Synthesis, Characterization, Crystal Structures, and Reactions of Trigonal Bipyramidal Tin(IV) Complexes Containing a Tetradentate Tripodal Tristhiolatophosphine Ligand. Use in the One-Step Synthesis of an Iron(IV) Complex

Kerry A. (Fusie) Clark,† T. Adrian George,*,† Tom J. Brett,† Charles R. Ross, II,‡ and Richard K. Shoemaker† Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0304, and Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794

*Recei*V*ed No*V*ember 29, 1999*

Trigonal bipyradimal complexes of tin(IV) such as BuSn- $[P(C_6H_4-2-O)_3]$ and $ZSn[N(CH_2CH_2X)_3]$ (Chart 1)^{1,2} are wellknown where four of the five coordination sites are occupied by the four donor atoms of a tetradentate tripodal ligand. Most of the ligands in this category are trianions produced by the deprotonation of proligands such as alcohols, thiols, or amines. Although tin(IV) complexes are known with ligands containing a combination of three sulfurs and one nitrogen atom,^{2,3} and three $oxygens$ and one phosphorus atom, 2 no examples have been reported with the soft-base combination of three sulfurs and one phosphorus atom. Trigonal bipyramidal complexes containing the ligand $[P(C_6H_3 - 3 - R - S)_3]^{3-}$ (R = H or Ph) have been reported for Tc^4 , Fe,^{5,6} Ni,⁷ and Re.⁸ Here, we report the synthesis and crystal structure of three trigonal bipyramidal complexes of tin- (IV): PhSn(PS_3) (1), PhSn($P'S_3$) (2), and PhSn($P'S_3$) (3), where $(PS_3)^{3-} = [P(C_6H_4-2-S)_3]^{3-}$, $(P'S_3)^{3-} = [P(C_6H_3-5-Me-2-S)_3]^{3-}$, and $(P''S_3)^3$ ⁼ = [P(C₆H₃-3-Me₃Si-2-S)₃]^{3–}. Complex **3** undergoes a metathesis reaction with $FeCl₃$ to form the purple iron(IV) complex $[FeCl(P''S_3)]^9$ in one step.

The reaction of PhSnCl₃ in tetrahydrofuran (thf) at 0° C with the trilithium salt of the ligand, generated in situ from the thiol and *n*-BuLi (3 equiv), produced the corresponding PhSn(IV) complex:10-¹²

$$
PhSnCl3 + PS3Li3 \rightarrow PhSn(PS3) + 3LiCl
$$
 (1)

The ligands $PS₃H₃$ and $P''S₃H₃$ were prepared by the method of Block et al.,¹³ and $P'S_3H_3$ was prepared by an adaption of this method starting with p -MeC₆H₄SH. The three complexes showed very different solubility properties. The trimethylsilyl-substituted product was soluble in almost all common organic solvents, whereas the unsubstituted product showed limited solubility except in thf.

Each complex displays a singlet in the 31P NMR spectrum. The resonance occurs at ca. -63 ppm, with tin satellites (J_{P-Sn}) \approx 1100 Hz) and carbon satellites ($J_{P-C} \approx 73$ Hz) for PhSn(PS₃)

- (1) Verkade, J. G. Coord. Chem. Rev. 1994, 137, 233.
- (2) Tzschach, A.; Jurkschat, K. *Comments Inorg. Chem*. **1983**, *3*, 35.
- (3) Jurkschat, K.; Mügge, C.; Tzschach, A.; Zschunke, A.; Fischer, G. W. *Z. Anorg. Allg. Chem*. **1980**, *463*, 123.
- (4) (a) de Vries, N.; Davison, A.; Jones, A. G. *Inorg. Chim. Acta* **1989**, *165*, 9. (b) de Vries, N.; Cook, J.; Jones, A. G.; Davison, A. *Inorg. Chem*. **1991**, *30*, 2662.
- (5) Franolic, J. D.; Millar, M.; Koch, S. A. *Inorg. Chem*. **1995**, *34*, 1981.
- (6) Hsu, H.-F.; Koch, S. A.; Popescu, C. V.; Mu¨nck, E. *J. Am. Chem. Soc*. **1997**, *119*, 8371.
- (7) Nguyen, D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A.; Achim, C.; Bominaar, E. L.; Mu¨nck, E. *J. Am. Chem. Soc*. **1996**, *118*, 8963.
- (8) For $[Re(PS₃)(PPh₃)]$, see ref 8 in the following. Dilworth, J. R.; Hutson, A. J.; Lewis, J. S.; Miller, J. R.; Zheng, Y.; Chen, Q.; Zubieta, J. *J. Chem. Soc., Dalton Trans*. **1996**, 1093.
- (9) Niemoth-Anderson, J. D.; Clark, K. A. (Fusie); George, T. A.; Ross, C. R., II. *J. Am. Chem. Soc*., in press.

Chart 1

and PhSn(P'S₃). The resonance for PhSn(P'S₃) occurs at -58 ppm. The resonances in the room temperature ¹H and ¹³C NMR spectra of $PhSn(PS_3)$ and $PhSn(P'S_3)$ are unambiguously assigned using heteronuclear multiple-quantum coherence and heteronuclear multiple-bond correlation. Low-temperature (178 K) ¹H NMR spectra show no broadening of any signals.

Crystals of PhSn(PS_3),¹⁴ PhSn($P'S_3$),¹⁵ and PhSn($P'S_3$)¹⁶ were obtained from cooled (0 °C) thf/hexane solutions and structures

- (10) PhSn(PS_3) (1): *n*-BuLi (0.48 mL, 1.2 mmol) was added to a solution containing $PS₃H₃$ (0.16 g, 0.46 mmol) in thf (40 mL) at 0 °C. After the solution was stirred for 35 min, a solution of $PhSnCl₃ (0.14 g, 0.45 mmol)$ in thf (10 mL) was added. The solution was stirred for 1 h at 0 °C before solvent was removed in vacuo. CH_2Cl_2 (40 mL) was added, and the resulting suspension was extracted with water $(3 \times 40 \text{ mL})$. The yellow CH2Cl2 layer was separated and dried over MgSO4. The solution was removed from $Mg\overline{SO}_4$ via syringe, and then \overline{CH}_2Cl_2 was removed in vacuo. Pentane (15 mL) was added and the mixture placed in the freezer $(-18 \degree C, 5.5 \text{ h})$. The cream-colored solid was collected by filtration, washed with chilled benzene, and dried in vacuo to yield 0.15 g (60%) of product. Crystals suitable for X-ray diffraction studies were grown from a cooled (12 °C) thf/hexane solution (3:1 by volume) over 2 days. ¹H NMR (*δ*, thf/DMSO-*d*₆): 8.11 (t, 3H, $J = 7.75$ Hz, 6-H, C₆H₄), 7.66
(app d 2H $J = 7.15$ Hz, 2, 6-H C₆H₅) 7.53 (t, 3H $J = 7.75$ Hz, 4-H (app d, 2H, $J = 7.15$ Hz, 2 , 6 -H, C_6H_5), 7.53 (t, $3H$, $J = 7.75$ Hz, 4 -*H*, C_6H_4), $7.46 - 7.39$ (m, $3H$, 3 , 4 , 5 - H , C_6H_5), 7.32 (app t, $3H$, $J = 7.87$ C_6H_4), 7.46–7.39 (m, 3H, 3, 4, 5-*H*, C₆H₅), 7.32 (app t, 3H, *J* = 7.87
Hz, 3-*H*, C₆H₄), 7.13 (t, 3H, *J* = 7.51 Hz, 5-*H*, C₆H₄). ³¹P{¹H} NMR
(δ thf-*d*₉): -63.30 (s, *J*(P-¹¹⁹Sn) = 1105 Hz, $(\delta, \text{thf-ds})$: -63.30 (s, *J*(P-¹¹⁹Sn) = 1105 Hz, *J*(P-¹¹⁷Sn) = 1056 Hz, *J*(PC) = 75.80 Hz) High-resolution EIMS (m/z) : found 551.9 (M⁺) $J(PC) = 75.80$ Hz). High-resolution EIMS (m/z): found 551.9 (M⁺). From calcd MS: $C_{24}H_{17}PS_3^{120}Sn$, 551.9247.
- (11) PhSn(P''S₃) (3): Anal. Calcd for $C_{33}H_{41}PS_3Si_3Sn \cdot 2H_2O \cdot 0.33CH_2Cl_2$: C, 48.10; H, 5.53. Found: C, 48.07; H, 5.51. ¹H NMR (δ, CD₂Cl₂): 7.78 (td, 3H, $J = 7.75$ Hz, $J = 1.51$ Hz, 6-*H*, C₆H₃), 7.71 (dt, 2H, $J = 7.39$ Hz, *J* = 1.25 Hz, 2, 6-*H*, C₆H₅), 7.60 (dt, 3H, *J* = 7.16 Hz, *J* = 1.25 Hz, 4-*H*, C₆H₃), 7.53–7.47 (m, 3H, 3,4,5-*H*, C₆H₅), 7.19 (td, 3H, *J* = Hz, 4-*H*, C₆H₃), 7.53–7.47 (m, 3H, 3,4,5-*H*, C₆H₅), 7.19 (td, 3H, *J* = 7.39 Hz, *J* = 1.35 Hz, 5-*H*, C₆H₂), 1.55 (br, H₂O), 0.423 (s, 27H, Me₂ 7.39 Hz, $J = 1.35$ Hz, $5-H$, C_6H_3), 1.55 (br, H_2O), 0.423 (s, $27H$, Me_3 -
Si) ¹H NMR (δ thf-d_c): 8.02 (t. 3H, $J = 7.37$ Hz, $6-H$ C_cH₂), 7.70 (d. Si). ¹H NMR (δ , thf-*d*₈): 8.02 (t, 3H, $J = 7.37$ Hz, 6-*H*, C₆H₃), 7.70 (d, 2H $J = 6.94$ Hz, 2, 6-*H* C_cH₂), 7.56 (d, 3H $J = 7.01$ Hz, 4-*H* C_cH₂) $2H, J = 6.94$ Hz, 2, 6-*H*, C₆H₅), 7.56 (d, 3H, $J = 7.01$ Hz, 4-*H*, C₆H₃), 7.50 (t, 2H, $J = 7.08$ Hz, 3, 5-*H*, C₆H₅), 7.45 (d, 1H, $J = 7.29$ Hz, 4-*H*, C_6H_5), 7.18 (t, 3H, $J = 7.17$ Hz, 5-H, C_6H_3), 5.03 (s, CH₂Cl₂), 2.92 (br, H₂O), 0.399 (s, 27H, Me₃Si). ³¹P{¹H} NMR (δ , CD₂Cl₂): -63.85 (s, $J(P^{-19}Sn) = 1161$ Hz, $J(Pn^{-117}Sn) = 1109$ Hz, $J(PC) = 69$ Low-resolution FABMS (m/z): found 769.4 ($M + H$)⁺. From calcd MS: C₃₃H₄₁PS₃¹²⁰Sn, 768.044.
- (12) PhSn(P'S₃) (2): ³¹P{¹H} NMR (δ , CD₂Cl₂): -57.99 (s, *J*(P-¹¹⁹Sn) = 1127 Hz, *J*(P-¹¹⁷Sn) = 1080 Hz) 1127 Hz, $J(P-117Sn) = 1080$ Hz).
- (13) Block, E.; Ofori-Okai, G.; Zubieta, J. *J. Am. Chem. Soc.* **1989**, *111*, 2327.
- (14) Crystal data for PhSn(PS3) (**1**) (C24H17PS3Sn) (293 K): monoclinic, *P*2- (1)/*c*, $a = 10.041(2)$ Å, $b = 12.990(3)$ Å, $c = 17.548(4)$ Å, $\alpha = \gamma =$ 90°, $\beta = 96.94(3)$ °, $V = 2272.1(8)$ \AA^3 , $z = 4$. Final least-squares refinement on F^2 using 4296 unique reflections and 262 parameters refinement on F^2 using 4296 unique reflections and 262 parameters yielded $R_1 = 0.0386$ (wR2 = 0.0949) and GOF = 1.016. yielded $R_1 = 0.0386$ (wR2 = 0.0949) and GOF = 1.016.
(15) Crystal data for PhSn(P'S₃) (2) (C₂₇H₂₃PS₃Sn) (293 K): monoclinic, *P*2-
- (1)/*c*, $a = 10.641(2)$ Å, $b = 15.354(3)$ Å, $c = 15.384(3)$ Å, $\alpha = \gamma = 90^{\circ}$ $\beta = 91.85(3)^{\circ}$ $V = 2512.2(9)$ Å³ $\tau = 4$ Final least-squares 90° , $\beta = 91.85(3)^\circ$, $V = 2512.2(9)$ \AA^3 , $z = 4$. Final least-squares refinement on F^2 using 4757 unique reflections and 290 parameters refinement on *F*² using 4757 unique reflections and 290 parameters yielded $R_1 = 0.0410$ (wR2 = 0.1114) and GOF = 1.071.

^{*} To whom correspondence should be addressed. E-mail: tageorge@ unlserve.unl.edu.

University of Nebraska-Lincoln.

[‡] St. Jude Children's Research Hospital.

Figure 1. Structure of $PhSn(P'S₃)$ (2) with hydrogen atoms omitted and the following selected bond distances (\AA) and angles (deg): $Sn-C(1) =$ 2.1412(38); Sn-P = 2.5125(9); Sn-S(1) = 2.5120(12); Sn-S(2) = 2.5723(12); Sn-S(3) = 2.4448(12); C(1)-Sn-P = 169.32(10); C(1)- $Sn-S(1) = 94.70(11); C(1)-Sn-S(2) = 98.27(11); C(1)-Sn-S(3) =$ 105.61(11); $S(1) - Sn - S(2) = 137.96(4)$; $S(1) - Sn - S(3) = 111.85(4)$; $S(2)$ -Sn-S(3) = 102.80(4).

determined by X-ray diffraction. In all three complexes, tin is above the S_3 plane. Whereas [FeCl(P''S₃)] displays C_{3v} symmetry, in both **1** and **3** the plane of the three sulfur atoms has been rotated by more than 13° about the pseudo-3-fold axis of Sn(PS₃), possibly to avoid a close *^o*-phenyl(Sn)-hydrogen to sulfur interaction. This form of distortion contrasts with those reported in the anions $[Ni(P(C_6H_3-3-Ph-2-S)_3)(CO)]^{-7}$ and $[Fe_2(\mu-S_2) (PC_6H_4-2-S_3)_2$]²⁻⁵ where two of the S-M-S angles are significantly greater than 120^o and the third angle is significantly significantly greater than 120° and the third angle is significantly less than 120°.

The structure of $PhSn(P'S₃)$ (Figure 1) shows the plane of the phenyl(Sn) group to be almost coplanar with the plane containing SnPS(1) and the corresponding *m*-tolyl group. This orientation may be the result of hydrogen-bonding between S(1) and the hydrogen atom on C(2) of the phenyl group: $S(1)-H(2) =$ 2.6792(11) Å. Perhaps as a result of this orientation, the $P-Sn C(1)$ vector is not linear (169 $^{\circ}$).

Both methyl¹⁷ and *n*-butyl¹⁸ derivatives were prepared by the reactions of $PS₃Li₃$ with MeSnCl₃ and *n*-BuSnCl₃, respectively, as described above. Although both complexes were isolated and characterized, crystals suitable for X-ray diffraction studies have not been obtained. Pale-yellow crystals were obtained during attempts to crystallize n -BuSn(PS₃) from a pyridine/acetone solution. The crystal structure showed the compound to be oxidized, dimerized ligand (OPS₃)₂ (4).¹⁹ The (OPS₃)₂ molecule contains two ligands that are coupled through a S-S bond. Within each original ligand the remaining two sulfurs form a S-S bond and each phosphorus has been oxidized to a phosphine oxide.

The stability of the crystallographically characterized iron(IV) complexes [FeX(P''S₃)] where $X = Cl$, Br, or I⁹ in nonpolar solvents prompted us to attempt the preparation of these complexes by transmetalation²⁰ using $PhSn(P''S_3)$. Thus, solid FeCl₃ (2 equiv) was added slowly to a yellow solution of $PhSn(P''S_3)$ in CH_2Cl_2 . The solution turned purple as soon as solid $FeCl₃$ encountered the stirred solution of $PhSn(P''S_3)$. After the addition was complete, water was added to remove salts. After the water layer was removed, the CH_2Cl_2 layer was dried over MgSO₄, and then solvent was removed in vacuo. The purple solid was purified by crystallization from a benzene/pentane solution (1:3, v:v) at -18 °C. The yield was 46%. The ¹H and ³¹P spectra of the purple product were identical to those of an authentic sample of [FeCl(P''S₃)]. In this reaction FeCl₃ is the source of {FeCl} and the oxidizing agent that converts putative $[Fe(P''S₃)]$ to $[FeCl (P''S_3)$:

 $PhSn(P''S_3) + FeCl_3 \rightarrow [Fe(P''S_3)] + PhSnCl_3$ (2)

$$
[Fe(P''S_3)] + FeCl_3 \rightarrow [FeCl(P''S_3)] + FeCl_2 \tag{3}
$$

 $[Fe(P''S_3)] + FeCl_3 \rightarrow [FeCl(P''S_3)] + FeCl_2$ (3)
The yield of $[FeCl(P''S_3)]$ is a function of the ratio of reactants and the reaction time. Thus, the reaction of $FeCl₃$ (1.6 equiv) and $PhSn(P''S_3)$ (1 equiv) for 1.5 h in CH_2Cl_2 resulted in equal amounts of $[FeCl(P''S_3)]$ and unreacted $PhSn(P''S_3)$ being detected. With 3 equiv of FeCl₃ for 1.5 h, the yield of $[FeCl(P''S_3)]$ was about the same but there was no unreacted $PhSn(P''S_3)$. Instead, a number of non-tin-containing phosphine compounds were formed including the oxidized, dimerized ligand $OP''S_3$)₂. When this latter reaction was stirred for 3 h, the yield of [FeCl- $(P''S_3)$] was reduced considerably. With 5.8 equiv of FeCl₃ for 1.5 h, the yield of $[FeCl(P''S₃)]$ was zero. These results are not surprising because FeCl₃ was shown to slowly decompose [FeCl- $(P''S_3)$] in CH₂Cl₂. For example, when FeCl₃ (0.8 equiv) was stirred with $[FeCl(P''S_3)]$ (1 equiv) in CH_2Cl_2 , a small amount of unreacted FeCl(P"S₃)] together with $OP''S_3$)₂ was observed in the 31P NMR spectrum. However, when this reaction was repeated with more than 1 equiv of FeCl₃, the purple color due to [FeCl- $(P''S_3)$] disappeared almost immediately and only $(OP''S_3)_2$ was observed in the 31P NMR spectrum.

Further work is in progress (i) to explore the chemistry of PhSn- (PS_3) and (ii) to compare the crystal structures of $\text{RSn}(PS_3)$ -type complexes with those determined by calculation.

Acknowledgment. We thank the National Science Foundation EPSCoR Grant, the Research Corporation, the University of Nebraska, Center for Materials Research and Analysis for support of this work and Stephanie Cornet for experimental assistance.

Supporting Information Available: Fully labeled figures for compounds **¹**-**4**, selected bond distances and bond angles for **¹** and **³**, 13C NMR data for **1** and **3**, and four X-ray crystallographic files that are in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC991371N

⁽¹⁶⁾ Crystal data for PhSn(P''S₃) (**3**) (C₃₃H₄₁PS₃Si₃Sn) (293 K): triclinic, $P\overline{1}$, $a = 10.111(2)$ Å, $b = 14.737(3)$ Å, $c = 15.342(3)$ Å, $\alpha = 112.86(3)^\circ$, *a* = 10.111(2) Å, *b* = 14.737(3) Å, *c* = 15.342(3) Å, α = 112.86(3)°, *β* = 107.21(3)°, *γ* = 90.75(3)°, *V* = 1990.8(7) Å³, *z* = 2. Final least-
squares refinement on *F*² using 6552 unique reflections and 371 squares refinement on *F*² using 6552 unique reflections and 371 parameters yielded $R_1 = 0.0556$ (wR2 = 0.1418) and GOF = 1.127.

⁽¹⁷⁾ For MeSn(PS₃). ³¹P{¹H} NMR (δ , pyridine/CD₂Cl₂): -44.11 (s, J(P- $H^{19}Sn$ = 1837 Hz, $J(P^{-117}Sn) = 1756$ Hz, $J(PC) = 77.31$ Hz). Lowresolution FABMS (m/z) : 490.9 $(M + H)^+$. From calcd MS: $C_{19}H_{15}$ -PS₃¹²⁰Sn, 489.910.

⁽¹⁸⁾ For *n*-BuSn(PS₃). ³¹P{¹H} NMR (δ , CD₂Cl₂): -57.96 (s, *J*(P-¹¹⁹Sn) = 1302 Hz, $J(P-117Sn) = 1245$ Hz, $J(PC) = 75.29$ Hz). Low-resolution FABMS (m/z) : 533.1 (M + H)⁺. From calcd MS: C₁₉H₁₅PS₃¹²⁰Sn, 532 964 532.964.

⁽¹⁹⁾ Crystal data for $(OPS_3)_2$ ^{*}py $(4$ ^{*}py) $(C_{36}H_{24}O_2P_2S_6$ ^{*}C₂H₅N) (293 K): monoclinic, $P2(1)/n$, $a = 9.943(2)$ Å, $b = 13.408(3)$ Å, $c = 28.629(6)$ Å, $\alpha = \gamma = 90^\circ$, $\beta = 96.30(3)^\circ$, $V = 3793.6(13)$ Å³, *z* = 4. Final leastsquares refinement on F^2 using 4418 unique reflections and 471 parameters yielded $R_1 = 0.0637$ (wR2 = 0.1562) and GOF = 1.045. ${}^{31}P\{^1H\}$ NMR (δ , CD₂Cl₂): 44.47 (s).

⁽²⁰⁾ Transmetalation reactions involving transfer of tetradentate tripodal ligands from tin to transition metals have been reported. Plass, W.; Verkade, J. G. *J. Am. Chem. Soc*. **1992**, *114*, 2275.