Direct Synthesis of a Bis(pyrazolyl)boratocopper(I) Complex: Synthesis and Characterization of [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂ Displaying an Unusual Coordination Mode for a Poly(pyrazolyl)borate Ligand

H. V. Rasika Dias* and Hui-Ling Lu

Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065

Received November 30, 1999

Introduction

Poly(pyrazolyl)borates are one of the most widely used ligands in coordination chemistry.^{1–5} Complexes of these ligands are known for most of the elements in the periodic table. Syntheses of poly(pyrazolyl)boratometal complexes generally require the use of alkali-metal poly(pyrazolyl)borates as starting material.⁶ The alkali-metal derivatives are synthesized by heating a mixture of an alkali-metal tetrahydroborate and a pyrazole.³

There are many non-alkali-metal tetrahydroborates known.^{7,8} This has prompted us to investigate the possibility of using some of these salts in poly(pyrazolyl)borate chemistry. The following work describes the synthesis of a copper(I) bis(pyrazolyl)borate, [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂, directly from a copper tetrahydroborate salt and 3,5-(CF₃)₂PzH (where 3,5-(CF₃)₂PzH = 3,5bis(trifluoromethyl)pyrazole), thereby circumventing the need for an alkali-metal derivative such as [H₂B(3,5-(CF₃)₂Pz], S⁻

Experimental Section

General Procedures. All manipulations were carried out under an atmosphere of purified nitrogen either using standard Schlenk techniques or in a Vacuum Atmospheres single-station drybox equipped with a -25 °C refrigerator. Solvents were purchased from commercial sources and distilled from conventional drying agents prior to use. Glassware was oven-dried at 150 °C overnight. The NMR spectra were recorded at 25 °C on a Bruker MSL-300 spectrometer (¹H, 300.15 MHz; ¹³C, 75.47 MHz; ¹⁹F, 282.36 MHz; ³¹P, 121.49 MHz). Proton and carbon chemical shifts are reported in parts per million vs Me₄Si. ¹⁹F and ³¹P NMR chemical shifts were referenced relative to an external CFCl₃ and an 85% H₃PO₄ standard, respectively. Infrared spectra were recorded on a BioRad 40S spectrometer. Melting points were obtained on a Mel-Temp II apparatus and were not corrected. Elemental analyses were performed at the University of Texas at Arlington using a Perkin-Elmer model 2400 CHN analyzer. Synthesis of 3,5-(CF₃)₂PzH was

* To whom correspondence should be addressed. E-mail: dias@uta.edu. (1) Trofimenko, S. *Chem. Rev.* **1993**, *93*, 943–980. Trofimenko, S.

- Scorpionates: The Coordination Chemistry of Poly(pyrazolyl)borate Ligands; Imperial College Press: London, 1999.
- (2) Kitajima, N.; Tolman, W. B. Prog. Inorg. Chem. 1995, 43, 419-531.
- (3) Shaver, A. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: New York, 1987; Vol. 2, p 245.
- (4) Niedenzu, K.; Trofimenko, S. Top. Curr. Chem. 1986, 131, 1-37.
- (5) Parkin, G. Adv. Inorg. Chem. 1995, 42, 291-393.
- (6) Silver and thallium derivatives have also been used as ligand transfer agents. However, they are also obtained using alkali-metal poly-(pyrazolyl)borates and silver or thallium salts.
- (7) Marks, T. J.; Kolb, J. R. Chem. Rev. 1977, 77, 263-293.
- (8) James, B. D.; Wallbridge, M. G. H. Prog. Inorg. Chem. 1970, 11, 99-231.
- (9) Dias, H. V. R.; Gorden, J. D. Inorg. Chem. 1996, 35, 318-324.

Figure 1. Structure of $[H_2B(3,5-(CF_3)_2Pz)_2]Cu(PPh_3)_2$ (all hydrogen atoms except H on boron are omitted for clarity). Selected bond lengths (Å) and angles (deg): Cu-N12 2.057(2), Cu-P1 2.2388(7), Cu-P2 2.2690(7), Cu-H 2.01(2), Cu-H 2.891, B-H1 1.16(2), B-H2 1.07-(2), B-N11 1.555(4), B-N12 1.556(4), N12-Cu-P1 105.83(6), N12-Cu-P2 120.13(6), P1-Cu-P2 132.91(3).

carried out as reported previously. 10 (PPh_3)_2CuBH_4 was purchased from commercial sources and used as received.

Synthesis of [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂. A mixture of (PPh₃)₂-CuBH₄ (0.368 g, 0.610 mmol), 3,5-(CF₃)₂PzH (0.436 g, 2.14 mmol), and kerosene (~5 mL) was gradually heated (over a period of 3 h) to 175-180 °C. The mixture was kept at this temperature for 1 h and cooled to -20 °C to obtain a white precipitate. The precipitate was separated and extracted into warm hexane. The hexane extract was kept in a -20 °C freezer overnight to obtain a colorless solid. It was dried under vacuum for several hours to obtain [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂ in 60% yield. X-ray-quality crystals were grown from a hexane-toluene mixture at -20 °C. Mp: 143-145 °C. ¹H NMR (C₆D₆): δ 6.42 (s, 2H, pyr-H), 6.96 (d, 6H, H_p), 6.97 (d, 12H, H_o), 7.34 (m, 12H, H_m). ¹³C{¹H} NMR (C₆D₆): δ 106.3 (br s, CH), 120.5 (q, ¹J_{C,F} = 269 Hz, CF₃), 121.4 (q, ${}^{1}J_{C,F} = 269$ Hz, CF₃), 128.9 (d, ${}^{3}J_{C,P} = 9$ Hz, C_m), 130.1 (br s, C_P), 132.7 (d, ${}^{1}J_{CP} = 28$ Hz, C_i), 133.7 (d, ${}^{2}J_{CP} = 15$ Hz, C₀), 138.2 (q, ${}^{2}J_{C,F} = 41$ Hz, CCF₃), 141.3 (q, ${}^{2}J_{C,F} = 38$ Hz, CCF₃). $^{31}P\{^{1}H\}$ NMR (C₆D₆): δ –25.72 (br s). ^{19}F NMR (C₆D₆): δ –60.65 (s), -59.57 (br s). IR (KBr), cm⁻¹: selected 3163 (CH), 3147 (CH), 2505, 2261 (sh), 2215 (br). Anal. Calcd for C₄₆H₃₄BCuF₁₂N₄P₂: C, 54.86; H, 3.40; N, 5.56. Found: C, 54.99; H, 3.14; N, 5.55.

Crystallographic Data Collection and Structure Determination. A colorless crystal of dimensions 0.51 mm \times 0.43 mm \times 0.34 mm was chosen, mounted in inert oil and transferred to the cold gas stream of the Siemens P4 diffractometer. The structure was solved using direct methods and refined by full-matrix least squares on F^2 . All non-hydrogens were refined anisotropically. Hydrogens on boron were located and refined. Others were included at calculated positions.

Results and Discussion

The reaction between (PPh₃)₂CuBH₄ and 3,5-(CF₃)₂PzH at ~180 °C results in the formation of $[H_2B(3,5-(CF_3)_2Pz)_2]Cu-(PPh_3)_2$. It has been characterized by X-ray diffraction (Figure 1, Table 1), and NMR and IR spectroscopy. The X-ray crystal structure of $[H_2B(3,5-(CF_3)_2Pz)_2]Cu(PPh_3)_2$ displays an unusual mode of coordination for a bis(pyrazolyl)borate (Figure 2).

⁽¹⁰⁾ Renn, O.; Venanzi, L. M.; Marteletti, A.; Gramlich, V. *Helv. Chim. Acta* **1995**, *78*, 993–1000.

Table 1. Crystal Data for [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂•0.5 *n*-Hexane

empirical formula	$C_{49}H_{41}BCuF_{12}N_4P_2$	V, Å ³	2437.2(5)
fw	1050.15	Ζ	2
temp, K	183	λ(Μο Κα), Å	0.710 73
cryst syst	triclinic	$D_{\rm c}$, Mg/m ³	1.431
space group	$P\overline{1}$	μ (Mo K α), mm ⁻¹	0.598
a, Å	13.486(2)	GOF (on F^2)	1.053
b, Å	13.672(1)	R1, wR2 $(I > 2\sigma(I))^a$	0.0342, 0.0840
<i>c</i> , Å	13.909(1)	R1, wR2 (all data) ^{a}	0.0423, 0.0884
α, deg	80.288(8)		
β , deg	82.151(9)		
γ , deg	75.677(8)		

^{*a*} R1 = $\sum ||F_o| - |F_c|| / \sum |F_o|$ and wR2 = $[\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$.

Unlike the more common bonding mode A,^{3,4,9} or somewhat rare B,^{1,5,11,12} [H₂B(3,5-(CF₃)₂Pz)₂]⁻ ligand in [H₂B(3,5-(CF₃)₂-Pz)₂]Cu(PPh₃)₂ coordinates to copper through only one nitrogen atom (type **C**). The geometry at the copper may be described

as trigonal planar with a Cu–N bond length of 2.057(2) Å and Cu–P distances of 2.2388(7) and 2.2690(7) Å. One of the hydrogens on boron also shows a weak interaction with the copper atom (Cu–H = 2.01(2) Å; Cu···B = 2.891 Å). This contact is not strong enough to distort the geometry at copper from trigonal planar as evident from the sum of the angles at Cu, 358.8°. The Cu–H distance of 2.01(2) Å is at the higher end of the typical Cu–H bond lengths observed in copper borohydrides (average 1.87 Å; range 1.70–2.08 Å).^{13–15} It is very similar to the Cu–H contact of the H-bridged dimer {[H₂B(3,5-(CF₃)₂Pz)₂]CuCNBu^t}₂ (bonding mode **D**; Cu–H = 2.02(2) Å, Cu···B = 3.050 Å). Interestingly, unlike in the title compound, copper sites of {[H₂B(3,5-(CF₃)₂Pz)₂]CuCNBu^t}₂

- (11) See additional references for bonding mode B: Corrochano, A. E.; Jalon, F. A.; Otero, A.; Kubicki, M. M.; Richard, P. Organometallics 1997, 16, 145–148.
- (12) Rodriguez, V.; Full, J.; Donnadieu, B.; Sabo-Etienne, S.; Chaudret, B. New J. Chem. **1997**, 21, 847-849.
- (13) Takusagawa, F.; Fumagalli, A.; Koetzle, T. F.; Shore, S. G.; Schmitkons, T.; Fratini, A. V.; Morse, K. W.; Wei, C.-Y.; Bau, R. J. Am. *Chem. Soc.* **1981**, *103*, 5165–5171.
- (14) Do, Y.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1987, 109, 1853–1854.
- (15) Melmed, K. M.; Li, T.-i.; Mayerle, J. J.; Lippard, S. J. J. Am. Chem. Soc. **1974**, *96*, 69–75.

Figure 2. Structure of $[H_2B(3,5-(CF_3)_2Pz)_2]Cu(PPh_3)_2$ showing only a selected group of atoms.

show significant deviations from planarity as a result of the Cu–H bond (sum of the angles at Cu 355.2°).¹⁶

The IR spectrum of $[H_2B(3,5-(CF_3)_2Pz)_2]Cu(PPh_3)_2$ in KBr shows two bands at 2505 and 2215 (broad) cm⁻¹ assignable to ν_{B-H} and $\nu_{B-H\cdots Cu}$, respectively. The broad band at 2215 cm⁻¹ is consistent with the Cu-H-B contact.¹⁷ Corresponding B-H stretching frequencies of { $[H_2B(3,5-(CF_3)_2Pz)_2]CuCNBu^1$ }₂ appear at 2568 cm⁻¹ and 2303 and 2344 (shoulder) cm^{-1.16} The structurally characterized ruthenium adduct [$H_2B(3,5-(CF_3)_2-Pz)_2$]RuH(COD) featuring type **B** coordination (Ru···HB = 1.97(3) Å) also shows similar infrared data for terminal and bridging B-H moieties (2555 cm⁻¹ and 2128 and 2028 cm⁻¹).¹² The room-temperature NMR data of [$H_2B(3,5-(CF_3)_2Pz)_2$]Cu-(PPh_3)₂ suggest fluxional behavior in solution as ¹H, ¹³C, and ¹⁹F NMR spectra show resonances attributable to equivalent pyrazolyl moieties.

Overall, the results from this study demonstrate that it is possible to synthesize poly(pyrazolyl)boratometal complexes (where metal \neq alkali metal) directly from metal tetrahydroborates. [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂ shows an interesting solidstate structure which features a bis(pyrazolyl)borate primarily acting as a monodentate ligand. Infrared data and the Cu-H bond distance support the existence of a Cu-H-B interaction. However, the bond angle data clearly suggest this to be a very weak one. To our knowledge, [H₂B(3,5-(CF₃)₂Pz)₂]Cu(PPh₃)₂ represents the first structurally characterized bis(pyrazolyl)borate

(17) Paxson, T. E.; Hawthorne, M. F.; Brown, L. D.; Lipscomb, W. N. Inorg. Chem. 1974, 13, 2772–2774.

⁽¹⁶⁾ Dias, H. V. R.; Lu, H.-L.; Gorden, J. D.; Jin, W. Inorg. Chem. 1996, 35, 2149–2151.

compound showing the type **C** coordination mode. On the basis of the spectroscopic data, very similar coordination behavior has been suggested for [H₂B(3,5-(CF₃)₂Pz)₂]RuH(H₂)(PCy₃)₂ ($\nu_{\rm B-H}$ 2514, 2149, 2007 cm⁻¹).¹² Very recently, a tris(pyrazolyl)-borate adduct ([HB(4-Cl-3,5-(CH₃)₂Pz)₃]Rh(CO)(PMePh₂)₂) featuring rare κ^2 *N*,*H* coordination has also been reported.¹⁸ The main reason for unusual modes of coordination in these poly-(pyrazolyl)borate systems is believed to be steric in origin.^{12,18,19}

Acknowledgment. We thank The Robert A. Welch Foundation for support of this work.

Supporting Information Available: X-ray crystallographic files in CIF format are available free of charge via the Internet at http://pubs.acs.org.

IC991385T

⁽¹⁸⁾ Malbose, F.; Kalck, P.; Daran, J.-C.; Etienne, M. J. Chem. Soc., Dalton Trans. **1999**, 271–272.

⁽¹⁹⁾ Gutierrez, E.; Hudson, S. A.; Monge, A.; Nicasio, M. C.; Paneque, M.; Carmona, E. J. Chem. Soc., Dalton Trans. 1992, 2651–2652.