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The magnetic circular dichroism (MCD) properties of a spin-allowed transition from an orbitally nondegenerate
ground state manifoldA to an orbitally nondegenerate excited state manifoldJ in the presence of spin-orbit
coupling (SOC) are derived for anyS g 1/2. Three physically distinct mechanisms are identified that lead to
MCD intensity and depend on SOC between excited states which leads to a sum rule and SOC between the
ground state and other excited states that leads to deviations from the sum rule. The model is valid for any
symmetry of the magnetic coupling tensors and arbitrary transition polarizations. TheS) 1/2 case is analytically
solved, and the determination of linear polarizations from MCD saturation magnetization data is discussed. For
all mechanisms the MCD intensity is proportional to the spin-expectation values of the ground state sublevels
which are conveniently generated from a spin-Hamiltonian (SH). For Kramers systems with large zero-field splittings
(ZFSs) this allows the contribution from each Kramers doublet to the total MCD intensity to be related through
their effectiveg-values, therefore significantly reducing the number of parameters required to analyze experimental
data. The behavior of high-spin systems is discussed in the limits of weak, intermediate, and strong ZFS relative
to the Zeeman energy. The model remains valid in the important case of intermediate ZFS where the ground state
sublevels may cross as a function of applied magnetic field and there are significant off-axis contributions to the
MCD intensity due to a change of the electron spin quantization axis. The model permits calculation of MCD
C-term signs from molecular wave functions, and explicit expressions are derived in terms of MOs forS ) 1/2
andS) 5/2. Two examples from the literature are analyzed to demonstrate how theC-term signs can be evaluated
by a graphical method that gives insight into their physical origin.

1. Introduction

Magnetic circular dichroism (MCD) has become an important
experimental technique for the investigation of the geometric
and electronic structures of transition metal complexes in a
variety of areas, perhaps most notably bioinorganic chemistry.1,2

In an MCD experiment one measures the differential absorption
of left and right circularly polarized light induced in the presence
of a longitudinal magnetic field. MCD has several features that
make it a particularly attractive spectroscopic tool. (a) It is a
sensitive technique especially in the near-IR (NR) region where
it is difficult to observe absorption bands in aqueous solutions
of metalloproteins. (b) It is site selective. In a system with
several chromophores that have distinct absorption bands,
individual centers can be studied. (c) MCD is multidimensional.
Experimental variables are the temperature that can be accurately
controlled from 1.5 K to room temperature, the magnetic field

up to about 10 T, and the wavelength of the incident radiation.
(d) This technique does not require expensive isotopic enrich-
ments and is not restricted to iron-containing compounds in
contrast to Mo¨ssbauer spectroscopy. (e) MCD permits investiga-
tion of even-electron non-Kramers systems that are frequently
difficult to study with EPR and related techniques. (f) The
spectrum is a signed quantity and therefore usually offers much
higher resolution than absorption spectroscopy particularly in
regions of overlapping absorption bands. (g) MCD simulta-
neously provides information about the ground and the excited
states of the species under study and is therefore an invaluable
link between techniques like EPR, which primarily probe the
electronic ground state, and absorption or resonance Raman
spectroscopy, which primarily probe electronically excited
states.3 (h) From a theoretical point of view, calculation of MCD
parameters involves combinations of matrix elements that are
different from other techniques and therefore puts constraints
on electronic structure models for transition metal complexes.
It can therefore allow rigorous spectral assignments. (i) MCD
(like ENDOR) provides orientational selectivity even for a
frozen solution. Due to the sensitivity of the MCD intensity to
the transition polarizations, only a subset of randomly oriented
molecules contributes to a given MCD signal.
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The theory of MCD spectroscopy has been pioneered by
Stephens4 and concisely summarized in an excellent monograph
by Piepho and Schatz5 that also discusses the method of
moments developed by Henry et al.6 and advanced by Stephens
and co-workers.7 The theory shows that in the domain where
the MCD signal is a linear function of the applied magnetic
field the signal for a sample of randomly oriented molecules
takes the form4,5

whereγ is a collection of constants,âB is the Bohr magneton,
k is the Boltzmann constant,T is the absolute temperature,B is
the magnetic flux density,f(E) is a line shape function,d is the
path length,c is the concentration of the molecular species
considered, andE ) hν is the energy of the incident radiation.
Ah1, Bh0, andCh 0 are characteristic numbers that depend on the
electronic and geometric structure of the molecule under
investigation and the transition under study. While nonzeroCh 0

requires the molecule to be paramagnetic,Ah1 andBh0 also exist
for molecules in spin singlet ground states (Ah1 only if there is
orbital degeneracy) and make MCD a universal phenomenon
that occurs in all matter.4,5 In practice it is commonly observed
that for paramagnetic transition metal complexes studied near
liquid helium temperatures the temperature dependentCh 0 term
dominates the MCD spectrum, and this term is therefore the
focus of this study.

Early on it was demonstrated that MCDC-term signs could
be used to unambiguously assign the charge transfer (CT)
spectrum of [Fe(CN)6]3-.8 A number of similar applications
were made,9-15 and it was also realized that spin-orbit coupling
(SOC) plays an important role for determining theC-term signs
and magnitudes.15 Summaries of the theoretical formalism

necessary to treat high-symmetry cases are available.5,16 Ger-
stman and Brill developed a model for the d-d transitions of
low-symmetry mononuclear Cu(II) complexes based on a crystal
field like model where d/p mixing accounts for the transition
intensities. The importance of SOC was demonstrated17 and a
similar model was also applied in ref 18. To our knowledge
the first direct molecular obital (MO) calculation ofC-term signs
was undertaken for the cupric active site of plastocyanin based
on the XR-SW electronic structure method,19 and this led to
fair agreement with the experimental spectrum, thus providing
an experimentally calibrated bonding picture. Recently, a SCF-
MO-CI model including SOC and based on the semiempirical
INDO/S model was developed for the calculation of MCD
C-terms and applied to biologically relevant copper complexes,20

namely, the CuA center.21

At very low temperatures and high magnetic fields the MCD
Ch 0-term is no longer linear with respect toB/T and levels off to
its saturation limit. The origin of this effect is that theC-term
intensity that is caused by unequal Boltzmann populations of
the ground state Zeeman components is saturated in the sense
that only the lowest Zeeman sublevel is populated at high fields
and low temperatures. For an isolated Kramers doublet with an
isotropicg-value, Stephens4b has shown that the MCD signal
varies withB/T as

and thus one can determine the ground stateg-value from a
plot of the MCD intensity versus the dimensionless variable
âBB/2kTat fixed wavelength. Schatz et al.22 considered the more
complicated case of axialg-matrices for molecules in theD∞h

point group and its subgroups and also showed how to correct
for the presence ofB-terms. Johnson and Thomson23 extended
the analysis to the case of rhombicg-matrices and also allowed
for the presence of z-polarization. Application was made to
hemoproteins. In the cases whereS> 1/2, more than two Zeeman
components may be MCD active and the analysis is much more
difficult. An approach applied by Stephens and co-workers
showed that the zero-field splittings (ZFSs) of high-spin ferric
hemoproteins could be determined in the linear region of the
variable-temperature MCD experiment by analyzing the Boltz-
mann population of noninteracting or weakly interacting Kram-
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ers doublets.24 Similar analyses were also used by other
workers.25 Cheesman and Thomson have modeled the high-
spin case by considering a “quasi-atomic”2S+1S f 2S+1P
transition with the ground state splitting described by a spin-
Hamiltonian (SH) and the excited state assumed to be split by
SOC.1b,26 A complicated case is that of high-spin Fe(II) where
a low-symmetry split5T2g term is lowest in energy and the non-
Kramers nature of the ground state and near orbital degeneracy
must be taken into account. An approach to this problem has
been developed that treats the system as a collection of zero-
field split non-Kramers doublets and singlets and takes into
accountB-term corrections and z-polarization.2,27 Extensive
application has been made to high-spin ferrous active sites in
mononuclear28 and binuclear29 non-heme iron containing met-
alloenzymes, which has led to detailed insight into their
structures and reaction mechanisms.

The model that is developed in this paper is in several
respects more general than previous treatments and, in fact,
contains a number of the above mentioned results as special
cases. The equations derived here allow the MCDC-term
contributions of all 2S + 1 components of a spatially nonde-
generate ground state to be related to each other in a rigorous
way. This requires only a few vector coupling coefficients that
will be shown to be directly related to the spin-expectation
values of the ground state Zeeman components, the behavior
of which is well-known in terms of the magnetic properties of
the electronic ground state. This considerably reduces the
number of parameters required in the analysis of experimental
data and gives a well-defined physical meaning to the remaining
parameters. Moreover, the theory is valid over the entire range
of magnetic field strength and therefore allows the information
content of the complete field/temperature space to be exploited.
The model is valid for any molecular orientation and can be
applied to calculate the orientation-averaged MCD spectrum.
It is also valid for the case of ground state magnetic coupling
tensors of arbitrary symmetry and relative orientation, a case

that had not been previously treated. Since the equations are
formulated in terms of nonrelativistic Born-Oppenheimer (BO)
wave functions computed in a suitable molecule fixed coordinate
system, explicit recipes for the calculation ofC-term signs arise
and are applied to MO-type wave functions in both the high-
and low-spin cases.

The model described here was introduced in a study of the
electronic structure of the high-spin ferric complex [Fe(EDTA)-
(O2)]3- and has for the first time led to a successful simulation
of the MCD magnetization curves for a system withS > 1/2
over the entire temperature (1.6-25 K) and field (0-7 T)
ranges, thus permitting concise spectral assignments to be
made.30 Here we develop the formal aspects of the model and
explore its predictions in detail.

2. Theory

2.1. Basis of MCD.The MCD spectrum is defined as the
differential absorption of left and right circularly polarized (CP)
light (measured as the difference in extinction coefficients∆ε

) εLCP - εRCP) in the presence of a magnetic field. Thus, the
natural circular dichroism (CD) signal at zero field has to be
subtracted from the MCD signal. Using a variety of standard
approximations, most notably the Born-Oppenheimer and
Franck-Condon approximations, and the Fermi golden rule and
assuming a pure electric dipole mechanism for the transition,
the MCD signal is given by5

wherea labels an initial quantum state (Boltzmann population
Na) andj a final state (Boltzmann populationNj) of the system
andmLCP andmRCP are the transition dipole moment operators
for left and right circularly polarized light in a laboratory fixed
reference coordinate system. We shall assumeNj ) 0 since all
transitions we are interested in are to excited states at least an
order of magnitude higher in energy thankT (≈200 cm-1 at
room temperature).K is a constant that contains among other
things a correction for the effective electric field seen by the
absorbing molecule,4,5 and f(E) is the band shape function. A
more subtle assumption usually invoked is the rigid shift model
that assumes thatf(E) is independent of the external magnetic
field. For the purpose of this study it is sufficient to consider a
δ-function band shape and refer toE as the transition energy.

The procedure usually followed is to derive MCD dispersion
expressions in the laboratory fixed frame and then average the
resulting expression over molecular orientations for a collection
of randomly oriented molecules. In this paper we follow a
different route and first express the basic MCD equation in a
molecule fixed coordinate system and then average over
magnetic field orientations. This is advantageous for describing
saturation behavior. In the laboratory fixed coordinate system
the light beam travels alongz, and the electric field components
of the CP light are consequently in thex,y-directions. Using
mLCP,RCP) mx - imy (i ) (-1)1/2) eq 3 becomes

It is now assumed that the electronic states in eq 4 have been
computed in a suitable molecular coordinate system and the
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transition dipole moment vector is transformed to this frame
using the matrixA(θ,φ,η) and rblab ) Arbmol:5,31

Hereθ is the angle of the light propagation direction with the
molecularz-axis andφ is the angle that the projection of the
propagation direction onto the molecularx,y-plane makes with
the moleculary-axis. The third angle,η, is not relevant in the
present application but included in eq 5 for completeness. From
eq 4 and 5, eq 6 is obtained:

whereγ ) 4K, tuVw ) 1 for uVw ) xyz, zxy, yzxand tuVw ) 0
otherwise, andlu (u ) x,y,z) is given by

In the next section we will assume explicit forms of the states
a and j in the presence of SOC and examine the behavior of
the system upon application of a magnetic field.

2.2. States and Transition Moments in the Presence of
SOC. Any Born-Oppenheimer wave function can at least in
principle be written as a product of a spatial function (that
nevertheless depends onS via the antisymmetry requirement)
and a spin function that depends on the total spinS and
projectionM of the state under consideration.32 The key idea
of the treatment is that, since the electric dipole matrix elements
depend on the spatial part only (i.e., are independent ofM),
one only needs to relate the differentM components of the
ground and excited states by a straightforward vector coupling
procedure. In this way the spin is dealt with directly and the
remaining equations contain only the spatial parts of the states
under consideration. This is graphically illustrated in Scheme
1.

2.2.1. Zero-Order States.An orthonormal set of many
electron wave functions{|RSRM〉0} is assumed, whereR is a
compound label that contains all necessary quantum numbers
exceptSR andM is the total spin of stateR and its projection
onto thez-axis (M ) SR, SR - 1, ..., -SR).33 The set of states
is assumed to diagonalize the BO Hamiltonian, i.e.,HBO|RSRM〉0

) ER|RSRM〉0. The set of states is divided into four subsets,
namely, (1) theA-set that contains 2S + 1 components of the
spatially nondegenerate ground state, (2) theJ-set that is of the
same spin asA and contains 2S+ 1 components of the spatially
nondegenerate excited stateJ, (3) the K-set that contains all
other states of spinS, and (4) the set of states with differentS
than the ground state that are neglected. Thus, we focus on spin-
allowed transitions between spatially nondegenerate states. The
restriction to spin-allowed transitions is not critical since spin-
forbidden transitions do not have any intrinsic transition

probability. High-symmetry cases involving spatial degeneracies
are best handled by tensor operator methods.5,16 The theory
developed here applies to the case most commonly encountered
in practice, for example in low-symmetry metalloprotein active
sites.

2.2.2. Spin-Orbit Coupling. As a second step, SOC is
accounted for by first-order nondegenerate pertubation theory.
As in our recent work on ZFS,34 the one-electron approximation
to the SOC operator is used:35

with ê(riN) ) (R2/2)(ZN
eff/riN

3 ). Here lBN(i) is the orbital angular
momentum of theith electron relative to nucleusN, sb(i) is the
spin-angular momentum operator for electroni, h-m(i) is a
standard component of the reduced spin-orbit vector operator,36

R is the fine structure constant (≈1/137), and ZN
eff is the

semiempirical effective charge of nucleusN.37 Sincesb(i) is of
type T38 with respect to the total spinSB ) ∑isb(i), the Wigner-
Eckhard theorem can be applied to calculate the SOC matrix
elements between the BO states:32,34
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365. (b) Abegg, P. W.; Ha, T. K.Mol. Phys.1974, 27 (3), 763. (c)
Pasternak, R.; Wagniere, G.J. Comput. Chem.1981, 2 (3), 347. (d)
Koseki, S.; Schmidt, M. W.; Gordon, M. S.J. Chem. Phys.1992, 96,
10768. (e) Langhoff, S. R.J. Chem. Phys.1974, 61, 1708. (f) Cohen,
J. S.; Wadt, W. R.; Hay, P. J.J. Chem. Phys.1979, 71, 2955.

(38) Griffith, J. S. The Theory of Transition Metal Ions; Cambridge
University Press: Cambridge, 1964, p 34 ff.

A )

(cosφ cosη - cosθ sinφ sin η sinφ cosη + cosθ cosφ sin η sin θ sin η
-cosφ sin η - cosθ sinφ cosη -sinφ sin η + cosθ cosφ cosη sin θ cosη
sin θ sinφ -sin θ cosφ cosφ

)
(5)

∆ε

E
) -γ∑

a,j

Na(∑
uVw

tuVwlu Im〈a|mV|j〉〈j|mw|a〉) (6)

lB ) (sin θ sinφ, sinθ cosφ, cosθ) (7)

Scheme 1

HSOC≈ ∑
N,j

ê(riN) lBN(i) sb(i) ) ∑
m)0,(1

(-1)m∑
i

h-m(i) sm(i)

(8)
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where

denotes a Clebsch-Gordon coefficient39 (CGC) and the reduced
matrix elementY-m

AB is calculated from the standard compo-
nents withS ) M as34

Thus to first order in SOC the perturbed ground (|ASM〉) and
excited (|JSM〉) states are

where∆IJ ) EI - EJ and{|KSM′〉0} is the set of excited states
of spinSexcluding the set|JSM〉0 (M ) -S...S). Note from eq
9 that the selection rules contained in the CGCs require thatM
- M′ ) 0, (1 in order for a SOC matrix element to be nonzero.

2.2.3. Transition Dipole Moments.In order to calculate the
transition moment between the perturbed states the electric
dipole operator (in atomic units) is used:

whereZN is the charge of theNth nucleus,RBN is its position
vector, andrbi denotes the position of theith electron. Since the
operator in eq 12 is diagonal with respect toM for the BO states,
the perturbed transition moment from eqs 11 and 12 is

where the abbreviationsDBAB ) 〈ASS|mb|BSS〉0 is used to denote
the transition dipole moments involving the zero-order states
and terms containing the product of energy denominators have
been dropped. The first term in eq 13 is the unperturbed or

intrinsic transition moment for theA f J transition, the second
term comes from the SOC between statesA and J and is
proportional to the difference in dipole moments between the
two states, the third term is interpreted as the borrowing of
intensity from the transitionA f K due to SOC between states
K andJ, and the final term is the intensity borrowed from the
“virtual” excited state transitionJ f K induced by the SOC
between statesA andK. Such a first-order treatment of the SOC
is approximate and cannot be expected to provide numerically
accurate results for absoluteC-term intensities. However, the
perturbation approach gives insight into the general structure
of the problem. Also, it would be straightforward to include
excited statesK in the treatment that have a total spin that is
different from that of the ground state. Since these states do
not carry intrinsic transition intensity, however, their effects only
appear in higher order and would not change the results derived
below.

2.3. MCD in the Presence of SOC. 2.3.1. Magnetic Field
Perturbations. We consider the following effects of an applied
magnetic field: (a) the field will induce a mixing between the
M-components of the initial states|ASM〉 and of the final states
|JSM〉; and (b) it will change the relative energies and therefore
the populationsNa of the ground state sublevels. We will assume
that the change in energy of the excited state components due
to the field is small (neglect ofA-terms) and that the initial
state components only mix among themselves (neglect of out
of stateB-terms). We also neglect the excited state ZFS so that
all components|JSM〉 (M ) -S...S) are effectively degenerate.40

Equation 6 is then summed over all 2S+ 1 components of the
ground and excited state manifolds to obtain for the MCD of
the transitionA f J:

where U is a complex unitary matrix that describes the
transformation from the states|ASM〉 to the magnetic field
dependent states. The corresponding transformation for theJ-set
of states need not be carried out explicitly due to the principle
of spectroscopic stability.4,5,41The indexi sums over the 2S+
1 components of the SOC and Zeeman perturbed ground state,
and Ni is calculated from the usual Boltzmann statistics
expression:

whereZ ) ∑i exp(-Ei
(A)/kT) is the partition function andEi

(A) is
the energy of theith ground state sublevel. This treatment also
assumes that there is no thermally accessible low-lying elec-
tronically excited state. In practice the coefficientsU may be
generated from the diagonalization of a suitably defined SH;
for a mononuclear transition metal complex this SH would
contain at least the Zeeman and ZFS terms. The idea of using
a SH to describe the ground state sublevel splittings is similar
to the Cheesman and Thomson approach,1b,26but the connection

(39) Rose, M. E.Elementary Theory of Angular Momentum; Dover
Publications Inc.: New York, 1957.

(40) Thus, the average energy of the SOC and magnetic field split excited
state components is taken as the excited state energy. In usual
applications these splittings are 1-2 orders of magnitude smaller than
the bandwidth of the optical transition studied.

(41) Due to the unitary nature of the transformation from the field
independent to the field dependent states it is immaterial whether the
summation over excited state components is performed over the
original set or the transformed set.

〈ASM|HSOC|BSM′〉0 ) ∑
m)0,(1

(-1)mY-m
AB(S 1 S

M′ m M) (9)

(S 1 S
M′ m M)

Y-m
AB )

xS(S+ 1)

S
〈ASS|∑

i

h-m(i) s0(i)|BSS〉0 (10)

|ASM〉 )

|ASM〉0 - ∆JA
-1 ∑

m)0,(1

(-1)mY-m
JA ∑

M′
(S 1 S
M m M′ )|JSM′〉0 -

∑
K*A,J

∆KA
-1 ∑

m)0,(1

(-1)mY-m
KA∑

M′
(S 1 S
M m M′ )|KSM′〉0 (11a)

|JSM〉 )

|JSM〉0 + ∆JA
-1 ∑

m)0,(1

(-1)mY-m
AJ ∑

M′
(S 1 S
M m M′ )|ASM′〉0 -

∑
K*A,J

∆KJ
-1 ∑

m)0,(1

(-1)mY-m
KJ ∑

M′
(S 1 S
M m M′ )|KSM′〉0 (11b)

mb ) ∑
N

ZNRBN - ∑
i

rbi (12)

〈ASM|mb|JSM′〉 )

δMM′DB
AJ + ∆JA

-1∑
m

(-1)mY-m
AJ (S 1 S

M′ m M)(DBAA - DBJJ) -

∑
K*A,J

∆KJ
-1∑

m

(-1)mY-m
KJ (S 1 S

M′ m M)DBAK -

∑
K*A,J

∆KA
-1∑

m

(-1)mY-m
AK(S 1 S

M′ m M)DBKJ (13)

∆ε

E
) -γ∑

i

Ni(∑
uVw

tuVwlu∑
M,M′

Im UMi
/ UM′i∑

M′′
×

〈ASM|mV|JSM′′〉〈JSM′′|mw|ASM′〉) (14)

Ni ) Z-1 exp(-Ei
(A)/kT) (15)
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to and treatment of the excited states is very different in the
present model.

2.3.2. Explicit Connection of MCD and SOC.In the next
step eq 13 is inserted into eq 14 to explicitly evaluate the effect
of the SOC on the MCD response of the system. Attention is
focused on the final term〈ASM|mV|JSM′′〉〈JSM′′|mw|ASM′〉. As
each of the transition moment integrals in eq 13 contains four
terms, there are 16 terms to be considered. Of these, the product
of the first two terms (the intrinsic transition dipole moments)
does not contribute to the MCD since it is entirely real and
will be multiplied by the real number|UMi|2. We also drop all
terms that contain the products of energy denominators and
concentrate on the leading terms that contain a single energy
denominator. This leaves three contributions,∆ε(1,2,3)/E. These
contributions are (a) terms that are proportional to the difference
in dipole moments between the ground and the excited state
that arise from direct SOC between statesA andJ, eqs 11a,b;
(b) terms that arise from SOC of the excited stateJ with
intermediate statesK, eq 11b; and (c) terms that arise from SOC
of intermediate statesK with the ground stateA, eq 11a. These
three contributions will be treated in turn. However, on the basis
of their similar structures, only one is presented in detail.

First, the relevant cross terms arising from the SOC between
statesA andJ are obtained by inserting eq 13 into eq 14:

where∆DBAJ ) DBAA - DBJJ. Equation 16 is simplified using the
CGCs tabulated by Rose,39 the definition of vector operators5,39

and eq 10 to give eq 17 (Supporting Information, section S1),

where the shorthand notation was introduced:

The quantitiesLhp
AB (p ) x, y, z) are closely related to reduced

matrix elements of the SOC operator. Note that〈ASS|∑ihp(i)
s0(i)|JSS〉0 is purely imaginary if the BO eigenfunctions are real.
Thus Lhp

AJ ) -Lhp
JA. The benefit of having an explicit form is

that now the real and imaginary parts of eq 14 can be identified.
This is demonstrated for the diagonal terms (M ) M′) that are
given by

where the last line follows because the expectation value of
the Sz operator for theith ground state sublevel is given by

Proceeding in the analogous way with the off-diagonal terms
gives the combined result:

The second set of terms corresponding to the contributions from
the SOC mixing between the excited stateJ and intermediate
statesK are derived in an analogous way because the same
CGCs are involved. The result for the MCD induced by SOC
between statesK andJ (eq 11b) is

Finally, the third contribution to the MCD induced by SOC
between statesA andK (eq 11a) is42

Equations 21-23 predict the MCD sign and magnitude of a
transition between spatially nondegenerate statesA andJ of a
system as a function of magnetic field, temperature, and relative
orientation. The temperature dependence is implicit in the values
of the Boltzmann populations (Ni, eq 15), and the orientation
dependence is explicit inlB, eq 7, and implicit inNi and the spin-
expectation values〈SB〉i. The orientation-averaged MCD spectrum
is obtained by integrating eqs 21-23 over all magnetic field
orientations:

Equations 21-23 show that some SOC must exist in the system
in order for MCD to occur, which is consistent with our initial
assumption that the states involved in the transition are spatially
nondegenerate and is also in agreement with earlier results.17,19

The SOC, of course, will be the more efficient the smaller the
energy gap between the two states involved and the larger the
SOC matrix elements. In addition there must be a transition
moment component induced by the SOC that has a nonzero

(42) Each of the individual matrix elements for the electric dipole and
reduced SOC components changes sign if a phase factor-1 is attached
to one of the wave functions involved in eqs 21-23. However, each
term contains a triple product of matrix elements in which each wave
function appears twice. Thus, the overall expression is invariant to
the choice of phases, as required.

I MM′
(1) ) ∑

M′′ [δMM′′DBV
AJ + ∆JA

-1∑
m

(-1)mY-m
AJ (S 1 S

M′′ m M)∆DBV
AJ]

[δM′MM′′DBw
AJ + ∆JA

-1∑
m

(-1)mY-m
JA (S 1 S

M′ m M′′ )∆DBw
AJ] (16)

I MM′
(1) ) -(DBV

AJ ∆DBw
AJ - DBw

AJ ∆DBV
AJ){δMM′

M
S(iLhz

AJ

∆JA
) +

1
2
δMM′+1

x(S+ M)(S- M + 1)
S (iLhx

AJ + Lhy
AJ

∆JA
) +

1
2
δMM′-1

x(S- M)(S+ M + 1)
S (iLhx

AJ - Lhy
AJ

∆JA
)} (17)

Lhp
AJ ) Im〈ASS|∑

i

hp(i) s0(i)|JSS〉0 (18)

∆ε diagonalinM
(1)

E
) -γ∑

i

Ni(∑
uVw

tuVwlu∑
M

Im|UMi|2IMM
(1) ) )

γ

S
∑

i

Ni(∑
uVw

tuVwlu(DBV
AJ ∆DBw

AJ - DBw
AJ ∆DBV

AJ)
Lhz

AJ

∆JA
∑
M

|UMi|2M) )

γ

S
lB(DBAJ × ∆DBAJ)

Lhz
AJ

∆JA
∑

i

Ni〈Sz〉i (19)

〈Sz〉i ) ∑
M

M|UMi|2 (20)

∆ε
(1)

E
)

γ

S
lB(DBAJ × ∆DBJA)∆JA

-1∑
i

Ni(Lhx
AJ〈Sx〉i +

Lhy
AJ〈Sy〉i + Lhz

AJ〈Sz〉i) (21)

∆ε
(2)

E
)

γ

S
∑

K*A,J

lB(DBKA × DBAJ)∆KJ
-1∑

i

Ni(Lhx
KJ〈Sx〉i +

Lhy
KJ〈Sy〉i + Lhz

KJ〈Sz〉i) (22)

∆ε
(3)

E
)

γ

S
∑

K*A,J

lB(DBAJ × DBJK)∆KA
-1∑

i

Ni(Lhx
KA〈Sx〉i +

Lhy
KA〈Sy〉i + Lhz

KA〈Sz〉i) (23)

MCDav(E) )

1
4π∫0

π∫0

2π∆ε
(1) + ∆ε

(2) + ∆ε
(3)

E
sin θ dθ dφ (24)
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projection on the magnetic field direction. Excited states with
transition momements that are collinear with the one of interest
(A f J) will not contribute to MCD intensity.

Turning to the individual contributions,∆ε(1) will usually be
the smallest because the change of dipole moment will most
likely occur in the direction in which charge is displaced during
the transition and therefore be collinear with the transition dipole
moment. Its contribution to the MCD intensity is therefore
probably small, and we focus on the other two mechanisms.

2.3.3. Orthorhombic Systems.In orthorhombic point groups
like D2h, eqs 21-23 are particularly straightforward to interpret.
For each pair of states there will only be one transition dipole
moment component and one nonvanishing SOC component. If,
for example, the transitionA f J is x-polarized (DBAJ )
(mx

AJ,0,0)T; ΓA X ΓJ ) B3u) and the transitionA f K is
y-polarized (DBAK ) (0,my

AK,0)T; ΓA X ΓK ) B2u), then group
theory shows that the only SOC component that can be nonzero
is Lhz

KJ (ΓJ X ΓK ) B1g ) ΓRz) and eq 22 becomes

whereMxy
eff ) mx

AJ my
AK Lhz

KJ ∆KJ
-1. A similar argument shows that

if the transitionA f K is z-polarized, it will give an MCD
intensity to the transitionA f J that is proportional to
lyMxz

eff ∑iNi〈Sy〉i. If one has reason to assume that orthorhombic
symmetry is an acceptable approximation, a reasonable expres-
sion to fit the MCD magnetization curves for randomly oriented
samples is

The convenience gained here is that one does not have to deal
with the complexities of explicit SOC calculations if a compara-
tive analysis of experimental data is required. Once one has
obtained values forMxy

eff, Mxz
eff, andMyz

eff, these numbers can be
subjected to theoretical analysis in much the same way as SH
parameters are amenable to theoretical study.

2.3.4. Equations in Terms of Molecular Orbitals. In a
number of cases it will be possible to approximate the states
|ASS〉 by single determinantal wave functions. If a wave function
for spin S can be represented by a single normalized Slater
determinant (denoted as|...|) with n doubly and m singly
occupied orbitals, it is of the high-spin type:

An excited state in which an electron is promoted from a doubly
occupied into one of the singly occupied MOs is also an
eigenfunction ofS2 andSz with the same eigenvalue:

Likewise, if an electron is promoted from one of the singly
occupied orbitals to an empty orbital, a single determinant spin
eigenfunction is obtained:

The necessary matrix elements required to evaluate eqs 21-23
using eqs 27-29 are collected in Tables 1 and 2 and will be

used in section 3.2.1 to deriveC-term signs forS) 1/2 systems
and in 3.2.2 forS) 5/2 systems. The case where an electron is
promoted from a doubly occupied into an empty orbital is more
complicated because it leads to several states of the same
multiplicity as well as states of different multiplicities. The same
is true for an electron promoted from one of the singly occupied
orbitals into another singly occupied orbital with an accompany-
ing spin flip. Several methods are available to construct spin
eigenfunctions under these circumstances.43 However, these
situations are best handled on a case by case basis.

3. Applications

In this section the methodology from section 2 is applied to
two important cases. All calculations are based on eqs 21-23
and 26, and all expressions given in this section follow from
these equations. In 3.1 the equations are used in their general
form to analyze the saturation magnetization behavior forS )
1/2 andS) 5/2 systems. For both cases the information content
of the experimental data is critically evaluated by systematic
simulations. In section 3.2 the limit of weak magnetic fields is
taken, permitting calculation ofC-term signs from MO wave
functions. Application is made again toS ) 1/2 and S ) 5/2.
These choices of spin states are motivated by our interest in
the ferric active sites of mononuclear non-heme iron enzymes
that may have either high- or low-spin ground states2,44 and
frequently display rich MCDC-term spectra due to d-d (S )
1/2) and LMCT transitions (S ) 1/2 andS ) 5/2). However, the
conclusions that will be drawn have a wider range of applicabil-
ity.

3.1. Saturation Magnetization. 3.1.1. Simulation Program.
The simulations described in this section are based on the use
of the standard SH:45

(43) Pauncz, R.Spin Eigenfunctions. Construction and use; Plenum
Press: New York and London, 1979.

(44) (a) Que, L., Jr.; Ho, R. Y. N.Chem. ReV. 1996, 96, 2607. (b) Solomon,
E. I.; Zhou, J.; Neese, F.; Pavel, E. G.Chem. Biol.1997, 11, 795. (c)
Burger, R. M.Chem. ReV. 1998, 98, 1153. (d) Ellison, J.; Nienstedt,
A.; Shoner, S. C.; Barnhart, D.; Cowen, J. A.; Kovacs, J. A.J. Am.
Chem. Soc.1998, 120, 5691.

(45) Abragam, A.; Bleaney, B.Electron Paramagnetic Resonance of
Transition Ions; Clarendon Press: Oxford, 1970.

∆ε

E
)

γ

S
lzMxy

eff∑
i

Ni〈Sz〉i (25)

∆ε

E
)

γ

4πS
∫0

π∫0

2π∑
i

Ni(lx〈Sx〉iMyz
eff + ly〈Sy〉iMxz

eff +

lz〈Sz〉iMxy
eff) sin θ dθ dφr (26)

|ASS〉 ) |ψ1ψh 1...ψnψh nψo1
...ψom

| (27)

|Ii
oj SS〉 ) |ψ1ψh 1...ψiψh oj

...ψnψh nψo1
...ψom

| (28)

|II oi

a SS〉 ) |ψ1ψh 1...ψnψh nψo1
...ψa...ψom

| (29)

Table 1. Expressions for Reduced SOC integrals,Lhp
AB, Eq 18, in

Terms of Molecular Orbitals Required forC-Term Calculations in
Terms of the States in Eqs 27-29

|ASS〉 |Ij
ojSS〉 |II oj

bSS〉

〈ASS| 0 -1/2Lh1p
joj 1/2Lh1p

ojb

〈Ii
oiSS| -1/2Lh1p

oii
1/2δoioj(1 - δij)Lh1p

ji

0
-1/2δij(1 - δoioj)Lh1p

oioj

〈II oi

aSS| 1/2Lh1p
aoi 0

1/2δoioj(1 - δab)Lh1p
ab

-1/2δab(1 - δoioj)Lh1p
ojoi

a The following abbreviation is used:Lh1p
ij ≡ Im〈ψi|∑Aê(rA)lA,p|ψj〉.

Table 2. Expressions for Electric Dipole Matrix Elements,DBAB, in
Terms of Molecular Orbitals Required forC-Term Calculations in
Terms of the States in Eqs 27-29a

|ASS〉 |Ij
ojSS〉 |II oj

bSS〉

〈ASS| DBAA -〈ψj|rb|ψoj〉 -〈ψoj|rb|ψb〉

〈Ii
oiSS| -〈ψoi|rb|ψi〉

δijδoiojDBIi
oiIi

oj

+δoioj(1 - δij)〈ψj|rb|ψi〉 0
-δij(1 - δoioj)〈ψoi|rb|ψoj〉

δabδoiojDBII a
oiII a

oj

〈II oi

aSS| -〈ψa|rb|ψoi〉 0 -δoioj(1 - δab)〈ψa|rb|ψb〉
+δab(1 - δoioj)〈ψoj|rb|ψoi〉

a DBJJ is the dipole moment of stateJ.
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where the reference coordinate system diagonalizes theD-tensor
and leads to 0e E/D e 1/3.46 For S) 1/2 there is no ZFS and
the principle coordinate system of theg-matrix is taken as the
reference frame.

A two-dimensional numerical Gauss-Legendre integration
of eq 26 is performed with a variable number of integration
points.47 Since the integrand is a fairly smooth function, a large
number of points is not required. For each magnetic field point
and orientation, the SH in eq 30 is diagonalized, and spin
expectation values are calculated from the resulting eigenvectors
as in eq 31 for theith level:

The Boltzmann populations, eq 15, are evaluated from the
eigenvalues. Experimental data are analyzed by fitting the
effective transition moment productsMxy

eff, Mxz
eff, Myz

eff, eq 26,
and/or the SH parameters together with a scaling parameter
Asatlim ) γ/(4πS). The fits can be done with either a Simplex or
a Levenberg-Marquadt algorithm.47,48

3.1.2.S ) 1/2 Systems.For the case of anS) 1/2 system the
SH eigenvalue problem is readily solved and gives the energies
of the ground state Kramers doublet (i ) 1,2):

with g ) (Gx
2 + Gy

2 + Gz
2)1/2 andGp ) lpgp. The elements of the

matrix U can also be worked out analytically:

The expectation values for the ground state Kramers doublet
are given by

Thus eqs 22 and 23 become

The integral arising from orientational averaging of eq 35 cannot
be evaluated in closed form. However, examination of the
properties of the integrand under inversion reveals that the terms
containing productslil j (i * j) yield zero and therefore eqs 35a

and 35b can be combined into the form

where from eqs 35a and 35b the effective transition moment
productsMij

eff can be identified as

and analogously forMxz
eff andMyz

eff. From eq 36 the well-known
result follows that the ratio of the saturation limit to the initial
slope of the magnetization curve equals 1/g in the case of an
isotropicg-matrix and 1.5/g| for an axialg-matrix with g⊥ ) 0
and anx,y-polarized transition.1b,2,23

Equation 36 is the generalization of other well-known
equations from the literature that either assum axially symmetric
g-matrices or assume that thex-polarized intensity is equal to
the y-polarized intensity, or both.1,23 It also quantifies the
frequently quoted expressionCh 0 ∝ gxMyz + gyMxz + gzMxy.1,17

Equation 36 is particularly suitable for the analysis of experi-
mental data. The ground stateg-values are usually known with
high accuracy from EPR spectroscopy, which means that a fit
of an experimental magnetization curve to eq 36 provides
information about the effective transition dipole moments and
therefore linear polarizations. If it is assumed that the sum in
eq 37 is dominated by a single term, thenMxy

eff ) mxmy, where
mx andmy are the linear transition dipole moments determined
from polarized absorption spectroscopy49 (the intensity here is
proportional to|mx|2 and |my|2 with the electric vector of the
light alongx andy, respectively). In this case one can invert eq
37 to determine the %x-polarized intensity from

and cyclic permutations of the indices gives the other polariza-
tions. The conditions under which such an approach is feasible
are illustrated in Figure 1. The sensitivity depends crucially on
the anisotropy of theg-matrix because the initial slope of the
magnetization curve is proportional to theg-value in the
direction orthogonal to the plane of polarization (Vide infra).
In the case of an isotropicg-matrix there is of course no
information on the transition polarization (Figure 1A). Anisotro-
pies ofgmax-gmin ≈ 0.25 or smaller as is typical for many Cu-
(II) complexes lead to only small differences in the magneti-
zation curves for differently polarized transitions (Figure 1B).

(46) Blumberg, W. E. InMagnetic Resonance in Biological Systems;
Ehrenberg, A., Malmstro¨m, B., Eds.; Pergamon Press: Oxford, 1967;
pp 110 ff.

(47) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes in C, 2nd ed.; Cambridge University Press:
Cambridge, 1992.

(48) The derivative of the MCD magnetization with respect to the fit
parameters required in the latter case is approximated by numerical
central finite differences. Both methods are successful and require a
similar amount of computer time since the smaller number of iterations
needed for the Levenberg-Marquadt method is partly offset by the
computationally demanding calculation of the numerical derivative.
It is usually advantageous to manually explore as large a part of the
parameter space as possible because experience indicates that the fits
will frequently converge to local minima.

(49) The linear polarizations refer to the perturbed molecular states that
have been corrected for SOC and not to the individual transition
moments for the unperturbed states.
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KJ + lzgzLhz

KJ) (35a)

∆ε
(3)

E
) -

γ

g
tanh(gâBB

2kT ) ∑
K*A,J

lB(DBAJ × DBJK)∆KA
-1(lxgxLhx

KA +

lygyLhy
KA + lzgzLhz

KA) (35b)

∆εav
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tanh(gâBB

2kT )sin θ
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(lx
2gxMyz
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2gyMxz

eff +
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2gzMxy
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(DBx
KA DBy
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KADBx
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Lhz

KJ

∆KJ
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(DBx
AJDBy
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AJDBx

JK)
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(Mxy
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effMyz

eff)2 + (Mxz
effMyz

eff)2
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This means that very accurate experimental data would be
required for a reliable determination of the transition polariza-
tions. Panels C and D of Figure 1 show the situations with
g-values typically observed for biologically relevant low-spin
ferric sites.44 Here the variation of magnetization behavior with
transition polarization is recognizable and will allow the
experimental determination of these polarizations from MCD
studies.

3.1.3. High-Spin Systems. Application toS ) 5/2. In order
to develop the MCDC-term saturation behavior we consider
three limiting cases of the relative magnitudes of the ZFS and
Zeeman terms and illustrated the performance of the theory by
comparison to published experimental data. For convenience it
is assumed here that the same coordinate system diagonalizes
the g-matrix and theD-tensor and that the principalg-values
are isotropic. These assumptions are usually satisfied by high-
spin ferric complexes.

A. Large Zero-Field Splitting. In the case where the ZFS
parameterD is much larger than the Zeeman splittings, Kramers
systems with spinS approximately behave like a collection of
(2S + 1)/2 independent “S ) 1/2” systems with effective
g-values. Noting that, for the field applied along directionp
for the dth doublet, one has〈Sp〉d ) (1/2(g̃p

(d)/gp), where the
tilde denotes an effectiveg-value. Thus from eq 26 one expects
that the effectiveg-values of the lowest populated levels that
are perpendicular to the plane of polarization determine the
behavior of the MCD saturation magnetization behavior. To
facilitate the discussion, the effectiveg-values displayed by a
S) 5/2 system with large ZFS are collected in Table 3 for three
different values ofE/D.

A key result from section 2 of this paper (eqs 21-23, 26) is
that the contributions of all Kramers doublets to the total MCD
C-term intensity are related in a rigorous and simple way that
follows from the vector coupling coefficients. In order to test
the predictions of the theory, comparison is made to data

reported in the literature. Browett et al.24a have used eq 39 to
analyze the magnetization curves of high-spin ferric hemes in
the linear region:

HereRd is the fractional population of thedth Kramers doublet
at zero magnetic field and the termxB was included to model
A- andB-terms. The parametersc1-c3 and the ZFS parameter
D were then fitted to MCD data taken at constant field and
variable temperatures. A value ofD ≈ 6.9 cm-1 was derived
from Fe(TPP)Cl, a five-coordinated high-spin ferric heme.24a

In order to predict the values ofc1-c3, it is important to note
that the transitions studied are stronglyx,ypolarized.50 In section
3.2.2 the general form of these coefficients will be derived. For
the case studied by Browett et al. thec’s are given by

Equation 40 predicts that thec’s should have the following
proportion: g̃z

(1):g̃z
(2):g̃z

(3) ) 2:6:10 (Table 3). The ratio reported
for the 410 nm band of Fe(TPP)Cl is 1.52:5.32:10.41.24a The
agreement is less good for the band at 432 nm (1.58:6.10:27.5)
becausec3 is ≈2.7 times larger than expected. However, the
theory still correctly predicts the trends observed experimentally.

(50) (a) Eaton, W. A.; Hochstrasser, R. M.J. Chem. Phys.1967, 46, 2533.
(b) Eaton, W. A.; Hochstrasser, R. M.J. Chem. Phys.1968, 49, 985.

Figure 1. Predicted MCD saturation magnetization behavior for aS) 1/2 system as a function of transition polarization andg-matrix anisotropy.

Table 3. Effective g-Values for aS ) 5/2 System with Large ZFS

g̃x g̃y g̃z

E/D ) 0 MS ) (1/2 6.00 6.00 2.00
MS ) (3/2 0.00 0.00 6.00
MS ) (5/2 0.00 0.00 10.00

E/D ) 0.16 “MS ) (1/2” 5.61 6.38 1.99
“MS ) (3/2” 0.39 0.38 6.00
“MS ) (5/2” 0.00 0.00 10.00

E/D ) 1/3 “MS ) (1/2” 0.86 9.69 0.61
“MS ) (3/2” 4.29 4.29 4.29
“MS ) (5/2” 0.86 0.61 9.69

∆ε

E
) (∑

d)1

3

Rd

cd

kT
+ x)B (39)

cd ) -1/30γâBMxy
eff g̃z

(d) (40)
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Note that this result also unambiguously establishes thatD is
positive for Fe(TPP)Cl, as would be expected for a five-
coordinate high-spin ferric complex with approximateC4V
symmetry.34 In order to explore the wholeB/Tspace, numerical
simulations as described in section 3.1.1 were performed for a
range of D and E/D values and polarizations. A complete
tabulation of the results is provided as Supporting Information
(section S2). Figure 2 shows the behavior of a system with large
negative ZFS (D ) -10 cm-1) and serves as an illustration for
the general result (see S2) that, with increasing effectiveg-value
perpendicular to the plane of polarization, (a) the initial slope
of the magnetization curve increase, (b) the saturation limit
increases, and (c) the nesting behavior (non-superposition) of
the isotherms becomes less pronounced. Thus, for negativeD
andE/D ) 0 the ground state Kramers doublet has a large value
g̃z

(1) ) 10 (Table 3) leading to very steep, unnested behavior
for x,y-polarized transitions. Alternatively from panels B and
C of Figure 2 very small valuesg̃x,y

(1) ) 0 (Table 3), lead to
extensive nesting and weak MCD. As can be seen from Table
3 the effectiveg-values for the ground state doublet of a-D
Kramers system are fairly insensitive to the value ofE/D and
thus there is almost no change of the MCD saturation magne-
tization with E/D (see Supporting Information, section S2).

By contrast, ifD is positive andE/D ) 0, the ground state
Kramers doublet has a relatively small effectiveg-valueg̃z

(1) )
2 and larger valuesg̃x,y

(1) ) 6, and these are reflected in the
saturation magnetization curves shown in Figure 3a. As seen
in Table 3,g̃z

(1) is again a weak function ofE/D and thusx,y-
polarized transitions are insensitive to this value. However,g̃x,y

(1)

are sensitive toE/D. In the rhombic limit (E/D ) 1/3), g̃y
(1)

reaches a limiting value of 9.69, which leads to steep unnested
MCD magnetization behavior ofx,z-polarized transitions (Figure
3b,ii) whereasg̃x

(1) decreases to 0.61 and leads to similarly
weak, nested behavior forx,y- and y,z-polarized transitions
(figure 3b,i,iii).

In the analysis of MCD magnetization curves of systems with
large ZFS, ambiguities always arise when effectiveg-values
become comparable. For example it will be difficult to
distinguish between a system withD < 0, E/D ) 0, andx,y-
polarization and a system withD > 0, E/D ) 1/3, and

x,z-polarization. In these cases it would be important to have
other experimental information available, especially the EPR
spectrum or independent polarization information from single-
crystal electronic spectroscopy. An additional point concerns
the sign ofD in the rhombic limit. As seen from Table 3,g̃x,y,z

(1)

and g̃x,y,z
(3) are pairwise identical but their order is exchanged.

For EPR and magnetic susceptibility measurements this means
thatD > 0 andD < 0 will lead to identical experimental results.
The same is not necessarily true for MCD spectroscopy, where
transitions of given polarization will lead to different magnetiza-
tion behavior forD > 0 versusD < 0 due to the selection rules
of the technique. However, in the case where the transition
polarizations are not known, this distinguishability will not
produce new insight.

B. Small Zero-Field Splitting. The opposite limit is obtained
when ZFS is small compared to the Zeeman splitting. If the
g-matrix is isotropic, the SH eigenvalue problem is again readily
solved and yields pairs of states with quantum numbers(M
(M ) -S‚‚‚S) quantized along the external field. The average
over orientations implied by eq 26 can then be performed
exactly. As is well-known in molecular magnetism51 and pointed

(51) Kittel, C. Introduction to Solid State Physics, 6th ed.; Wiley & Sons:
New York, 1986, pp 400-402.

Figure 2. Predicted MCD saturation magnetization behavior for aS
) 5/2 system with large negative zero field splitting (D ) -10 cm-1,
E/D ) 0) as a function of transition polarization. Isotherms were
calculated at 1.5, 3, 5, 7.5, 10, 15, 20, and 25 K for 20 field values
between 0 and 7 T.

Figure 3. Predicted MCD saturation magnetization behavior for aS
) 5/2 system with large positive zero field splitting (D ) +10 cm-1)
as a function of transition polarization and anisotropy. Isotherms were
calculated at 1.5, 3, 5, 7.5, 10, 15, 20, and 25 K for 20 field values
between 0 and 7 T: (a)E/D ) 0; (b) E/D ) 1/3.
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out in the context of MCD by Graham,52 the summation over
the 2S+ 1 ground state components simply yields the Brillouin
function BS, for spinS:

whereK′ absorbs all constant factors. An example is shown in
Figure 4 forS ) 5/2. Thus, in the limit of no ZFS there is no
nesting in the saturation magnetization curves and MCD yields
no information on transition polarizations.

It is important to recognize the limits of applicability of eq
41 because it is frequently used in the literature to infer the
ground state spinS from MCD and magnetic measurements.
As shown above, the absence of nesting doesnot imply small
ZFS since it also occurs for large ZFS with a large effective
g-value for the lowest doublet. In this case the spin state
predicted by eq 41 can be seriously in error. Figure 5 shows
the 1.5 K trace of the saturation magnetization curve forS )
5/2, D ) -10 cm-1, E/D ) 0 and x,y-polarization, i.e., an
effective g-value of 10, together with the Brillouin functions
for S ) 1/2 to S ) 9/2. As can be seen from Figure 5 the trace
is closely reproduced byB9/2, i.e., one would predict anS of
9/2, where in realityS ) 5/2. Thus, unless there is independent
experimental evidence for very small ZFS, eq 41 cannot be used
with any degree of confidence to assign the ground state spin
of a species with unknown ground state multiplicity.

If, however, the system is known to have a large ZFS and
no nesting is observed in the MCD saturation magnetization, a
possible approach is to determine the effectiveg-value of the
transition by fitting the isotherms to a form∆ε/E ) Asatlim tanh-
(geffâBB/2kT) appropriate for an effective “S) 1/2” system and
then infer the ground state spin from the knowledge of the
effectiveg-values for a spinS system.53

C. Intermediate Zero-Field Splitting. The most complicated
case is when the ZFS is on the order of a few wavenumbers. In

this case the electron spin is initially quantized along the
molecularz-direction by the ZFS. With increasing external field,
the ZFS and Zeeman interactions become comparable and finally
the field will be strong enough to completely align the electron
spin along the external field direction. The behavior of the spin
expectation values in this case depends on all contributing
parameters and cannot be derived in closed form.54 Thus, one
relies on numerical simulations to analyze the experimental data
over the entireB/T-parameter space. A feature common to all
systems that are in the intermediate ZFS regime is the presence
of substantial nesting behavior of the saturation magnetization
curves. However, the observation of nesting does not require
that the system is in the intermediate ZFS regime because
extensive nesting is also possible for large ZFS (section 3.1.3.B).
Here a combination of experimental techniques is necessary;
for example, the temperature and microwave power dependence
of the EPR spectrum can distinguish between the intermediate
and strong ZFS limits.55

Rather than presenting an exhaustive list of possible behav-
iors, two specific examples are analyzed that provide insight
into the general behavior. Figure 6 shows representative results
for systems with intermediate ZFS (D ) - 1 cm-1, E/D ) 0,
x,y-polarized transition). Focusing first on the 1.5 K trace of
the -D system in Figure 6A, it is observed that saturation
magnetization first steeply increases, then reaches a maximum,
and finally decreases. This effect is due to a change in
quantization axis and is analyzed in more detail in Figure 7
and 8. Scheme 2 presents the splitting of the six ground state
sublevels at zero magnetic field, leaving theMS ) - 5/2 doublet
lowest in energy forD < 0.

The splitting of these levels in an applied magnetic field is
shown in Figure 7B for the field along the molecularz-axis (θ
) 0) and at an intermediate orientation (θ ) π/4) in Figure

(52) Graham, R. G.Chem. Phys. Lett.1987, 133 (3), 193.
(53) Note that there are also potential ambiguities in this approach due to

the dependence of the effectiveg-values onE/D and of the isotherms
on the transition polarization.

(54) As long as the applied magnetic field is very weak it is still possible
to use the methods described in section 3.1.3.A, but this places
emphasis on the region of the magnetization curve where the
experimental data is necessarily the most noisy.

(55) (a) Yim, M. B.; Kuo, L. C.; Makinen, M. W.J. Magn. Reson.1982,
46, 247. (b) Makinen, M. W.; Kuo, L. C.; Yim, M. B.; Wells, G. B.;
Fukuyama, J. M.; Kim, J. E.J. Am. Chem. Soc.1985, 107, 5245. (c)
Aasa, R.J. Chem. Phys.1970, 52 (8), 3919. (d) Slappendel, S.;
Veldink, G. A.; Vliegenthart, J. F. G.; Aasa, R.; Malmstro¨m, B. G.
Biochem. Biophys. Acta1980, 642, 30. (e) Pilbrow, J. R.Transition
Ion Electron Paramagnetic Resonance; Oxford Science Publications,
Clarendon Press: Oxford, 1990; Chapters 1 and 12.

Figure 4. Predicted MCD saturation magnetization behavior for aS
) 5/2 system with no zero field splitting (D ) 0). Isotherms were
calculated at 1.5, 3, 5, 7.5, 10, 15, 20, and 25 K for 20 field values
between 0 and 7 T. The Brillouin function forS) 5/2 is superimposed.

Figure 5. Comparison of the predicted MCD saturation magnetization
behavior for aS ) 5/2 system with large negative zero field splitting
(1.5 K trace,Mxy polarization from Figure 2) and the Brillouin functions
for S ) 1/2 to S ) 9/2 (steps of 1).

∆ε

E
) K′BS(gâB

2kT) )

K′{2S+ 1
2S

coth((2S+ 1)gâBB

kT ) - 1
2S

coth(gâBB

kT )} (41)
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7D. In Figure 7A the behavior of the contribution of all ground
state sublevels to the total MCD intensity (∝∑iNi〈Sz〉i, eq 26)
for T ) 1.5 K is shown. It is observed that the lowest sublevel
(MS ) -5/2) dominates the entire range ofâB/2kTand becomes
the only contribution aroundâB/2kT ≈ 0.35. However, the
decrease of the integrated intensity in the MCD atâB/2kT >
0.35 (1.5 K trace in Figure 6A) is not present in Figure 7A.

The origin of this decrease is analyzed in Figure 8. Figure 8A
plots the net contribution to the total MCD intensity as a function
of magnetic field orientation (θ ) 0...π) for the valuesâB/2kT
) 0.25 (close to the maximum of the 1.5 K trace in Figure 6A)
and âB/2kT ) 1.56 (corresponding to the final point of this
curve). As expected, the intensity vanishes atθ ) 0 due to the
sin θ factor in the integrand which is related to the number of
molecules that has the molecularz-axis aligned at an angleθ
relative to the applied field. Atθ ) π/2 the field is in the
molecular x,y-plane and the total MCD intensity vanishes
because there is no magnetization perpendicular to the plane of
polarization (as required by eq 26). Therefore the integrand
peaks at an intermediate angleθ ) π/4, and consequently the
total MCD intensity in Figure 6A is dominated by the behavior

Figure 6. Predicted MCD saturation magnetization behavior for aS
) 5/2 system with intermediate zero field splitting (|D| ) 1 cm-1).
Isotherms were calculated at 1.5, 3, 5, 7.5, 10, 15, 20, and 25 K for 20
field values between 0 and 7 T andE/D ) 0: (A) D ) -1 cm-1; (B)
D ) +1 cm-1.

Figure 7. Behavior of aS ) 5/2 system with intermediate negative
ZFS (D ) -1 cm-1, E/D ) 0, T ) 1.5 K, x,y-polarized transition).
(A) Sum of the contributions of all ground state sublevels as a function
of âB/2kT at θ ) 0. (B) Energies of the ground state sublevels as a
function ofâB/2kTatθ ) 0. (C) Sum of the contributions of all ground
state sublevels as a function ofâB/2kT at θ ) π/4. (D) Energies of the
ground state sublevels as a function ofâB/2kT at θ ) π/4.

Figure 8. Contributions to the MCD saturation magnetization behavior
of a S ) 5/2 system with intermediate negative ZFS (D ) -1 cm-1,
E/D ) 0, T ) 1.5 K, x,y-polarized transition). (A) Sum of the
contributions of all ground state sublevels as a function of magnetic
field orientation forâB/2kT ) 0.25 (s) andâB/2kT ) 1.56 (---). The
behavior is dominated by the lowest level (not shown). (B) Behavior
of the spin expectation value〈Sz〉 of the lowest sublevel weighted by
its Boltzmann occupation as a function of magnetic field orientation
for âB/2kT ) 0.25 (s) and âB/2kT ) 1.56 (---). (C) Magnetic field
behavior to high fields (B ) 0-100 T) of the MCD saturation
magnetization curve for the above system compared to the Brillouin
curve forS ) 5/2.

Scheme 2

1858 Inorganic Chemistry, Vol. 38, No. 8, 1999 Neese and Solomon



at intermediate angles. From Figure 8A it is seen that for angles
aroundθ ) π/4 andθ ) 3π/4 the intensity of theâB/2kT )
1.56 trace is systematically lower than that of theâB/2kT )
0.25 trace, thus accounting for the biphasic behavior of the 1.5
K trace in Figure 6A. As shown in Figure 8B, the origin of this
effect can be traced back to the behavior of the spin-expectation
value, 〈Sz〉1, for the lowest energy sublevel. At small applied
magnetic fields (âB/2kT) 0.25) the electron spin is dominantly
quantized along the molecularz-axis by the ZFS. Therefore there
is a rather rapid change of〈Sz〉1 when the field switches atθ )
π/2 from being along the molecular+z-direction to being along
the molecular -z-direction. By contrast, at high applied
magnetic fields (âB/2kT) 1.56), the electron spin is dominantly
quantized along the field direction and therefore the projection
onto the molecularz-axis is systematically smaller in magnitude
than at low applied fields. Therefore, the total integrated MCD
intensity is higher forâB/2kT ) 0.25 relative toâB/2kT ) 1.56
due to the behavior at intermediate angles. This is reflected in
Figure 7C, which shows that for intermediate angles (θ ) π/4)
the contribution of the lowest ground state sublevel parallels
the behavior of the integrated intensity in Figure 7A. Note that
is is not possible for a MCD band to change sign by this
mechanism. Figure 8C shows that for extremely large fields
the MCD intensity reaches a limiting value that is determined
by the Brillouin function. This is expected from the results of
section 3.1.3.B.

The analogous situation for a+D system is analyzed in Figure
9. Figure 9B shows the variation of the ground state sublevel
energies as a function of magnetic field. For small applied fields

the lowest level isMS ) -1/2, betweenâB/2kT ≈ 0.5 and 1 (T
) 1.5 K) it is MS ) -3/2, and for higher fields it isMS ) -5/2.
Consequently many levels have contributions to the total MCD
intensity as shown in Figure 9A. However, as seen in the
previous case (Figure 8A), the integrated MCD intensity is
dominated by the behavior at intermediate angles that is analyzed
in Figure 9C,D forθ ) π/4. Again the behavior of the lowest
sublevel atθ ) π/4 parallels the behavior of the integrated
intensity in Figure 6B. Figure 9D shows that the level crossings
that are apparent atθ ) 0 (Figure 9A) are forbidden due to the
presence of off-diagonal terms in the spin-Hamiltonian. The
behavior of the total MCD intensity shown in Figure 9C can
nevertheless be understood from the fact that the wave function
describing the lowest sublevel is still allowed to change with
magnetic field. Thus there is a gradual change of the lowest
sublevel from aMS ) -1/2 level quantized along the molecular
z-axis to aMS ) -5/2 level quantized along the applied field.
Since this change is rather slow, saturation is not observed over
the rangeâB/2kT ) 0-1.56 that is commonly experimentally
accessible.

In summary, in systems with intermediate ZFS both (avoided)
level crossing and off-axis effects are of dominant importance.
For D < 0 the behavior is dominated by the off-axis behavior
of the lowest energy sublevel that is classified as “MS ) -S”
over the entire magnetic field range while forD > 0 the behavior
contains contributions from various sublevels that show avoided
crossing which results in a strong change in the character of
the ground state sublevel wave function with increasing
magnetic field.

Finally, Figure 10 shows the behavior of the saturation
magnetization curves with changing magnitude ofD in the
intermediate regime for bothD < 0 (Figure 10A) andD > 0
(Figure 10B). The strong dependence of the shape of the
saturation magnetization behavior on the sign and magnitude
of D demonstrates that determination of the sign and magnitude
of D from MCD is feasible in the intermediate regime.56 The
behavior of systems in the intermediate ZFS regime is compli-
cated, however, and requires numerical simulations to analyze
experimental data. In general, the saturation magnetization

(56) Note that the saturation magnetization curves of systems with positive
D are more sensitive to the magnitude ofD because the components
with smaller|MS| that are associated with smaller effectiveg-values
are lowest in energy at small magnetic fields.

Figure 9. Behavior of aS ) 5/2 system with intermediate positive
ZFS (D ) +1 cm-1, E/D ) 0, T ) 1.5 K, x,y-polarized transition).
(A) Contributions of all ground state sublevels as a function ofâB/
2kT at θ ) 0. (B) Energies of the ground state sublevels as a function
of âB/2kT at θ ) 0. (C) Contributions of all ground state sublevels as
a function ofâB/2kT at θ ) π/4. (D) Energies of the ground state
sublevels as a function ofâB/2kT at θ ) π/4.

Figure 10. The predicted MCD saturation magnetization behavior of
a S ) 5/2 system in the intermediate ZFS regime as a function of|D|
(E/D ) 0): (A) negativeD; (B) positiveD.
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behavior will be sensitive to all parameters, the sign and
magnitude ofD, E/D, and the transition polarizations.

3.2. C-Term Signs from Molecular Wave Functions. In
this section the prediction ofC-term signs from molecular orbital
calculations is discussed. The linear regime of the MCDC-term
response is employed because in this case the integrations in
eq 2 can be performed analytically. In section 3.2.1 the theory
is developed forS ) 1/2 systems and in 3.2.2 for a general
Kramers system with either large or very small ZFS. To show
the application of the expressions derived in 3.2.1 and 3.2.2,
two examples from the literature are briefly treated in 3.2.3. In
3.2.3.A the dominantC-terms exhibited by the biological CuA

electron transfer center are analyzed, and in 3.2.3.B an analogous
analysis is presented for the high-spin ferric complex [Fe(EDTA)-
(O2)]3-. These two molecules are chosen to (1) apply the
methodology to systems that are well understood and (2) show
the physical insight that can be obtained into the origin ofC-term
signs from qualitative arguments.

3.2.1.S ) 1/2 Systems.For the prediction ofC-term signs it
is convenient to take the linear limit of eq 36 that followed
from eq 26 and perform the average over all angles, giving eq
42,

where the expression in curly brackets is identified as theCh 0-
parameter. Expressing the effective transition dipole moment
products in terms of transition dipole and reduced SOC matrix
elements, eq 37,Ch 0 in eq 1 is given by

whereεuVw is the Levi-Civitta symbol (u,V,w ) x,y,z). Using
the matrix elements in Tables 1 and 2, eq 43 takes the form
given in eq 44. Equation 44a applies to transitions from a doubly
occupied MOψo (stateI i

o) and eq 44b to the promotion of the
unpaired electron inψo into an empty MOψa (stateII o

a).

The result obtained is similar to that of Gerstman and Brill17

(their eq 28a) but has the advantage that it has been derived
from a many electron picture and uses the more general SOC
operator in eq 8. Further, eqs 44a,b use MO wave functions
rather than hybrid atomic orbitals, which is more realistic. Note
that the energy denominators used here refer to state energies
and not orbital energies. Thus∆Ij

oA
-1 is a positive quantity

althoughψj is lower in energy thanψo. Also the one-electron
SOC constants obtained by evaluating the one-center radial parts
of the matrix elements of the reduced SOC operator are
inherently positive. This differs from the usual practice followed
in ligand field treatments that is to use the atomic many electron
SOC constantsλ.

It is interesting to note that application of eqs 44a and 44b
to d1 and d9 systems predicts oppositely signedC-terms for
comparable transitions in these systems. In the case of d9

systems the transitions usually observed are into the singly
occupied MO,ψo, while in the d1 systems at least the d-d
transitions are from the half-occupied MO into empty MOs.
The sign change occurs from the reversed order of the perturbing
MOs (ψj andψb) in the matrix elements of the reduced SOC
operator in eq 44a relative to eq 44b.

3.2.2. High-Spin System. Application toS ) 5/2. In the
case of strong ZFS, it is convenient to follow an analogous
procedure and derive the MCDC-term response of the (2S +
1)/2 Kramers doublets of the ground state configuration in the
linear limit. The dominance of the ZFS suggests the use of the
eigenfunctions ofHBO + HZFS as field independent basis and
then the use of first order degenerate perturbation theory to
construct the field dependent states. The energies of the two
components of thedth doublet in the presence of the ZFS and
Zeeman interactions are given by

whereE(d) is the energy of thedth doublet at zero magnetic
field. g̃(d) is calculated from the effectiveg-values of thedth
doublet in analogy to the trueS ) 1/2 case:

From this the Boltzmann populations are evaluated to first order
in the applied field:

where

The pseudoS ) 1/2 spin expectation values become

and eq 26 assumes the form

with

Note that eq 50 properly reduces to theS ) 1/2 case if there is
only one doublet and therefore the effective and realg-values
coincide. Equation 50 may be interpreted as a generalization
of theC-term part of eq 1 for the high-spin case and also defines

∆ε

E
) -γ

âBB

2kT{1
3
[Myz

effgx + Mxz
effgy + Mxy

effgz]} (42)

Ch 0 ) -1/6∑
uVw

εuVwgw ∑
K*A,J

{∆KJ
-1 DBu

KA DBV
AJ Lhw

KJ +

∆KA
-1 DBu

AJ DBV
JK Lhw

KA} (43)

Ch 0(Ii
o) )

-
1

12
∑
j*i

doubly

∑
uVw

εuVwgw{∆Ij
oA

-1 Im〈ψo|∑Nê(rN) lBN,w|ψj〉 ×

〈ψi| rbu|ψo〉〈ψj| rbV|ψi〉 + ∆Ij
oIi

o
-1 Im〈ψi|∑Nê(rN) lBN,w|ψj〉 ×

〈ψo| rbu|ψj〉〈ψi| rbV|ψo〉} (44a)

Ch 0(II o
a) )

-
1

12
∑
b*a

empty

∑
uVw

εuVwgw{∆II o
b

-1 Im〈ψb|∑Nê(rN) lBN,w|ψo〉 ×

〈ψo| rbu|ψa〉〈ψb| rbV|ψo〉 + ∆II o
bIo

a
-1 Im〈ψb|∑Nê(rN) lBN,w|ψa〉 ×

〈ψo| rbu|ψb〉〈ψa| rbV|ψo〉} (44b)

E(
(d) ) E(d) ( 1/2g̃

(d)âBB (45)

g̃(d) ) x(g̃x
(d)lx)

2 + (g̃y
(d)ly)

2 + (g̃z
(d)lz)

2 (46)

N(
(d) ) 1/2Rd(1 - 1/2g̃âBB/kT) (47)
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exp(-E(d)/kT)

∑
s

exp(-E(s)/kT)

(48)

〈SB̃〉(
(d) ) ( 1

2g̃(d)
(g̃x

(d)lx,g̃y
(d)ly,g̃z

(d)lz) (49)

∆ε

E
) γ ∑

d

Rd

âBB

kT
Ch 0

(d) (50a)

Ch 0
(d) ) - 1

12S
(g̃x

(d) Myz
eff + g̃y

(d) Mxz
eff + g̃z

(d) Mxy
eff) (50b)
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the c-coefficients in eq 39 used by Browett et al.24a Note that
the Ch 0

(d)’s are of the same sign for each doublet. Equation 50
allows one not only to compute the relative contributions from
each doublet to the total MCDC-term intensity but also to
predict the overall sign through evaluation of the effective
transition moment products from electronic structure calculations
using eq 37. For the case of MO wave functions the matrix
elements required to evaluate eq 50 are given in Tables 1 and
2. For weak and intermediate ZFS, a convenient method is to
calculate theC-term signs in the saturation limit, i.e., for very
low temperature and very high fields. In this case only the lowest
Zeeman sublevel is populated and, if the realg-matrix is
isotropic, has a spin expectation value-S in the direction of
the applied field. InsertingN1 ) 1 and〈SB〉1 ) -lBS into eq 26
and performing the integrations gives

Note that in this limit eq 51 shows that the MCD becomes
independent of field, temperature, and effectiveg-values, as
required. Thus, direct application of eq 37 with the matrix
elements given in Tables 1 and 2 permits one to predict the
sign of the MCDC-term in the saturation limit.

3.2.3. Examples. A.S ) 1/2 Example.As an example of the
application of eq 44 we will briefly comment on the dominant
C-terms displayed by the binuclear, dithiolate-bridged mixed-
valence copper center ([Cu(1.5)...Cu(1.5)],S ) 1/2) known as
CuA and discussed in detail in refs 21, 57, and 20. The MCD
spectrum in the visible region consists of a very intense
pseudo-A pair of C-terms with components centered around
19 000 (positive) and 21 000 cm-1 (negative) (∆ε ≈ 1800 M-1

cm-1 at 4 T). The orbital nature of these transitions is well
understood and summarized in Table 4.21,57The main contribu-
tion to theC-term intensity arises from the SOC between excited
states (second term in{ }, eq 44a), that is very effective due to
the close energetic proximity and orthogonal polarization of the
transitions involved.21,57

In this case eq 44a can be applied in a graphical form that is
illustrated in Figure 11. Figure 11A shows the four core atoms
of the CuA chromophore. Figure 11B shows the donor MOψi

and intermediate MOψj involved in the transition of interest

(44a). The product of the donor and acceptor MOs and the
intermediate and acceptor MOs are shown in Figure 11C and
define the respective transition densities.32 The dipole moments
of the charge distributions in Figure 11C are given in Figure
11D and define the transition dipole moments pointing along
-x and+y, respectively.58 In order to evaluate eq 44a, the spin-

(57) Gamelin, D. R.; Randall, D. W.; Hay, M. T.; Houser, R. P.; Mulder,
T. C.; Canters, G. W. de Vries, S.; Tolman, W. B.; Lu, Y.; Solomon,
E. I. J. Am. Chem. Soc.1998, 120, 5246.

(58) The transition dipole moment is defined to point from the center of
negative charge (black) to the center of positive charge (white). Note
that this definition does not influence the prediction ofC-term signs
since a product of two transition dipole moments is involved.

Table 4. The MCD Spectrum Displayed by the CuA Electron
Transfer Site, Assignments in the Idealized Point GroupD2h from
Refs 21 and 57, Predicted Polarizations, and PredictedC-Term
Signs Based on Eq 44a and Figure 11

assignment C-term sign

band
energy
(cm-1) exc state transition pol obsd predicted ref

6 19 000 2Ag ag f b3u X + + 21
2B1g b1g f b3u Y + + 57

7 21 000 2B1g b1g f b3u Y - - 21
2Ag ag f b3u X - - 57

Table 5. The MCD Spectrum Displayed by [Fe(EDTA)(O2)]3-,
Assignments in the Idealized Point GroupC2V from Ref 30,
Predicted Polarizations, and PredictedC-Term Signs Based on Eqs
51 and 37 and Figure 12

assignment C-term sign

band
energy
(cm-1) exc state transition pol obsd predicted

3 18 800 6A1
a π* f yz X + +

4 21 700 6B1
a π* f xz Y - -

∆ε

E
) - 1

3
γ{Mxy

eff + Mxz
eff + Myz

eff} (51)

Figure 11. Graphical prediction of theC-term sign for theag f b3u

transition observed at 19 000 cm-1 in the CuA electron transfer center.
(A) Structure of the chromophore and choice of coordinate axes. (B)
The donor MOψi (ag; left) and the intermediate MOψj (b1g; right) of
eq 44a). (C) The transition densities for the transitionsag f b3u and
b1g f b3u. (D) Direction of the transition dipole moments for the two
transitions. (E) Graphical determination of the sign of the reduced spin-
orbit coupling matrix element between the two excited states. (F)
Coordinate system showing that the transition dipole moment and
reduced spin-orbit vectors form a right-handed system.
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orbit rotation of the intermediate MOψj into the donor MOψi

is shown in Figure 11E and is seen to lead to a negative reduced
SOC matrix element.59 This defines a vector perpendicular to
the plane of orbital rotation that points along-z. Thus one can
evaluate the sign of the second term in eq 44a as follows:

where∆ ) E(b1g f b3u) - E(ag f b3u). Altogether the three
vectors are seen to define a right-handed coordinate system,
Figure 11F, which means that for positive∆ this mechanism
will lead to absorption of left-handed photons. By means of eq
3 this defines a positive MCD signal. By the nature of the
pseudo-A mechanism,4,5,17theb1g f b3u C-term is proportional
to -∆-1. Thus, independent of the relative order of the two
states, one expects the higher energy band to have a negative
MCD C-term and the lower one to be positive, consistent with
experiment (Table 4).

B. S ) 5/2 Example. To illustrate the analogous procedure
for high-spin systems, the MCDC-terms displayed by the high-
spin ferric complex [Fe(EDTA)(O2)]3- are analyzed. In a recent
study it was shown to haveD ) -1 ( 0.25 cm-1 andE/D )
0.21.30 For this case only the lowest Kramers doublet is
populated at 1.5 K and 7 T magnetic field and therefore eq 51
applies. The effective chromophore symmetry isC2V, and the
ground state is designated6A1

g.s.. The complex displays an
absorption band centered around 20 000 cm-1 that is associated
with a pair of oppositely signedC-terms (Table 5). The
assignment of this spectrum shows that the pair of transitions
is due to peroxidef Fe LMCT originating from a doubly
occupied peroxideπ* orbital into the half-occupied Fe-yz and
Fe-xz based MOs (Table 5). Since6A1

g.s. is energetically well
separated from the sextet-CT manifold, the MCD intensity must
arise from SOC between the two excited states,6A1

a(π* f yz)
and 6B1

a(π* f xz), that is allowed via thez-component of the
SOC operator (i.e., thelFe,z operator rotatesxz into yz). Using
eqs 51 and 37, one has for the MCD intensity of the transition
6A1

g.s. f 6A1
a(π* f yz)

and the negative of this for the transition6A1
g.s. f 6B1

a(π* f
xz). This situation is graphically illustrated in Figure 12. The
two transition dipole moments are pointing along-x and+y,
respectively, and the spin-orbit rotation leads to a negative

reduced SOC matrix element. Since6B1
a(π* f xz) is higher in

energy than6A1
a(π* f yz), the denominator is positive and a

positive C-term is predicted for the lower energy band and a
negative one for the higher energy band which is also observed
experimentally (Table 5).

The results of 3.2.3.A,B illustrated a general feature of
pseudo-A terms in low-symmetry systems, namely, that switch-
ing the order of the excited states does not lead to an oppositely
signed pseudo-A term because changing the order of the two
states also changes the sign of the relevant energy denominator.
However, the fact that the lower energy component happened

(59) The rotation is defined such that if one views down the rotation axis
each basis orbital in the MO to the right (ψj here) is to be rotated
counterclockwise. Neglect of multicenter integrals in the evaluation
of the reduced spin-orbit coupling operator means that each basis
orbital is only rotated by the angular momentum operator that is
attached to the same center.

Figure 12. Graphical prediction of theC-term sign for the6A1
g.s. f

6A1
a(π* f yz) transition of the complex [Fe(EDTA)(O2)]3-. (A)

Structure of the chromophore and choice of coordinate axes. (B) The
donor MO and the acceptor MOs involved in the transitions6A1

g.s. f
6A1

a(π* f yz) (left) and 6A1
g.s. f 6B1

a(π* f xz) (right). (C) The
transition densities of the two transitions. (D) The transition dipole
moments for the two transitions. (E) Graphical determination of the
sign of the reduced spin-orbit coupling matrix element between the
two excited states. (F) Coordinate system showing that the transition
dipole moment and reduced spin-orbit vectors form a right-handed
system.

Ch 0(ag f b3u) ∝ (-1)∑
uVw

εuVw∆-1gw Im〈ag|∑
A

ê(rA)lA,w|b1g〉 ×

〈b3u| rbu|b1g〉〈ag| rbV|b3u〉 ∝ (-1)∆-1gz (00-|Lhz| ){(0+|my|
0 )×

(-|mx|
0
0 )} ∝ (-1)∆-1gz(-|Lhz|)(-(|my|)(-|mx|)) ∝ + ∆-1gz

(52)

∆ε

E
) +

γ

3

Im〈6B1
a 5/2| ∑

N,i

ê(riN) lN,z(i) s0(i)|6A1
a 5/2〉

E(6B1
a) - E(6A1

a)
×

〈6B1
a 5/2|my|6A1

g.s. 5/2〉〈
6A1

g.s. 5/2|mx|6A1
a 5/2〉
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to be positive in both examples is not a general result. In general,
each contribution to aC-term sign involves products of three
matrix elements (eq 37), that all can be of either sign. The
overall sign is determined by the transition dipole moment
directions and reduced SOC matrix elements. These quantities
depend on the spatial symmetries of the wave functions or, in
MO approximation, on the shapes of the MOs involved in the
transition and intermediate states in a way shown in the
preceding two paragraphs. This also means that the symmetry
of a given excited state does not determine itsC-term sign in
low-symmetry systems. Thus, sign predictions are more difficult
than in high-symmetry systems where the ground and excited
state symmetries alone determine theC-term signs.

4. Discussion

In this study spin-orbit coupling contributions to MCD
C-term signs and saturation behavior for a transition between
two orbitally nondegenerate manifoldsA and J has been
evaluated. The key results are eqs 21-23 and 26; all equations
developed in section 3 follow from these expressions. The model
presented contains a number of previous treatments as special
cases and also provides new insight: (1) It is valid for any
ground state spinS, any relative orientation of magnetic coupling
tensors, and the general case of arbitrary transition polarization.
(2) The theory relates the contributions of the individual ground
state sublevels to the total MCD intensity in a rigorous way
through their spin-expectation values and therefore considerably
reduces the number of parameters required to analyze experi-
mental data. For systems with an odd number of electrons it
follows that the relative contributions of the different Kramers
doublets to the total MCD intensity are proportional to their
effectiveg-values. (3) The model is valid for the entire range
of relative magnitudes of Zeeman and ZFS and therefore allows
the analysis of VTVH-MCD data regardless of level crossings.
(4) It can be used to calculateC-term signs from molecular wave
functions.

4.1. Saturation Magnetization.The generalization to anyS
is useful from a conceptual point of view because it shows the
underlying consistency for all systems and leads to general rules.
From a practical point of view eqs 21-23, 26, 36, and 50, which
describe the magnetization behavior, make no assumptions about
the symmetry of magnetic coupling tensors or transition
polarizations. This is potentially important in the analysis of
low-symmetry systems. To illustrate the possible effects, Figure
13 shows the saturation magnetization curves computed for a
hypothetical S ) 5/2 system with D ) +3.5 cm-1 and
intermediate rhombicity (E/D ) 0.12). In Figure 13A a
simulation is shown with the frequently invoked axial ap-
proximationMxz ) Myz. Figure 13B allows forMxz * Myz and
shows that the changes in the computed saturation curves are
minimal if Mxz and Myz are of the same sign. However,
qualitatively different shapes for the saturation curves are
obtained if the contributions fromMxzandMyzoppose each other
as shown in Figure 13C. On the basis of eqs 21-23 this is not
an unrealistic situation,60 and the dramatic difference between
the computed curves underlines the need to utilize expressions
for the general case.

An important aspect of MCD spectroscopy is that, like
ENDOR spectroscopy, it is orientation selective, which means
that only a subset of suitably oriented molecules contribute to
the MCD signal. Thus the analysis of MCD magnetization

curves allows orientation information to be obtained from
samples of randomly oriented molecules through the transition
polarizations. For example, a strongly allowed LMCT band will
be polarized along the metal-ligand bond. Therefore assignment
of CT bands to specific ligands based on the analysis of MCD
saturation magnetization curves is feasible.

It must be stressed that the coordinate system that the
theoretical polarizations refer to are determined by the underly-
ing spin-Hamiltonian that is diagonalized to obtain the spin-
expectation values in eq 26. Frequently it will be convenient to
choose the coordinate system that diagonalizes theD-tensor or
the g-matrix (for S ) 1/2). The magnetic coupling tensors can
be rotated into another convenient coordinate system, for
example, one that is chosen on the basis of the knowledge of
transition polarizations in a suitable molecular frame. If the
principal axis system of a magnetic coupling tensor is chosen
as reference coordinate system, it is important to know the
orientation of this tensor in the molecular framework from either
theory or experiment if the theoretical polarizations are to be
interpreted in terms of a molecular axis system.

Another aspect of the theory is that it relates the contributions
of different Kramers doublets to the total MCD signal. One of
the important results from this study is the fact that the
connection is simply provided by the spin-expectation values
of the magnetic ground state sublevels. These are conveniently
generated from the solution of a SH eigenvalue problem. As
shown in sections 3.1.3.A and 3.2.2, the contribution of each
Kramers doublet to the total MCD intensity is proportional to
the effectiveg-value of this doublet that is orthogonal to the
plane of polarization (eq 50). Therefore the relative contributions
can be fixed from theory, which should be beneficial for the
analysis of ZFSs from MCD spectroscopy. For the analysis of
MCD data for Kramers systems with large ZFSs in the linear
region, eq 50 can be used in the form

(60) For example consider eq 22 andDBKA ∝ (1,1,0) andDBAJ ∝ (0,1,-1/2)
leading toMxy ∝ 1, Mxz ∝ 1/2, andMyz ∝ -1/2.

Figure 13. Effect of nonaxial polarization on MCD saturation
magnetization curves for a hypothetical system withD ) +3.5 cm-1

and E/D ) 0.12. Isotherms were calculated at 1.5, 3, 5, 7.5, 10, 15,
20, and 25 K for 20 field values between 0 and 7 T. (A) Saturation
magnetization curves for axial polarization. (B) Effect of introducing
nonaxial polarization withMxz andMyz of the same sign. (C) Effect of
introducing nonaxial polarization withMxz andMyz of different sign.

∆ε

E
)

Asatlim{[∑
d

Rd

âB

kT
(g̃x

(d)Myz
eff + g̃y

(d)Mxz
eff + g̃z

(d)Mxy
eff)] + xB} (53)
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whereRd is the fractional population of thedth Kramers doublet
at zero field that depends on the ZFS parameters,g̃x,y,z

(d) are the
effectiveg-values of thedth Kramers doublet,Asatlim is a scaling
parameter, and theM’s are the effective transition dipole
products. The termAsatlimxB is added in an ad hoc fashion to
describe possibleB-term contributions in an average way.24a

Since the spin-expectation values required to evaluate eq 26
can be generated from an eigenvalue problem, there is no
problem with the possible divergence of a perturbation sum.
Thus, the theory remains valid in the important case that the
ground state magnetic sublevels cross as a function of magnetic
field. With present instrumentation, magnetic fields of≈7 T
corresponding to Zeeman energies on the order of≈10 cm-1

are used in routine measurements. Since many of the systems
that are of interest have ZFSse10 cm-1, level crossings are
the rule rather than the exception in MCD experiments. For
these systems increasing magnetic field changes the quantization
axis of the electron spin from being internally quantized (by
the ZFS along the molecularz-axis) to being externally quantized
(by the applied magnetic field along the laboratoryz-axis). The
behavior of the spin-expectation values in such cases is in
general very complicated and cannot be derived analytically.
Thus, one has to rely on numerical simulations in order to exploit
the whole experimentally accessibleB/T space in the analysis.
In section 3.1.3.C it was found that off-axis contributions make
dominant contributions to the MCD saturation magnetization
for systems withD < 0 and avoided crossings determine the
behavior of systems withD > 0. In general the saturation
magnetization curves of systems with intermediate ZFS (relative
to the Zeeman energy) depend on all of the magnetic coupling
parameters (sign and magnitude ofD, E/D) and the transition
polarizations and are thus potentially most informative. The
D-values extracted from MCD experiments will frequently be
reliable for the sign and magnitude ofD, but will not be highly
accurate.

In the limit of zero ZFS it was shown in section 3.1.3.B that
the MCD saturation magnetization curves coincide with the
Brillouin functions for spinS. In this case nesting of isotherms
is not observed and the only information that is deducible from
MCD saturation studies is the value of the total spinS. However,
the absence of nesting does not require the presence of small
ZFS, because it also occurs forS> 1/2 systems with large ZFSs
and polarizations orthogonal to directions with large effective
g-values as shown in Figure 2. In this case the use of Brillouin
functions to determine the ground state spin is misleading and
an approach based on fitting the magnetization curves to an
effective S ) 1/2 model and inferring the spin state from the
effective g-value returned by the fit appears most promising.
In any case, the observation of nesting in the isotherms is
indicative of a situation where neither a Brillouin function nor
an effectiveg-value approach is appropriate.

4.2. Selection Rules.The three key mechanisms that lead to
MCD intensity by means of SOC are described by eqs 21-23.
Equation 21 is a two-state mechanism that shows that the MCD
C-term intensity induced by SOC between statesA and J is
proportional to the cross product of the transition dipole moment
for theA f J transition with the difference in dipole moments
of statesA andJ. The group theoretical selection rules contained
in eq 21 require that the transitionA f J is allowed, i.e., the
direct product ΓA X Γx,y,z X ΓJ must contain the totally
symmetric representation. In order for a dipole moment to be
present in either the ground or excited state, at least one of the
components of the dipole operator must transform as the totally
symmetric representation if bothA andJ are spatially nonde-

generate. However, the change of dipole moment will most
likely be in the direction in which charge is displaced during
the transition and the mechansim in eq 21 will produce only
minor MCD C-term intensity.

Equation 22 describes a three-state mechanism for MCD
C-term intensity. Here an intermediate stateK spin-orbit
couples with the excited stateJ. In this way the transitionA f
J acquires some character of the transitionA f K and given
that the transition moment ofA f K is not collinear with that
of A f J provides the orthogonal polarization required for MCD
intensity. Equation 22 leads to the rule that the sum over all
transitions induced by this mechanism is zero because∆KJ

-1 )
-∆JK

-1, LhKJ ) -LhJK, and (DAK × DBAJ) ) -(DBAJ × DBAK). This
result has been shown before by Gerstman and Brill for aS )
1/2 system.17 For a stateK in eq 22 to give a nonvanishing
contribution the constraints from group theory are

If the symmetry group of the molecule contains a center of
inversion, this means that statesJ andK must be of like parity
and of opposite parity to the ground state.

Equation 23 is also a three-state mechanism. Here an
intermediate stateK spin-orbit couples with the ground state.
In this way the transitionA f J acquires some character of the
“virtual” transition K f J. If the transition moment ofK f J
is not zero and not collinear with that ofA f J, this will induce
MCD intensity. As noted before,17 it is this mechanism that leads
to deviations from the sum rule described in the previous
paragraph that are frequently observed experimentally. The
group theoretical selection rules for this mechanism require

Thus, in the presence of a center of inversion,K must have the
same parity as the ground state that is opposite of stateJ.

4.3.C-Term Signs.The model also leads to explicit expres-
sions for computing MCDC-term signs from molecular wave
functions through eqs 37, 44, 50, and 51. Thus, these expressions
can be used to facilitate band assignments and to get insight
into excited state properties. While in the general case first-
order perturbation theory will not be accurate to treat the SOC
because there will almost always be excited state near degenera-
cies, it gives insight into the nature of the problem and provides
a basis for qualitative arguments. Thus, theC-term signs are
determined by the transition densities (describing displacement
of charge in the transition) and reduced SOC matrix elements
(describing rotations of charge induced by SOC). In sections
3.2.3.A,B two examples were provided for pseudo-A terms
displayed by the biological CuA (S) 1/2) electron transfer center
and the [Fe(EDTA)(O2)]3- (S) 5/2) complex, and it was shown
that theC-term sign for a given transition can be determined
by a graphical method. In the case of pseudo-A terms, the excited
state SOC, eq 22, is the main contributor to MCDC-term
intensity. Importantly, the sign of the pseudo-A feature does
not depend on the specific order of the two excited states
because changing the order also changes theC-term sign for
both transitions through the energy denominator in eq 22. Thus,

ΓA X Γx,y,z X ΓJ ) A1g (54a)

ΓA X Γx,y,z X ΓK ) A1g (54b)

ΓJ X ΓRx,Ry,RzX ΓK ) A1g (54c)

ΓA X Γx,y,z X ΓJ ) A1g (55a)

ΓJ X Γx,y,z X ΓK ) A1g (55b)

ΓA X ΓRx,Ry,RzX ΓK ) A1g (55c)
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in low-symmetry systems, the excited state symmetry does not
uniquely determine theC-term sign of spin-allowed transitions
as is the case for high-symmetry systems, where all important
SOC occurs within the orbitally degenerate ground or excited
state manifolds.

In summary, a model has been developed to predict saturation
magnetization curves andC-term signs measured in MCD
experiments and applied to the case ofS ) 1/2 and S ) 5/2
systems. The results enable the determination of transition
polarizations and magnetic coupling parameters from samples
of randomly oriented molecules using the entire available
VTVH-MCD experimental information. Finally, it is noted that
the application of the theory developed here is not restricted to

monomeric transition metal complexes. Together with a suitable
spin-Hamiltonian, exchange coupled oligomeric species can also
be treated. Applications along these lines are in progress.
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Note Added in Proof.Most recently an alternative treatment
of spin-orbit coupling contributions to MCD intensities for
systems withS> 1/2 has appeared61 which emphasizes the use
of point group coupling coefficients.
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