtOH, DMF, and DMSO. NMR reveals that the one-electron reduction of 1^+ to 1 by 1 equiv of Et₃N (Figure S7) proceeds via an intermediate of lower symmetry than either 1^+ or 1. The identity of the intermediate is unknown, but might involve formation of the triply bridging amine-oxide, Mn₄O₃- $(\mu_3$ -ONEt₃)L₆. Such an intermediate would be relevant to possible water oxidation schemes involving addition of water or hydroxide to a μ_3 -oxo.⁷ These data establish that formation of 1^+ OTf⁻ by acidification of 1 in air involves one-electron oxidation rather than protonation of **1**.

UV-vis (Figure S2) and NMR (Figure S6) titrations in air show that ~ 2 equiv of HOTf is needed for conversion of 1 to 1^+OTf^- with $\geq 84\%$ yield (NMR integration). The near quantitative yield of 1^+ indicates that it could not form entirely by disproportionation of 1. A requirement for oxygen in the formation of 1^+OTf^- from 1 + HOTF was established by UV-vis titrations under anaerobic conditions (Figures S2b, S4, S5).

The formation of 1^+ by oxidation of 1 can also be initiated by addition of 2 equiv of Me₃SiOTf, but proceeds to only 50% conversion of 1 independent of the presence of oxygen and yields 1 equiv of (Me₃Si)₂O, as established by NMR and UV-vis (Figures S8, 9, 12). Subsequent addition of 2 equiv of HOTf leads to complete conversion to 1^+ under aerobic conditions (Figure S9). ESI–MS (positive ions) spectra of reaction mixtures show the initial formation of the species $[Mn_4O_3L_6]^+$ (*m*/*z* 1570) independent of whether the reagent is HOTf or Me₃SiOTf (Figure S11).

The observed reactions of **1** can be explained by the following equations ($L = Ph_2PO_2^-$; R = H, Me₃Si):

- (A) $\operatorname{Mn_4O_4L_6}(1) + \operatorname{ROTf} \rightarrow \operatorname{Mn_4O_3(OR)L_6^+} + \operatorname{OTf}^-$
- (B) $Mn_4O_3(OR)L_6^+ + 1 \rightarrow Mn_4O_3(OR)L_6^- + 1^+$
- (C) $Mn_4O_3(OR)L_6 + ROTf \rightarrow$

$$R_2O + OTf^- + Mn_4O_3L_6^+$$

(D) $Mn_4O_3L_6^+ + \frac{1}{2}O_2 \rightarrow Mn_4O_4L_6^+ (1^+)$

Initially a proton (R = H) or a trimethylsilyl cation (R = Me₃-Si) binds to **1** (A), yielding [Mn₄O₃(OR)L₆]⁺ and thus converting it to a stronger oxidant.¹⁶ We propose that this species oxidizes unreacted **1** to **1**⁺ (B), thus limiting the yield to 50% for R = Me₃Si in the absence of HOTf. The resulting one-electron reduced species, Mn₄O₃(OR)L₆, continues to react with ROTf to remove one oxide bridge completely as R₂O (C), forming the deoxygenated intermediate [Mn₄O₃L₆]⁺, which is detected by ESI–MS (*m*/*z* 1570) and which, in turn, is oxidized by O₂ in the presence of protons (from HOTf) to form **1**⁺ (D) for a total theoretical yield of 100%.

The isolation of 1^+OTf^- extends the known Mn₄O₄ cubane core type to include the Mn₄(III,3IV) oxidation state, a possible model for the S₂ (ref 8b) or S₄ (ref 13b) oxidation states of the WOC. The assignment of Mn oxidation states in the WOC is an unresolved issue, with different conclusions reached from Mn XANES data^{8b} vs ⁵⁵Mn EPR data.^{13b} EPR spectral data of the "cubanes" [Mn₄O₄L₆]^{-/0/+} (ref 17), however, support the EPRderived assignment for the Mn oxidation states of the S₂ state as Mn₄(3III,IV).

The isolation of 1^+OTf^- , the highest oxidation potential Mnoxo cluster yet synthesized, will enable exploration of new oxidation chemistry with organic and inorganic precursors, as well as possible pathways for O₂ production from water that are related to the mechanism of photosynthetic O₂ evolution.

Acknowledgment. The research was supported by the National Institutes of Health, GM39932. W.R. acknowledges fellowship support from an NIH training grant in Molecular Biophysics and a Patchett Summer Fellowship.

Supporting Information Available: UV-vis, ¹H NMR, GC-MS, and mass spectra of the reactions of 1 with HOTf and $(CH_3)_3$ SiOTf; ORTEP drawing of the unit cell and asymmetric unit of $1^+OTf^-\cdot CH_3CN$ with numbering scheme; tables of atomic coordinates, bond lengths and angles, and anisotropic displacement factors for 1^+OTf^- . This material is available free of charge via the Internet at http://pubs.acs.org.

IC981145Y

^{(16) (}a) Thorp, H. H.; Sarneski, J. E.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 1989, 111, 9249–9250. (b) Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623–6630. (c) Baldwin, M. J.; Pecoraro, V. L. J. Am. Chem. Soc. 1996, 118, 11325–11326.

⁽¹⁷⁾ Dismukes, G. C.; Ruettinger, W. F.; Boelrijk, A. E.; Ho, D. Structure of the Mn₄Ca₁ Core of the PSII Water Oxidizing Complex and the Mn₄O₄-Cubane/Mn₄O₂-Butterfly Model Complexes. In *Photosynthesis: Mechanisms and Effects*; Garab, G., Ed.; Kluwer Academic: Dordrecht, 1998; pp 1259–1266.