Synthesis of Some *P*-Trifluoromethyl-Substituted (Silylamino)phosphines, *N*-Silylphosphoranimines, and Phosphazenes

Sakthivel Karthikeyan and Robert H. Neilson*

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129

Received June 22, 1998

Treatment of *P*-chloro-substituted (silylamino)phosphines, (Me₃Si)₂NP(R)Cl, with the trifluoromethylating agent, $[(Et_2N)_3PBr^+](CF_3^-)$ [generated *in situ* from CF₃Br and $(Et_2N)_3P$], readily affords the corresponding *P*-trifluoromethylphosphines, (Me₃Si)₂NP(R)CF₃ (**4**, R = Ph; **5**, R = *n*-Pr). Subsequent oxidative halogenation of **4** and **5** with X₂ (X = Cl, Br, I) occurs with loss of Me₃SiX to yield the *P*-halo-*P*-trifluoromethyl-*N*-silylphosphoranimines, Me₃SiN=P(R)(CF₃)X (**6a**-**c**; R = Ph; **7a**-**c**, R = *n*-Pr). The P–Br compounds **6b** and **7b** were then converted to the *P*-trifluoroethy, Me₃SiN=P(R)(CF₃)OCH₂CF₃ (**8**, R = Ph; **9**, R = *n*-Pr), and *P*-phenoxy, Me₃SiN=P(R)(CF₃)OPh (**10**, R = Ph; **11**, R = *n*-Pr), derivatives by nucleophilic substitution reactions with LiOCH₂CF₃ and LiOPh, respectively. Although these *P*-CF₃ systems are generally much more thermally stable than their *P*-alkyl analogs, the *P*-Br compounds **6b** and **7b** do thermally eliminate Me₃SiBr to produce new *P*-trifluoromethyl substituted phosphazenes [CF₃(R)P=N]_n. The cyclic trimers (*n* = 3; **12**, R = Ph; **13**, R = *n*-Pr) were separated from the linear polymers (*n* ~ 150–500; **14**, R = Ph; **15**, R = *n*-Pr) by sublimation. These new compounds (4–15) were generally obtained in good yields and were fully characterized by NMR (¹H, ¹³C, ¹⁹F, and ³¹P) spectroscopy and elemental analysis.

Introduction

Certain types of Si–N–P compounds,¹ especially the [bis-(trimethylsilyl)amino]phosphines, $(Me_3Si)_2NPR_2$, and some of their oxidized derivatives, such as the *N*-silylphosphoranimines, $Me_3SiN=PR_2X$, are of considerable interest as precursors to polyphosphazenes, $[R_2P=N]_{n}$.² The synthesis of many of these Si–N–P compounds is readily accomplished by one or more of the reactions, or variations thereof, in the following threestep sequence (eqs 1–3).

$$\begin{array}{c} Me_{3}Si \\ Me_{3}Si \end{array} N-H \qquad \underbrace{ \begin{array}{c} (1) \ n-BuLi \\ (2) \ PCl_{3} \\ \hline (3) \ RMgBr \\ (4) \ R'MgBr \end{array} } \begin{array}{c} Me_{3}Si \\ Me_{3}Si \end{array} N-P \\ Me_{3}Si \\ R' \end{array}$$
(1)

$$\frac{\text{Br}_2}{-\text{Me}_3\text{SiBr}}$$
(2)

$$Me_{3}Si - N = P - Br \qquad \frac{LiOCH_{2}CF_{3}}{-LiBr} \qquad Me_{3}Si - N = P - OCH_{2}CF_{3} \qquad (3)$$

As part of our ongoing efforts to greatly expand the scope of this synthetic methodology and, hence, the range of accessible

- For a general review of P–N compounds including Si–N–P systems, see: Neilson, R. H. In *Encyclopedia of Inorganic Chemisty*; King, R. B., Ed.; John Wiley & Sons; Chichester; England, 1994; Vol. 6, p 3180.
- (2) (a) Mark, J. E.; Allcock, H. R.; West, R. *Inorganic Polymers*; Prentice-Hall: Englewood Cliffs, NJ, 1992. (b) Wisian-Neilson, P. *Encyclopedia of Inorganic Chemistry*; King, R. B., Ed.; Wiley: England, 1994; Vol 7, p 3371. (c) Wisian-Neilson, P. *ACS Symp. Ser.* 1994, *572*, 167. (d) Neilson, R. H.; Wisian-Neilson, P. *Chem. Rev.* 1988, 88, 541. (e) Neilson, R. H.; Ford, R. R.; Hani, R.; Roy, A. K.; Scheide, G. M.; Wettermark, U. G.; Wisian-Neilson, P. *ACS Symp. Ser.* 1988, *360*, 283. (f) Neilson, R. H.; Jinkerson, J. L.; Kucera, W. R.; Longlet, J. J.; Samuel, R. C.; Wood, C. E. *ACS Symp. Ser.* 1994, *572*, 232. (g) Neilson, R. H.; *Silicon*, 1994, *87*, 157.

phosphazene polymers, we have been investigating the prospects of incorporating perfluoroalkyl substituents (e.g., *P*-CF₃) into these systems. A long range objective is to prepare and characterize high molecular weight poly(phosphazenes) bearing *P*-CF₃ side groups which should enhance the thermal stability and surface properties of the polymers. A few prior studies in this area have dealt mainly with the CF₃-substituted *cyclic* phosphazenes, $[(CF_3)_2PN]_n$ (n = 3, 4).^{3,4}

Methods of attaching perfluoroalkyl groups, especially CF₃, to phosphorus have traditionally been quite limited. Preparation of (trifluoromethyl)halophosphines, for example, involves tedious sealed-vessel reactions and multiple fractional condensations to obtain relatively small quantities of useful starting materials like (CF₃)₂PCl (eq 4).⁵ Once prepared, this reagent can be readily converted to (silylamino)phosphines (e.g., **1**, eq 5).⁶ Nonetheless, this type of procedure is not only difficult, but it is also greatly limited in scope. For example, it does not provide access to mixed-substituent derivatives in which both fluoroalkyl and simple alkyl or aryl groups are attached to phosphorus.

red P + CF₃I
$$\xrightarrow{I_2}$$
 (CF₃)_nPI_{3-n} $\xrightarrow{HgCl_2}$ (CF₃)_nPCl_{3-n} (4)
n = 1 - 3

$$(Me_{3}Si)_{2}NLi + (CF_{3})_{2}PCl \xrightarrow{-LiCl} Me_{3}Si \xrightarrow{CF_{3}} N-P \xrightarrow{CF_{3}} (5)$$

More recently, however, Ruppert⁷ has reported a much simpler and potentially very general method of incorporating

10.1021/ic980707a CCC: \$18.00 © 1999 American Chemical Society Published on Web 04/07/1999

⁽³⁾ Tesi, G.; Douglas, C. M. J. Am. Chem. Soc. 1962, 84, 549.

 ^{(4) (}a) Olms, P.; Roesky, H. W.; Keller, K.; Noltemeyer, M.; Bohra, R.; Schmidt, H.-G.; Stalke, D. *Chem. Ber.* **1991**, *124*, 2655. (b) Roesky, H. W.; Lucas, J.; Noltemeyer, M.; Sheldrick, G. M. *Chem. Ber.* **1984**, *117*, 1583.

 CF_3 groups into main group element compounds. The procedure, which is easily carried out in ordinary glassware, involves the *in situ* generation of a trifluoromethyl phosphonium species in solution (eq 6). Treatment of appropriate element halides with this reagent readily affords trifluoromethyl derivatives of phosphorus, boron, and silicon.^{7,8}

$$(\mathrm{Et}_{2}\mathrm{N})_{3}\mathrm{P} + \mathrm{CF}_{3}\mathrm{Br} \rightarrow [(\mathrm{Et}_{2}\mathrm{N})_{3}\mathrm{P} - \mathrm{Br}]^{+}(\mathrm{CF}_{3})^{-} \qquad (6)$$

We report here on the use of this reagent in the synthesis of a series of new trifluoromethyl substituted Si-N-P compounds as well as some preliminary studies of their conversion to cyclic and/or polymeric phosphazenes bearing CF₃ side groups.

Results and Discussion

(Silylamino)phosphines. Addition of 1 equiv of CF_3Br to a mixture of the appropriate chlorophosphine (2 or 3) and $(Et_2N)_3P$ in THF solution afforded the new trifluoromethyl derivatives 4 and 5, respectively (eq 7). These new bis[(trimethylsilyl)amino]-(*trifluoromethyl*)phosphines were obtained in ca. 45–65% yields as thermally stable, distillable liquids that were fully characterized by multinuclear NMR spectroscopy and elemental analysis (Tables 1 and 2).

The presence of the CF₃ group in these compounds was readily confirmed by NMR spectroscopy. For example, the ³¹P NMR signals, which are observed at ca. 55 ppm, are split into quartets due to spin coupling ($J_{PF} \sim 70-80$ Hz) to the three equivalent fluorines of the CF₃ group. Doublets with the same splittings were observed in the ¹⁹F NMR spectra of these derivatives. Moreover, in the ¹³C NMR spectra, the CF₃ carbon is found (ca. 131 ppm) as a quartet of doublets due to the onebond C-F coupling ($J_{FC} \sim 325$ Hz) and the one-bond C-P coupling ($J_{PC} \sim 60$ Hz). Couplings to both fluorine and phosphorus are also readily seen for two of the phenyl carbons of **4** and for the *P*-CH₂ carbon of the *n*-propyl analog 5.

N-Silylphosphoranimines. The highly electron-withdrawing ability of the *P*-CF₃ group in compounds like 4 and 5 greatly influences their derivative chemistry relative to that of their *P-methyl* analogs. For example, while the *alkyl*phosphines, (Me₃-Si)₂NP(R)Me, react violently with chlorinating agents such as CCl₄ and C₂Cl₆, the P-CF₃ derivatives are inert to these reagents and actually require the use of molecular Cl₂ to affect oxidative chlorination (eq 8). Although there is good NMR spectroscopic evidence for the formation of the P-chlorophosphoranimines **6a** (³¹P NMR: δ -13.4 ppm, J_{PF} = 109.7 Hz) and **7a** (³¹P NMR: $\delta - 3.5$ ppm, $J_{\rm PF} = 100.3$ Hz), neither compound could be isolated in pure form. Attempts to distill them under reduced pressure, resulted in thermal decomposition to inconclusively identified phosphazene oligomers. It seems unlikely that these chlorophosphoranimines are inherently unstable since their non-CF₃ analogs can be distilled and fully characterized. The

(7) Volbach, W.; Ruppert, I. Tetrahedron Lett. **1983**, 24, 5509.

inadvertent presence of small excesses of Cl₂ could be responsible for the thermal decomposition of these chlorophosphoranimines.

In contrast, the *bromination* of the same trifluoromethylphosphines was a much more straightforward process (eq 8). Treatment of **4** and **5** with an equimolar quantity of Br₂ in benzene solution afforded the desired *P-bromo-N*-silyl-phosphoranimines **6b** and **7b** in high yields (ca. 80-85%) as distillable liquids. Like their phosphine precursors, these new compounds were fully characterized by multinuclear NMR spectroscopy and elemental analysis (Tables 1 and 2). The expected upfield ³¹P chemical shifts and increases in the P–C–F and P–C couplings were observed for these phosphoruse(V) derivatives relative to their P(III) precursors.⁹ The thermal stability of the P-CF₃ derivatives **6b** and **7b** is significantly greater than that of their *P*-methyl analogs as evidenced by the fact that the *P*-CH₃ analog of **6b** cannot be distilled without extensive decomposition.¹⁰

The trifluoromethylphosphines **4** and **5** also react smoothly with iodine (eq 8) to afford the corresponding *P*-iodophosphoranimines **6c** and **7c**. Quite surprisingly, these derivatives were also thermally stable, *distillable* liquids that were readily characterized by NMR spectroscopy (e.g., **6c**, ³¹P NMR, δ -19.7 ppm, $J_{PF} = 100.3$ Hz; and **7c**, ³¹P NMR, δ -9.7 ppm, $J_{PF} = 90.6$ Hz). Unfortunately, these yellow liquids did not give satisfactory elemental analysis, possibly due the presence of small amounts of unreacted iodine. Further purification and complete characterization of these compounds was not pursued since the desired derivative chemistry and thermolysis reactions were accomplished satisfactorily with the *P*-bromo analogs **6b** and **7b**. Nonetheless, the fact that these *P*-iodo compounds could even be isolated is strong evidence of the stabilizing influence of the trifluoromethyl substituent.

The condensation polymerization route to polyphosphazenes has been most generally successful when the *P*-trifluoroethoxy or *P*-phenoxy substituted phosphoranmines are used as precursors. Accordingly, in the next phase of this effort, the *P*-bromo compounds **6b** and **7b** were derivatized by treatment with lithium trifluoroethoxide or phenoxide (eq 9). These reactions proceeded smoothly to afford the corresponding alkoxy (**8**, **9**) and phenoxy (**10**, **11**) derivatives. Compounds **8–11** were obtained in ca. 54–90% yields as distillable liquids that were fully characerized by NMR spectroscopy and elemental analysis (Tables 1 and 2).

$$\begin{array}{c} R \\ e_{3}Si \longrightarrow R \\ \hline CF_{3} \end{array} \xrightarrow{LiOR'} Me_{3}Si \longrightarrow R \\ \hline -LiBr \end{array} \xrightarrow{R} Me_{3}Si \longrightarrow R \\ \hline OR' \\ \hline CF_{3} \end{array}$$
(9)

$$\begin{array}{c} 6b: R = Ph \\ 7b: R = n-Pr \\ 7b: R = n-Pr \\ 7b: R = n-Pr \\ 11: R = n-Pr, R' = Ph \\ 11: R = n-Pr, R' = Ph \end{array}$$

The NMR spectra of these new phosphoranimines were generally straightforward and informative. For example, the

⁽⁵⁾ Bennett, F. W.; Emeleus, H. J.; Haszeldine, J. Chem. Soc. 1953, 1565.
(6) Neilson, R. H.; Lee, R. C.-Y.; Cowley, A. H. Inorg. Chem. 1977, 16,

^{1455.}

⁽⁸⁾ Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195.

⁽⁹⁾ Wilburn, J. C.; Neilson, R. H. Inorg. Chem. 1977, 16, 2519.

⁽¹⁰⁾ Wisian-Neilson, P.; Neilson, R. H. Inorg. Chem. 1980, 19, 1975.

Table 1.	NMR	Spectral	Data ^a	for	P-Trifluoromethy	l Com	pounds
----------	-----	----------	-------------------	-----	------------------	-------	--------

		111 N	MD		13C NIM		31D NIMD	1917 1	
Commound	Signal	<u>и н.</u>		2		к т	$-\frac{rr}{s}$	1 1 1	
Compound	Signal	0	JPH	0	JPC	JFC	U	0	JFP
e ₃ Si CF ₃	PCF3			130.83	59.8	324.9	55.7	- 61.6	79.00
e_3Si	Me ₃ Si	0.12		3.93	6.8				
3	Ph	7.2-7.4 ^c							
4	C ₁			137.38	19.4	3.6			
	C2			129.32	17.1	1.8			
	C ₃			128.72	3.9				
	C ₄			128.84	1.5				
Me ₃ Si CH ₂ CH ₂ CH ₃	PCF3			131.78	59.1	326.1	53.9	- 62.0	69.0 ⁰
Me ₃ Si CF ₃	Me ₃ Si	0.18		4.34	6.0				
5	PCH ₂	1.5-2.0 ^c		28.77	18.6	3.5			
	<i>СН2</i> СН3	1.3-1.5 <i>c</i>		18.42	21.8				
	СН ₂ СН3	0.98	(7.2) ^d	15.67	15.1				
Dh	PCF3			120.62	170.1	321.2	- 23.7	- 74.21	106.4 ^b
Me ₃ Si—N=P—Br	Me2Si	0.10		2.35	5.4				
CF3	Ph	7 4-8 0C		2.00					
6b	Ci			129.27	131.6				
				129.01	16.0				
				132.80	12.6				
				132.00	3.7				
				134.23	5.7				
CH2CH2CH3	PCF3			120.15	147.5	321.7	- 13.5	- 74.6	96.0 ^b
Me ₃ Si—N=P—Br	Me ₃ Si	- 0.02		2.19	5.7				
ĊF3	PCH ₂	2.0 - 2.3 ^c		37.95	87.1				
7b	CH2CH3	1.6-1.8 ^C		15.83	6.5				
	CH ₂ CH ₃	1.01	1.8	14.94	19.9				
			(7.4) ^d						
ni.	PCF2			121.93	186.6	317.9	- 6.4	- 74.0	105.0 ^b
MeaSi—N=P—OCHaCFa	MeaSi	0.07		3.01	2.9				
CF3	0CH2	47-450		60.07	5.4	38.0			
8	Ph	7 4-8 00		50.77	۲.4	50.0			
	с.	,0.0-		126.29	154 5				
	C ₁			120.29	14.7				
	0 <u>2</u>			127.04	11.7				
	0			132.00	2.1				
				134.02	3.1	277 6		76.4	10 238
	CH ₂ CF ₃			123.09	9.0	211.5		- /3.4	[8.3]
CH2CH2CH3	PCF3			121.85	165.3	318.7	7.1	- 74.4	96.0 ^b
$Me_3Si - N = P - OCH_2CF_3$	Me ₃ Si	- 0.03		2.95	2.7				
CF ₃	PCH ₂	1.7 -1 .8 ^c		29.34	103.8				
y ,	CH2CH3	1.5-1.7 ^c		15.41	17.5				
	СН ₂ СН3	0.96	1.4	14.86	4.9				
			$(7.4)^{d}$						
	OCH ₂	4.0-4.5 ^c		60.72	6.3	37.8		- 75.5	[8.2] ^e
	CH ₂ CF ₃			123.16	8.7	277.5			

2082 Inorganic Chemistry, Vol. 38, No. 9, 1999

Table 1 (Continued)

_

		¹ H NMR ¹³ C NMR		³¹ P NMR	¹⁹ F N	IMR			
Compound	Signal	δ	J _{PH}	δ	J _{PC}	J _{FC}	δ	δ	J _{FP}
Dh	PCF3			122.09	187.0	318.3	- 11.6	- 73.4	102.5 ^b
Me ₃ Si—N=P-OPh	Me ₃ Si	- 0.05	1.2	2.84	3.2				
CF ₃	P-Ph	7.4-8.0 ^c							
10	c ₁			127.38	155.9				
	c ₂			128.93	14.8				
	C ₃			133.35	10.8				
	C4			133.70	3.1				
	O-Ph	7.0-7.5 ^c							
	c ₁			150.35	9.0				
	C ₂			121.48	4.6				
	С3			129.76					
	C ₄			125.36					
CH2CH2CH3	PCF3			122.10	162.9	320.2	1.9	- 73.1	93.4b
Me ₃ Si—N=P-OPh	Me ₃ Si	- 0.19		2.76	3.0				
CF ₃	PCH ₂	1.8-2.0 ^c		29.89	109.2				
**	CH ₂ CH ₃	1.6-1.8 ^c		15.54	17.8				
	CH ₂ CH ₃	1.02	(7.0) ^d	15.16	4.8				
	O-Ph	7.0-7.3 ^c							
	C ₁			150.43	10.3				
	C ₂			121.72	4.1				
	C3			129.66	1.5				
	C4			125.32	1.7				
	PCF3 (a).			122f	190	316	11.0 (a)	- 77.6	106.5 ^b
Pha Pha a Pha Pha FaC ¹¹¹ I II III Pha	PCF ₃ (b)			122f	190	316	11.7 (b)	- 78.2	104.5 <i>b</i>
N_{P}	P-Ph	7.4-8.1 <i>c</i>							
Ph ^{-b} CF ₃	C ₁ (a)			127.48	146.7				
12	C ₁ (b)			126.90	145.6				
	C ₂ (a)			128.92	14.7				
	C ₂ (b)			129.00	14.6				
	C3 (a)			131.95	11.4				
	C3 (b)			132.01	11.4				
	C4 (a)			133.94	3.1				
	C4 (b)			134.12	3.1				
n Dr. N. n-Pr	PCF ₃ (a)			122.49	172.5	317.8	24.8 ^f	- 77.11	97.2
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ \end{array} \\ F_2 C^{\mu'} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	PCF3 (b)			122.71	174.0	317.5		- 77.58	95.8
	PCH ₂ (a)	1.7-1.9 ^c		30.53	101.3				
n-Pr ^{-b} CF3	PCH ₂ (b)	1.7-1.9 ^c		30.25	99.7				
13	<i>CH</i> ₂ CH ₃ (a)	1.5 -1 .7 ^c		15.52	18.9				
	<i>CH</i> ₂ CH ₃ (b)	1.5 - 1.7 ^c		15.47	18.7				
	CH_2CH_3 (a)	0.9-1.0 ^c		13.57	5.0				
	СН ₂ <i>СН</i> 3 (b)	0.9-1.0 ^c		13.26	5.3				

Table 1 (Continued)

		¹ H NMR ¹³ C NMR		³¹ P NMR	¹⁹ F NMR				
Compound	Signal	δ	J _{PH}	δ	J _{PC}	J _{FC}	δ	δ	J _{FP}
Ph	PCF3			115-128 ^c			- 15.8f	- 75¢	110
$- \left[- P = N \right]_{n}$	Ph	7.0 - 8.3 ^c							
CF ₃	cı			126-128 ^c					
14	C ₂₋₄			128-134 ^c					
CH2CH2CH3	PCF3			123J	178	318	2.5 ^f	- 76 ^c	96
$-\left[-\frac{p}{2}\right]$	PCH ₂	1. 7-1 .8 ^c		30-33c					
ĊF ₃	<i>СН</i> ₂ СН ₃	1.5-1.6 ^c		14-16 ^c					
15	CH ₂ CH ₃	0.8-1.0 ^C		14-16 ^c					

^{*a*} Proton and ¹³C chemical shifts downfield from Me₄Si; ³¹P shifts downfield from H₃PO₄; ¹⁹F shifts downfield from CFCl₃. Solvents: CDCl₃ for ¹H, ¹³C, and ¹⁹F NMR; CH₂Cl₂ for ³¹P NMR. ^{*b*} J_{FP} values obtained from ³¹P NMR spectrum. ^{*c*} Complex multiplet. ^{*d*} J_{HH} values in parentheses. ^{*e*} J_{HF} values in brackets. ^{*f*} Broad, overlapping signals.

Table 2. Preparative and Analytical Data for *P*-Trifluoromethyl Compounds

			analysis ^a		
compd	yield (%)	bp (°C/mmHg)	% C	% H	
4	45	66-67/0.03	46.37 (46.27)	6.88 (6.87)	
5	64	50-52/0.7	39.69 (39.58)	7.93 (8.30)	
6b	84	41-44/0.03	35.07 (34.90)	4.37 (4.10)	
7b	80	54-55/4	27.65 (27.11)	5.07 (5.20)	
8	88	54-56/0.6	39.79 (39.67)	4.76 (4.44)	
9	54	51-54/8	32.98 (32.83)	5.22 (5.51)	
10	90	76-79/0.05	53.95 (53.77)	5.47 (5.36)	
11	72	50-52/0.07	48.22 (48.29)	6.25 (6.55)	
12	$(40)^{b}$	$(177 - 179)^{c}$	44.39 (44.00)	2.98 (2.64)	
13	$(80)^{b}$		30.79 (30.59)	4.40 (4.49)	
14	$(60)^{b}$		43.94 (44.00)	2.91 (2.64)	
15	$(20)^{b}$		31.16 (30.59)	4.52 (4.49)	

^{*a*} Calculated values in parentheses. ^{*b*} Relative percentages of cyclic trimer and linear polymer in product mixture (by ³¹P NMR). ^{*c*} Melting point in parentheses.

presence of two different CF₃ groups in the trifluoroethoxy systems **8** and **9** was clearly evident. While the ¹⁹F and ¹³C chemical shifts of the *P*-CF₃ group (e.g., **8**, ¹⁹F NMR, δ –74.0 ppm; ¹³C NMR, δ –121.9 ppm) and the *P*-OCH₂CF₃ group (e.g., **8**, ¹⁹F NMR, δ –75.4 ppm; ¹³C NMR, δ –123.1 ppm) are very close together, the P–C (PCF₃, J_{PC} = 318 Hz; POCH₂CF₃, J_{PC} = 278 Hz) and P–F (PCF₃, J_{PF} = 104 Hz; PCH₂CF₃, J_{PF} \approx 0 Hz) coupling constants are distinctly different but consistent with the molecular structures.

Phosphazenes. Thermolysis studies of phosphoranimines **8–11** were conducted in evacuated, sealed ampules over the temperature range of 175-225 °C for periods of 2-12 days. Under such conditions, the *P*-methyl analogues of **8–11** readily and cleanly eliminate silyl ethers Me₃SiOR' (R' = OCH₂CF₃, Ph) to give the expected poly(alkyl/aryl)phosphazenes, [Me-(R)P=N]_n (R = alkyl, Ph). The *P*-trifluoromethyl derivatives (**8–11**) in this study, however, were found to be much more thermally robust and were generally recovered unchanged after such treatment. After prolonged heating at the highest temperatures (<220 °C), only small amounts of Me₃SiF and some discoloration of the liquid material were observed. Still harsher conditions resulted in the production of more Me₃SiF and unidentified black residues.

In contrast, the *P*-halophosphoranimines such as the *P*-bromo derivatives **6b** and **7b** readily eliminated the expected halosilanes to afford novel trifluoromethyl-substituted phosphazenes (**12**–**15**, eq 10). Upon removal of Me₃SiBr under vacuum, the

phosphazene products were isolated as off-white solids that were soluble in a variety of organic solvents including THF and CH₂-Cl₂. Typically, the bromophosphoranimines were heated in sealed glass ampoules at ca. 180 °C for periods of 6 to 10 days to achieve complete thermolysis (ca. 94–98 % recovery of Me₃-SiBr).

$$Me_{3}Si - N = P - Br \xrightarrow{A} - Me_{3}SiBr \xrightarrow{R} -$$

Analysis of the solid products of these reactions by ³¹P NMR spectroscopy indicated that mixtures of trimeric (**12**, **13**) and polymeric phosphazenes (**14**, **15**) were obtained in ratios of ca. 40/60 for **12/14** (R = Ph) and 80/20 for **13/15** (R = *n*-Pr). The respective trimers and polymers were separated from each other by multiple sublimations to yield fully-characterized samples of pure compounds (Tables 1 and 2). As observed previously for other phosphazene systems, the cyclic trimers have ³¹P chemical shifts that are ca. 20–30 ppm downfield from the corresponding polymers. Only trace amounts of the cyclic tetramers and higher homologs were discernible in the NMR spectra of the product mixtures. After purification by sublimation, the trimeric products were obtained as mixtures of cis and trans isomers, with the trans species (Table 1) greatly predominating.

The remaining polymeric portions of the product mixtures were isolated as pale yellow, amorphous solids that were readily soluble in THF. Size exclusion chromatography indicated that these new trifluoromethyl-substituted phosphazenes had moderate to high molecular weights (14, $M_w = 99400 M_w/M_n = 1.4$; 15, $M_w = 24200$; $M_w/M_n = 1.3$) and narrow molecular weight distributions. Additional properties of these new polyphosphazenes will be reported as part of another study.

Experimental Section

Materials and General Procedures. The following reagents were obtained from commercial sources and used as received: (Me₃Si)₂NH, PCl₃, PhPCl₂, *n*-BuLi, *n*-PrMgCl, Cl₂, Br₂, I₂, CF₃Br, CF₃CH₂OH, and PhOH. The solvents, Et₂O, THF, benzene, and hexane were dried using conventional procedures and stored under nitrogen atmosphere before

use. Hexaethyl phosphorus triamide, $(Et_2N)_3P^{11}$ and the chloro-(silylamino)phosphines, $(Me_3Si)_2NP(R)C1$ (R = Ph, *n*-Pr),¹² were prepared according to published procedures or minor variations thereof. All reactions and other manipulations were carried out under vacuum or dry nitrogen. Proton, carbon-13, and fluorine-19 NMR spectroscopic data were obtained on a Varian XL-300 NMR spectrometer. Phosphorus-31 NMR data were obtained on a JEOL FX-90 NMR spectrometer. Elemental analyses were obtained from Schwarzkopf Analytical Laboratory (Woodside, NY). Size exclusion chromatography was performed with a Waters GPC instrument using experimental conditions described earlier.¹³

[Bis(trimethylsilyl)amino](phenyl)(trifluoromethyl)phosphine (4). A nitrogen-filled, 100-mL, round-bottom flask, equipped with a magnetic stir bar and a Teflon stopcock side-arm, was charged with THF (10 mL), the chlorophosphine, (Me₃Si)₂N(Ph)CI (2) (10.0 g, 33 mmol), and (Et₂N)₃P (8.2 g, 33 mmol). The reaction flask was attached to a vacuum system and degassed by several freeze-pump-thaw cycles. One molar equivalent of CF3Br (33 mmol) was measured as a gas in the vacuum line and then condensed into a trap at -196 °C. The CF₃Br was allowed to warm and then condense (through the sidearm) into the reaction vessel which was kept at -196 °C during the transfer. The side-arm of the flask was then closed and the contents were allowed to warm slowly to room temperature, followed by overnight stirring. The reaction flask was back-filled with dry nitrogen and hexane (ca. 50 mL) was added to help precipitate the phosphonium salt byproduct. The supernatant solution was decanted and the same extraction process was repeated 3 or 4 times. Solvents were removed under reduced pressure and fractional distillation through a 10-cm column afforded the desired product 4 as a colorless liquid (Tables 1 and 2).

[Bis(trimethylsilyl)amino](*n*-propyl)(trifluoromethyl)phosphine (5) was prepared on a 33-mmol scale according to the same procedure and was also isolated as a colorless, distillable liquid.

(*P*-Bromo-*P*-phenyl-*P*-trifluoromethyl-*N*-trimethylsilylphosphoranimine (6b). A 250-mL, 3-necked, round-bottom flask, equipped with a magnetic stirring bar and an addition funnel, was charged with the phenyl(trifluoromethyl)phosphine **4** (14.3 g, 42 mmol) and dry benzene (100 mL), The solution was cooled to 0 °C and bromine (8.4 g, 52 mmol) was added dropwise from the addition funnel. When a pale yellow color persisted in the reaction mixture, the Br₂ addition was stopped. Analysis of the mixture by ³¹P NMR spectroscopy confirmed' that the reaction was complete. Benzene and Me₃SiBr were removed under reduced pressure. Fractional distillation then afforded the desired product 6b as a colorless, moisture-sensitive liquid (Tables 1 and 2).

P-Bromo-*P*-*n*-propyl-*P*-trifluoromethyl-*N*-trimethylsilylphosphoranimine (7b) was prepared on a 54-mmol scale according to the same procedure and was isolated as a colorless, distillable liquid. The analogous *P*-chloro (**6a**, **7a**) and *P*-iodo (**6c**, **7c**) derivatives were prepared by treating the appropriate phosphines (**4**, **5**) with molecular chlorine (Cl₂) and iodine (I₂), respectively.

P-Phenyl-*P*-trifluoroethoxy-*P*-trifluoromethyl-*N*-trimethylsilylphosphoranimine (8). The phenyl(trifluoromethyl)phosphine (4) was brominated in benzene to afford the *P*-bromophosphoranimine (6b) on a 54-mmol scale as described above. After solvent and Me₃SiBr were removed under reduced pressure, THF (100 mL) was added to the reaction flask. In a separate flask, a solution of LiOCH₂CF₃ (54 mmol) in THF (75 mL) was prepared by slow addition of an equimolar amount of *n*-BuLi to CF₃CH₂OH at -78 °C. The LiOCH₂CF₃ solution was transferred to the additional funnel and then added dropwise to the stirred solution of **5** at 0 °C.

The reaction mixture was warmed to room temperature and then stirred overnight. Solvent was removed under reduced pressure and hexane (200 nimL) added. The LiBr precipitate was removed by filtration and washed with hexane (50 mL). Solvents were removed under reduced pressure and fractional distillation through a 10-cm column afforded the desired product **8** as a colorless liquid (Tables 1 and 2). The other phosphoranimines (**9**–**11**) were prepared according to the same procedure by treating **7b** with LiOCH₂CF₃ (to give **9**) or by treating **6b** and **7b** with LiOPh (to give **10** and **11**, respectively). All of these new compounds were isolated by fractional distillation as colorless liquids (Tables 1 and 2).

Thermolysis Reactions of Phosphoranimines 6-11. In a typical procedure, the P- bromo-P-phenyl-phosphoranimine 6b (ca. 20 mmol) was distilled directly into a heavy-walled glass ampule (ca. 10 mL volume). The ampule was sealed under vacuum, placed in a metal pipe for safety, and then heated in a thermo-regulated oven at 180 °C for 8-10 days. After cooling the contents of the ampule to -196 °C, the ampule was opened and quickly attached to a vacuum system. The volatile Me₃SiBr byproduct was removed under vacuum, collected in a removable trap and weighed (typically greater than 90% recovery). The residual solid was dissolved in CDCl₃, analyzed by NMR spectroscopy (Table 1), and then freed of solvent. The cyclic phosphazene product 12 was removed from the residue by vacuum sublimation at ca. 100 °C. Subsequently, the solid residue was dissolved in CH₂Cl₂ and then precipitated by pouring this solution into a large quantity of hexane. This sublimation-precipitation procedure was repeated two times in order to obtain a pure sample of polyphosphazene 14 (Tables 1 and 2).

Acknowledgment. We thank the Robert A. Welch Foundation, the Texas Higher Education Coordinating Board (Advanced Technology Program), and the Texas Christian University Research Fund for financial support of this research.

IC980707A

⁽¹¹⁾ Stuebe, C.; Lankelma, H. P. J. Am. Chem. Soc. 1956, 78, 976.

 ^{(12) (}a) Neilson, R. H.; Wisian-Neilson, P. *Inorg. Chem.* **1982**, *21*, 3568.
 (b) Neilson, R. H.; Jinkerson, D. L.; Karthikeyan, S.; Samuel, R.; Wood, C. E. *Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.)* **1991**, *32*, 483.

⁽¹³⁾ Neilson, R. H.; Hani, R.; Wisian-Neilson, P.; Meister, J. J.; Roy, A. K.; Hagnauer, G. L. Macromolecules, **1987**, 20, 910.