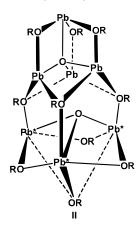

## An Improved Interpretation of a Lead Oxo Isopropoxide

## Daniel J. Teff and Kenneth G. Caulton\*


Department of Chemistry, Indiana University, Bloomington, Indiana 47405-4001

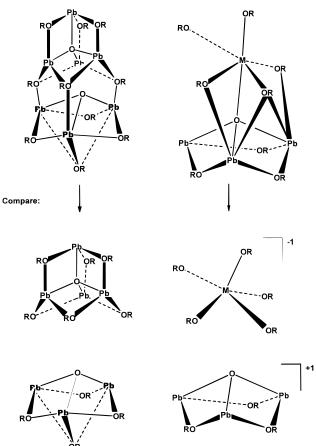
Received October 5, 1998

We reported recently<sup>1</sup> the <sup>1</sup>H, <sup>13</sup>C, <sup>17</sup>O and <sup>207</sup>Pb NMR characterization of a compound (A), believed to have the adamantane-like structure I,<sup>2,3</sup> whose C and H elemental



analyses agreed "satisfactorily" with the formula  $Pb_4O(O^iPr)_6$ , but whose spectral features defied explanation with this formula. Subsequently, the <sup>1</sup>H, <sup>13</sup>C and <sup>207</sup>Pb NMR and crystal structure were reported for a molecule of formula  $Pb_7(O)_2(OSiMe_3)_{10}$ ;<sup>4</sup> it has approximate  $C_{3\nu}$  symmetry (**II**). The <sup>1</sup>H NMR of our




product **A** at -100 °C possesses equal intensity peaks (i.e., 3:3: 3) consistent with  $C_{3\nu}$  symmetry. Also, there are three <sup>207</sup>Pb chemical shifts having an intensity ratio of 1:3:3 (1356, 996, 637 ppm, respectively) and satellites indicating Pb–Pb coupling between the 1356 and the 637 ppm signals. Further, the sharper of the *two* <sup>17</sup>O NMR signals for the  $\mu$ -oxo groups shows *second*-order satellites from coupling to Pb. Considering these data, we now suggest that the elemental analysis mislead our assignment of the chemical formula and that what we characterized as **I** is in fact Pb<sub>7</sub>(O)<sub>2</sub>(O<sup>i</sup>Pr)<sub>10</sub>, of structure **II**. The calculated and observed elemental analyses are shown below:

| $Pb_4O(O^iPr)_6$ ( <b>I</b> ): | % C: 18.02, % H: 3.53 |
|--------------------------------|-----------------------|
| $Pb_7(O)_2(O^iPr)_{10}$ :      | % C: 17.38, % H: 3.40 |
| Found:                         | % C: 18.02, % H: 3.39 |

Our isolated A is actually a product of slight (compare eqs 1

(1) Teff, D. J.; Caulton, K. G., Inorg. Chem. 1998, 37, 2554.

Scheme 1



and 2) over-hydrolysis (by  $1/_7$  mol of H<sub>2</sub>O per 4 Pb); in addition

 $4Pb(OR)_2 + H_2O \rightarrow Pb_4O(OR)_6 + 2ROH$ (1)

$$7Pb(OR)_2 + 2H_2O \rightarrow Pb_7(O)_2(OR)_{10} + 4ROH \qquad (2)$$

to this being simply a correction of our earlier report, this discovery proves the existence of molecular hydrolysis products with degrees of hydrolysis between 0.25 (Pb<sub>4</sub>O(OR)<sub>6</sub>) and 0.67 (Pb<sub>6</sub>O<sub>4</sub>(OR)<sub>4</sub>): i.e., 0.286 for Pb<sub>7</sub>(O)<sub>2</sub>(OR)<sub>10</sub>. Indeed, the structure of Pb<sub>7</sub>(O)<sub>2</sub>(OR)<sub>10</sub> is essentially an adduct of Pb<sub>4</sub>O-(OR)<sub>6</sub> and Pb\*<sub>3</sub>O(OR)<sub>4</sub> (see the asterisks in **II**), the latter having a degree of hydrolysis of 0.33. We have already reported the synthesis of a fragment very similar to the latter structure in the compound Pb<sub>3</sub>ZrO(O<sup>t</sup>Bu)<sub>8</sub> which is in fact [Pb<sub>3</sub>( $\mu_3$ -O)(O<sup>t</sup>-Bu)<sub>3</sub><sup>+</sup>][Zr(O<sup>t</sup>Bu)<sub>5</sub><sup>-</sup>], as shown in Scheme 1.<sup>5</sup> Such adduct formation raises the coordination number of Pb\* in **II** from 4 to 5 and presumably provides the driving force for the aggregation.

IC9811805

(4) Weinert, C. S.; Guzei, I. A.; Rheingold, A. L.; Sita, L. R. Organometallics 1998, 17, 498.

<sup>(2)</sup> Papiernik, R.; Hubert-Pfalzgraf, L. G.; Massiani, M.-C. Inorg. Chim. Acta 1989, 165, 1.

<sup>(3)</sup> Papiernik, R.; Hubert-Pfalzgraf, L. G.; Massiani, M.-C. Polyhedron 1991, 10, 1657.

<sup>(5)</sup> Teff, D. J.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1996, 118, 4030.