Fluoride Ion Donor Properties of TcO_2F_3 **and** ReO_2F_3 **: X-ray Crystal Structures of** $MO_2F_3SbF_5$ ($M = Tc$, Re) and $TcO_2F_3XeO_2F_2$ and Raman and NMR Spectroscopic **Characterization of MO₂F₃·PnF₅ (Pn = As, Sb),** $[ReO_2F_2(CH_3CN)_2][SbF_6]$ **, and** $[Re₂O₄F₅][Sb₂F₁₁][†]$

Nicolas LeBlond,§ David A. Dixon,‡ and Gary J. Schrobilgen*,§

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 906 Batelle Boulevard, P.O. Box 999, KI-83, Richland, Washington 99352

*Recei*V*ed July 12, 1999*

The fluoride ion donor properties of TcO_2F_3 and ReO_2F_3 toward AsF₅, SbF₅, and XeO₂F₂ have been investigated, leading to the formation of TcO_2F_3 . PnF₅ and ReO_2F_3 . PnF₅ (Pn = As, Sb) and TcO_2F_3 . Which were characterized in the solid state by Raman spectroscopy and X-ray crystallography. TcO_2F_3 -SbF₅ crystallizes in the monoclinic system $P2_1/n$, with $a = 7.366(2)$ Å, $b = 10.441(2)$ Å, $c = 9.398(2)$ Å, $\beta = 93.32(3)$ °, $V =$ 721.6(3) Å³, and *Z* = 4 at 24 °C, R₁ = 0.0649, and wR₂ = 0.1112. ReO₂F₃.SbF₅ crystallizes in the monoclinic system $P2_1/c$, with $a = 5.479(1)$ Å, $b = 10.040(2)$ Å, $c = 12.426(2)$ Å, $\beta = 99.01(3)$ °, $V = 675.1(2)$ Å³, and *Z* $=$ 4 at -50 °C, R₁ = 0.0533, and wR₂ = 0.1158. TcO₂F₃. XeO₂F₂ crystallizes in the orthorhombic system *Cmc*₂₁, with $a = 7.895(2)$ Å, $b = 16.204(3)$ Å, $c = 5.198(1)$ Å, $\beta = 90^{\circ}$, $V = 665.0(2)$ Å³, and $Z = 4$ at 24 °C, R₁ = 0.0402, and wR₂ = 0.0822. The structures of TcO₂F₃. SbF₅ and ReO₂F₃. SbF₅ consist of infinite chains of alternating MO_2F_4 and SbF_6 units in which the bridging fluorine atoms on the antimony are trans to each other. The structure of TCO_2F_3 'Xe O_2F_2 comprises two distinct fluorine-bridged chains, one of TCO_2F_3 and the other of XeO_2F_2 bridged by long Tc-F'''Xe contacts. The oxygen atoms of the group 7 metals in the three structures are cis to each other and to two terminal fluorine atoms and trans to the bridging fluorine atoms. The ¹⁹F NMR and Raman spectra of TcO_2F_3 'PnF₅ and Re O_2F_3 'PnF₅ in SbF₅ and PnF₅-acidified HF solvents are consistent with dissociation of the adducts into *cis*-MO₂F₂(HF)₂⁺ cations and PnF₆⁻ anions. The energy-minimized geometries of the free MO₂F₂⁺ cations and their HF adducts, cis -MO₂F₂(HF)₂⁺, have been calculated by local density functional theory (LDFT), and the calculated vibrational frequencies have been used as an aid in the assignment of the Raman spectra of the solid MO₂F₃**.**PnF₅ adducts and their PnF₅-acidified HF solutions. In contrast, ReO_2F_3 **.**SbF₅ ionizes in SO₂ClF solvent to give the novel $Re_2O_4F_5^+$ cation and $Sb_2F_{11}^-$ anion. The ¹⁹F NMR spectrum of the cation is consistent with two ReO_2F_2 units joined by a fluorine bridge in which the oxygen atoms are assumed to lie in the equatorial plane. The $[ReO_2F_2(CH_3CN)_2][SbF_6]$ salt was formed upon dissolution of $ReO_2F_3'SbF_5$ in CH₃CN and was characterized by ¹H, ¹³C, and ¹⁹F NMR and Raman spectroscopies. The $\text{ReO}_2\text{F}_2(\text{CH}_3\text{CN})_2^+$ cation is a pseudooctahedral *cis*-dioxo arrangement in which the CH3CN ligands are trans to the oxygens and the fluorines are trans to each other.

Introduction

Until recently, the $ReOF_5$ · SbF_5 adduct, which is composed of the fluorine-bridged $OF_4Re--F--ReF_4O^+$ cation and the $Sb_2F_{11}^-$ anion, provided the only example of a discrete transition metal oxofluoro cation.¹ More recently, the technetium analogue $[Tc_2O_2F_9][Sb_2F_{11}]^2$ and the *cis*-dioxo $F_3O_2O_8$ ---F--- $O_8O_2F_3^+$ cation, as the $Sb_2F_{11}^-$ salt,³ were synthesized in this laboratory and their structures determined by X-ray crystallography. The bridging fluorines of $\text{Re}_2\text{O}_2\text{F}_9^+$, $\text{Te}_2\text{O}_2\text{F}_9^+$, and $\text{O}_\text{S}_2\text{O}_4\text{F}_7^+$ are trans to oxygens, and the oxygens of the $\text{Os}_2\text{O}_4\text{F}_7^+$ and OsO_2F_3^+

- (1) Schrobilgen, G. J.; Holloway, J. H.; Russell, D. R. *J. Chem. Soc., Dalton Trans.* **1984**, 1411.
- (2) LeBlond, N.; Dixon, D. A.; Mercier, H. P. A.; Schrobilgen, G. J. Accepted for publication in *Inorg. Chem.*
- (3) Casteel, W. J., Jr.; Dixon, D. A.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 4310.

cations are cis to each other. The trigonal bipyramidal $OsO₂F₃⁺$ cation was also observed by ¹⁹F NMR spectroscopy in SbF₅ solutions of *cis*-OsO2F4.

Several ReVII oxide fluoride cations have been observed in the mass spectrum of ReO_2F_3 . The ReO_2F_2 ⁺ cation was the dominant species and the $\text{Re}_2\text{O}_4\text{F}_5^+$ cation has been detected as a minor species (2%), along with ReO_2F_3^+ (2%) and other lower oxidation state $\text{ReO}_xF_y^+$ cations.⁴

The present work is an extension of our studies of the fluoride ion donor properties of high-valent transition metal oxide fluorides and describes the fluoride ion donor properties of $TcO₂F₃$ and $ReO₂F₃$ toward the strong fluoride ion acceptors SbF_5 and AsF₅ and the moderate fluoride ion acceptor XeO_2F_2 .

Results and Discussion

The AsF_5 and SbF_5 Adducts of MO_2F_3 (M = Tc, Re). (a) **Syntheses and Properties of** MO_2F_3 **'SbF₅ (M = Tc, Re).** Both

[†] Dedicated to Professor Ronald J. Gillespie on the occasion of his 75th birthday.

[§] McMaster University.

[‡] Pacific Northwest National Laboratory.

J. *Inorg. Chem.* **1996**, *35*, 4310. (4) Sunder, W. A.; Stevie, F. A. *J. Fluorine Chem.* **1975**, *6*, 449.

 $TcO₂F₃$ and $ReO₂F₃$ are essentially insoluble in anhydrous HF at room temperature but dissolve readily in HF solutions acidified with the strong Lewis acids $AsF₅$ and $SbF₅$. A combining ratio of 1:1 was found when the solvent was removed from solutions containing a $3-5$ -fold molar excess of AsF₅ or SbF₅. The pale yellow $TcO₂F₃$ and colorless $ReO₂F₃$ adducts with $SbF₅$ were isolated and stored at room temperature without decomposition. In contrast, the AsF_5 adducts have significant dissociation vapor pressures of $\text{As} \mathbb{F}_5$ and revert to the starting materials when stored at room temperature.

The high solubilities of MO_2F_3 . SbF₅ and MO_2F_3 . AsF₅ in anhydrous HF apparently result from the dissociation of the adduct into $MO_2F_2^+$ cations (structure **I**) and PhF_6^- anions (eq

1). The $MO_2F_2^+$ cations, however, are expected to be strong

$$
MO_2F_3 \cdot PnF_5 \stackrel{\text{HF.}}{\rightleftharpoons} [MO_2F_2][PnF_6]
$$
 (1)
and likely interact with HF. The reaction of ReO₂F₃

Lewis acids and likely interact with HF. The reaction of ReO_2F_3 ^{*}
ShE₅, with CH₂CN to form the ReO_2F_3 ^cCH₂CN₂⁺ cation SbF₅ with CH₃CN to form the $\text{ReO}_2\text{F}_2(\text{CH}_3\text{CN})_2^+$ cation exemplifies the Lewis acid properties of ReO_2F_2^+ (eq 2).

$$
\text{ReO}_2 F_3 \cdot \text{Sb} F_5 \xrightarrow{\text{CH}_3\text{CN}} [\text{ReO}_2 F_2(\text{CH}_3\text{CN})_2][\text{Sb} F_6] \tag{2}
$$

Attempts to prepare the $TcO_2F_2(CH_3CN)_2^+$ cation by dissolution of TcO₂F₃·SbF₅ in CH₃CN at 0 °C resulted in rapid decomposition, evident from gas evolution and the formation of a dark blue solution, suggestive of the formation of a Tc^{VI} species, and was not investigated further. ReO₂F₃.SbF₅ CH₃CN
bts to prepare the TcO₂
 P_2P_3 .SbF₅ in CH₃CN a
vident from gas evol

The ReO_2F_3 . Sb F_5 adduct undergoes dissociation plus selfassociation in SO₂ClF to form the fluorine-bridged $Re₂O₄F₅⁺$ cation (structure II) according to eq 3. Only crystalline ReO_2F_3 ^{*}

$$
2\text{ReO}_2\text{F}_3\cdot\text{SbF}_5 \xrightarrow{\text{SO}_2\text{CIF}} [\text{Re}_2\text{O}_4\text{F}_5][\text{Sb}_2\text{F}_{11}]
$$
 (3)

 SbF_5 could be recovered from SO_2CIF either by solvent evaporation or by crystallization from a saturated SO_2ClF solution of ReO_2F_3 ·Sb F_5 (see Experimental Section). Although TcO_2F_3 Pn F_5 is soluble in SO₂ClF, these solutions have not been thoroughly investigated (see Solution ¹⁹F NMR Characterization of the $\text{Re}_2\text{O}_4\text{F}_5^+$ Cation). $2\text{ReO}_2\text{F}_3\cdot\text{SbF}_5 \xrightarrow{\text{SO}_2\text{CIF}}$
ld be recovered from
on or by crystallization
f ReO₂F₃ \cdot SbF₅ (see Ex

(b) X-ray Crystal Structures of TcO2F3'**SbF5 and ReO2F3**' **SbF5***.* Details of the data collection parameters and other crystallographic information are given in Table 1 and the Supporting Information. Important bond lengths, corresponding bond valences, and bond angles are listed in Table 2.

- (6) Brown, I. D. In *Structure and Bonding in Crystals*; O'Keefe, M., Navrotsky, A., Eds.; Academic Press: London, 1981; Vol. 2, p 1.
- (7) Brown, I. D.; Altermatt, D. *Acta Crystallogr.* **1985**, *B41*, 244.

Table 1. Summary of Crystal Data and Refinement Details for TcO_2F_3 ·SbF₅, ReO_2F_3 ·SbF₅, and TcO_2F_3 ·Xe O_2F_2

	$TcO2F3·SbF5$		$ReO2F3·SbF5$ TcO ₂ F ₃ ·XeO ₂ F ₂
space group (No.)	$P2_1/n$ (14)	$P2_1/c(14)$	$Cmc2_1(36)$
$a(\AA)$	7.366(2)	5.479(1)	7.895(2)
$b(\check{A})$	10.441(2)	10.040(2)	16.204(3)
c(A)	9.398(2)	12.426(2)	5.198(1)
β (deg)	93.32(3)	99.01(3)	90.0
$V(A^3)$	721.6(3)	675.1(2)	665.0(2)
Z (molecules/unit cell)	4	4	4
mol wt	404.64	491.94	389.19
calcd density (g cm ⁻³)	3.717	4.840	3.878
$T({}^{\circ}C)$	24	-50	-100
μ (mm ⁻¹)	8.01	11.83	9.22
final agreement factors: 0.0649, 0.1112 0.0533, 0.1158 0.0402, 0.0822 R_1 ^a w R_2 ^b			

$$
{}^{a}R_{1} = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|.{}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2}/\sum w(F_{o}^{2})^{2}]^{1/2}.
$$

a

 $O(2)$

Figure 1. Structures of (a) TcO_2F_3 ·SbF₅ and (b) ReO_2F_3 ·SbF₅. Thermal ellipsoids are shown at the 50% probability level.

The structures of MO_2F_3 . SbF₅ consist of infinite chains of $MO₂F₄$ and $SbF₆$ units alternating along the *b* axis of the unit cell (Figure 1; and S1 (Supporting Information)). The oxygen atoms are cis to each other and trans to the bridging fluorine atoms on the transition metal but trans to each other on antimony. Both structures are closely related to that of the infinite-chain polymer $MoOF_4\cdot SbF_5.$ ⁸ In both $TcO_2F_3\cdot SbF_5$ and $RoCF_4\cdot SbF_6$ there is one weak $O\cdot F$ intralayer contact (Tc $ReO₂F₃·SbF₅$, there is one weak $O \cdot \cdot \cdot F$ intralayer contact (Tc complex, $O(1) \cdot \cdot \cdot F(7)$, 2.817 Å; and Re complex, $O(2) \cdot \cdot \cdot F(5)$, 2.814 Å) which is at the limit of the sum of the van der Waals radii of F and O.9,10

The M-O bond lengths in MO_2F_3 ·SbF₅ are characteristic of other MVII-O double bonds and are similar to the M-O bond lengths (Re values in square brackets) found in $[Li][MO_2F_4]$ $(1.660(4)^{11}$ [1.678(9)]¹² Å), TcO₂F₃ (1.646(9) Å),¹³ and [K]-

- (8) Fawcett, J.; Holloway, J. H.; Russell, D. R. *J. Chem. Soc., Dalton Trans.* **1981**, 1212.
- (9) Pauling, L. *The Nature of the Chemical Bond*, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 260.
- (10) Bondi, A. *J. Phys. Chem.* **1964**, *68*, 441.
- (11) Casteel, W. J., Jr.; Dixon, D. A.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1998**, *37*, 340.

⁽⁵⁾ Brown, I. D. *J. Solid State Chem.* **1974**, *11*, 214.

Table 2. Bond Lengths (\hat{A}), Bond Valences (vu), and Bond Angles (deg) in TcO₂F₃'SbF₅, ReO₂F₃'SbF₅, and TcO₂F₃'XeO₂F₂

			$TcO_2F_3\cdot SbF_5$				
				Bond Lengths and Corresponding Bond Valences ^a			
Tc(1)		O(1)	O(2)	F(1)	F(2)	F(3)	F(4)
bond valence		1.965	1.949	1.084	1.073	0.351	0.347
bond length		1.640(6)	1.643(5)	1.800(5)	1.804(5)	2.217(4)	2.222(4)
total bond valence: 6.77							
Sb(1)		F(3)	F(4)	F(5)	F(6)	F(7)	F(8)
bond valence		0.704	0.702	0.895	0.898	0.890	0.871
bond length		1.927(4)	1.928(4)	1.838(5)	1.837(5)	1.840(5)	1.848(5)
total bond valence: 4.96							
			Bond Angles				
$O(1) - Tc(1) - O(2)$	103.3(3)	$O(2) - Tc(1) - F(4)$	169.0(3)	$F(3)-Sb(1)-F(4)$	179.4(2)	$F(4)-Sb(1)-F(8)$	89.4(2)
$O(1) - Tc(1) - F(1)$	101.6(3)	$F(1) - Tc(1) - F(2)$	146.2(2)	$F(3)-Sb(1)-F(5)$	91.0(2)	$F(5)-Sb(1)-F(6)$	89.6(4)
$O(1) - Tc(1) - F(2)$	99.6(3)	$F(1) - Tc(1) - F(3)$	76.7(2)	$F(3)-Sb(1)-F(6)$	89.7(3)	$F(5)-Sb(1)-F(7)$	179.3(2)
$O(1) - Tc(1) - F(3)$	166.2(2)	$F(1) - Tc(1) - F(4)$	77.6(2)	$F(3)-Sb(1)-F(7)$	89.6(2)	$F(5)-Sb(1)-F(8)$	90.4(3)
$O(1) - Tc(1) - F(4)$	87.7(2)	$F(2)-Tc(1)-F(3)$	76.5(2)	$F(3)-Sb(1)-F(8)$	90.2(2)	$F(6)-Sb(1)-F(7)$	90.6(3)
$O(2) - Tc(1) - F(1)$	100.5(3)	$F(2)-Tc(1)-F(4)$	77.4(2)	$F(4)-Sb(1)-F(5)$	89.5(2)	$F(6)-Sb(1)-F(8)$	179.9(3)
$O(2) - Tc(1) - F(2)$	99.8(3)	$F(3)-Tc(1)-F(4)$	78.5(2)	$F(4)-Sb(1)-F(6)$	90.6(2)	$F(7)-Sb(1)-F(8)$	89.4(3)
$O(2) - Tc(1) - F(3)$	90.4(2)	$Tc(1A) - F(3) - Sb(1)$	163.4(3)	$F(4)-Sb(1)-F(7)$	89.8(2)	$Tc(1) - F(4) - Sb(1)$	148.6(3)
			$ReO2F3·SbF5$				
				Bond Lengths and Corresponding Bond Valences ^a			
Re(1)		O(1)	O(2)	F(1)	F(2)	F(3)	F(4)
bond valence		2.126	2.063	1.030	1.036	0.364	0.374
bond length		1.651(6)	1.662(6)	1.825(5)	1.823(5)	2.210(5)	2.200(5)
total bond valence: 6.99							
Sb(1)		F(3,3A)	F(6,6A)	F(7,7A)			
bond valence		0.670	0.846	0.893			
bond length		1.945(4)	1.859(5)	1.839(5)			
total bond valence: 4.82							
Sb(2)		F(4,4A)	F(5,5A)	F(8, 8A)			
bond valence		0.661	0.860	0.878			
bond length		1.950(5)	1.853(5)	1.846(5)			
total bond valence: 4.80							
			Bond Angles				
$O(1) - Re(1) - O(2)$	103.2(3)	$O(2)$ -Re (1) -F (2)	100.5(3)	$F(2) - Re(1) - F(3)$	78.5(2)	$F(4)-Sb(2)-F(5)$	89.5(2)
$O(1) - Re(1) - F(1)$	100.0(3)	$O(2) - Re(1) - F(3)$	88.5(2)	$F(2) - Re(1) - F(4)$	76.5(2)	$F(4)-Sb(2)-F(8)$	90.3(2)
$O(1) - Re(1) - F(2)$	99.8(3)	$O(2)$ -Re (1) -F (4)	164.5(2)	$F(3)-Re(1)-F(4)$	76.0(2)	$F(5)-Sb(2)-F(8)$	89.0(2)
$O(1) - Re(1) - F(3)$	168.2(2)	$F(1) - Re(1) - F(2)$	147.8(2)	$F(3)-Sb(1)-F(6)$	89.3(2)	$Re(1) - F(3) - Sb(1)$	136.5(2)
$O(1) - Re(1) - F(4)$	92.3(2)	$F(1) - Re(1) - F(3)$	77.0(2)	$F(3)-Sb(1)-F(7)$	90.2(2)	$Re(1) - F(4) - Sb(2)$	149.5(3)
$O(2) - Re(1) - F(1)$	99.4(3)	$F(1) - Re(1) - F(4)$	77.6(2)	$F(6)-Sb(1)-F(7)$	89.9(3)		
			$TcO_2F_3 \cdot XeO_2F_2$				
				Bond Lengths and Corresponding Bond Valences ^a			
Tc(1)		O(1)	O(2)	F(1)		F(1A)	F(2,2A)
bond valence		2.120	1.992	0.491		0.541	0.970
bond length		1.612(13)	1.635(15)	2.093(13)		2.057(11)	1.840(7)
total bond valence: 7.08							
Xe(1)		O(3,3A)	F(3)	F(4)		F(2,2A)	F(4A)
bond valence		1.794	0.908	0.857		0.233	0.199
bond length		1.731(9)	1.892(13)	1.925(13)		2.848(8)	2.985(13)
total bond valence: 6.02							
			Bond Angles				
$O(1) - Tc(1) - O(2)$	101.5(8)	$O(2) - Tc(1) - F(1)$	169.8(7)	$F(1) - Tc(1) - F(2)$	79.9(3)	$O(3)-Xe(1)-F(3)$	91.5(4)
$O(1) - Tc(1) - F(1)$	88.7(6)	$O(2) - Tc(1) - F(1A)$	90.2(7)	$F(1A) - Tc(1) - F(2)$	80.1(3)	$O(3)-Xe(1)-F(4)$	91.1(4)
$O(1) - Tc(1) - F(1A)$	168.3(6)	$O(2) - Tc(1) - F(2)$	98.5(3)	$F(2) - Tc(1) - F(2A)$	153.8(5)	$F(3)-Xe(1)-F(4)$	175.7(6)
$O(1) - Tc(1) - F(2)$	98.0(3)	$F(1) - Tc(1) - F(1A)$	79.6(2)	$O(3) - Xe(1) - O(3A)$	105.6(6)		

a Bond valence units are defined in refs 5-7. $R_0 = 1.89$ (Tc^{VII}=O), $R_0 = 1.83$ (Tc^{VII}-F), $R_0 = 1.930$ (Re^{VII}=O), $R_0 = 1.836$ (Re^{VII}-F), $R_0 = 97$ (Sb^V-F), $R_0 = 1.836$ (Re^{VII}-F), $R_0 = 1.836$ (Re^{VII}-F) 1.797 (Sb^V–F), $R_0 = 1.971$ (Xe^{VI}=O), and $R_0 = 1.838$ (Xe^{VI}–F) were used along with $N = 3.33$ for Xe and $B = 0.37$ for Tc, Re, and Sb: Brown, I. D. Department of Physics, McMaster University, Hamilton, Ontario L8S 4M1, Canada. Private communication.

 $[Re_2O_4F_7]$ ² $2ReO_2F_3$ (1.672(9), 1.680(9) Å).¹² The terminal M-F bond lengths are shorter than the lengths of the terminal M-^F bonds cis to the oxygens in TcO_2F_3 (1.834(7) Å),¹³ [K]- $[Re_2O_4F_7]$ ² $2ReO_2F_3$ (1.831(6), 1.854(6) Å),¹² and $[L1][MO_2F_4]$ $(1.876(3)^{11}$ [1.867(8)],¹² Å). The bridging M-F_b bonds are significantly longer than the $Tc-F_b$ bonds in TcO_2F_3 (average 2.080(5) Å)¹³ and in [K][Re₂O₄F₇] \cdot 2ReO₂F₃ (2.085(6), 2.119-(7) Å).¹² The decrease in the M-F and M-O bond lengths in the MO_2F_3 'SbF₅ adducts relative to those of MO_2F_3 and MO_2F_4 ⁻
and longer $M-F_6$ bridge bonds are consistent with the increase and longer $M-F_b$ bridge bonds are consistent with the increase in covalent character of the terminal $M-O$ and $M-F$ bonds

⁽¹²⁾ Casteel, W. J., Jr.; Dixon, D. A.; LeBlond, N.; Lock, P. E.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1999**, *38*, 2340.

⁽¹³⁾ Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1993**, *32*, 145.

expected upon partial removal of a fluoride ion from $MO₂F₃$ by SbF_5 . The terminal $Sb-F$ bond lengths are equal in both complexes, and despite the smaller covalent radius of technetium, the bridging $M-F_b$ bond lengths of both MO_2F_3 . SbF₅ adducts are also essentially equal. The short $Re-F_b$ bond is indicative of the greater fluoride ion affinity, from local (LDFT) and nonlocal density functional theory (NLDFT), of ReO_2F_3 (78.0 (LDFT), 79.3 (NLDFT) kcal mol⁻¹)¹² relative to that of TcO₂F₃ (74.2 (LDFT), 75.7 (NLDFT) kcal mol⁻¹)¹² and is also reflected in the greater lability of the *trans*-dioxo fluorines of $TcO_2F_4^{-11}$ relative to those of $ReO_2F_4^{-12}$ in fluoride-basified anhydrous HF.

The total bond valence for the M^{VII} atom is 6.77 [6.99] vu (bond valence units), with contributions of 1.96 [2.09] vu/oxygen atom, 1.08 [1.03] vu/terminal fluorine atom, and 0.35 [0.37] $vu/bridging$ fluorine atom. The values for the $Tc-O$ double bonds and the $Tc-F_c$ bonds are slightly higher than those for $TcO₂F₃$ (1.94 and 0.99 vu, respectively) and those for $ReO₂F₃$ in $[K][Re_2O_4F_7]$ ² ReO_2F_3 (1.67 and 0.98 vu, respectively). The bond valence values for the $M-F_b$ bonds of the adducts are significantly smaller than that for TcO_2F_3 (0.51 vu) and that for ReO_2F_3 in [K][Re_2O_4F_7] \cdot 2 ReO_2F_3 (0.49 vu) and are also consistent with $TcO₂F₃$ and $ReO₂F₃$ in the roles of fluoride ion donors, with $TcO₂F₃$ acting as the stronger of the two donors. These findings are in accord with the relative fluoride ion affinities of $TcO₂F₃$ and $ReO₂F₃$, noted above, and with the high fluoride ion affinities of SbF₅ (120.3 kcal mol⁻¹) and AsF₅ $(105.9 \text{ kcal mol}^{-1})$.¹⁴

Although the octahedra formed by the light atoms in MO_2F_3 . SbF₅ are relatively undistorted (average $F_t \cdots F_b$, $F_b \cdots F_b$, $F_t \cdots$ O, Fb'''O, and O'''O distances are 2.525(7), 2.809(6), 2.647(8), 2.738(7), and 2.575(9) Å, respectively, for TcO_2F_3 . SbF₅ and 2.536(7), 2.714(7), 2.667(8), 2.767(8), and 2.598(9) Å, respectively, for ReO_2F_3 . Sb F_5), significant distortions are observed for the coordination spheres of the metal atoms in both adducts. The VSEPR model of geometry satisfactorily accounts for these distortions,¹⁵ with the greater spatial requirements of the oxygen double bond domains and their repulsive interactions with single bond pair domains at approximately right angles to them in the [O, F, F, F_b] planes, causing the F-M-F angle to bend away from the oxygen atoms. This angle is $146.2(2)$ ^o in TcO₂F₃·SbF₅ and $147.8(2)$ ^o in ReO₂F₃·SbF₅ and represents a significantly larger deviation from the ideal 180° angle than those found in TcO₂F₃ (154.9(3)-155.9(3)°),¹³ [Li][TcO₂F₄] (164.2(3)°),¹¹ ReO_2F_3 in [K][$Re_2O_4F_7$] \cdot 2Re O_2F_3 (153.0(3)°),¹² and [Li]- $[ReO₂F₄]$ (162.9(6)°).¹² The difference is consistent with the shorter, more covalent $M-O$ bonds observed for MO_2F_3 . SbF₅, and with their larger bond valence values, and results in stronger bond pair-bond pair repulsions than those in MO_2F_3 and [Li]- $[MO₂F₄].$

The significant variation in the $M-F_b-M$ bridging angles within and between the two structures is noteworthy: TcO_2F_3 . SbF_5 (163.4(3), 148.6(3)°); ReO_2F_3 SbF_5 (9149.5(3), 136.5(2)°). The fluorine bridge angles are intermediate with respect to those predicted for hexagonal (132°) and cubic (180°) closest packing of the fluorine atoms;16 they were also observed to vary widely in related structures such as $TcO₂F₃$ (140.5(3)–153.8(3)°)¹³ and $[Cs][Re₃O₆F₁₀]$ (178.7(6), 140.5(4)^o)¹² and are apparently strongly influenced by crystal packing.

(16) Edwards, A. J.; Jones, J. R. *J. Chem. Soc. A* **1968**, 2074.

Figure 2. The ¹⁹F NMR spectrum (282.409 MHz) of ReO_2F_3 ·SbF₅ in SO2ClF solvent recorded at 30 °C.

(c) Solution ¹⁹F NMR Characterization of the $Re₂O₄F₅⁺$ **Cation.** The ¹⁹F NMR spectrum of ReO_2F_3 ⁺SbF₅ in SO₂ClF at 30 °C (Figure 2) consists of a doublet (23.0 ppm) and a quintet (-152.8 ppm) having relative integrated intensities of 4.0:1.0, with a terminal to bridging fluorine coupling constant, $^{2}J(^{19}F_{t}$ $^{19}F_b$), of 105 Hz, and is consistent with the fluorine-bridged $Re₂O₄F₅⁺$ cation (structure II) (cf. $ReOF₅: 183.4$ (doublet) and -36.0 (quintet) ppm in HF; 199.0 (doublet) and -3.7 (quintet) ppm in $W F_6$;¹⁷ ²*J*(¹⁹F_{ax}-¹⁹F_{eq}) = 69 Hz in both solvents). A
broad, exchange-averaged resonance observed at -117.8 ppm broad, exchange-averaged resonance observed at -117.8 ppm $(\Delta v_{1/2} = 3750 \text{ Hz})$ is assigned to the Sb₂F₁₁⁻ anion. The bridging fluorine environment (quintet) is highly shielded, a feature in common with other fluorine-bridged transition metal oxofluoro species, e.g., $W_2O_2F_9^{-18}$ $M_2O_2F_9^{-19}$ and $Re_2O_4F_7^{-12}$ The ²*J*(¹⁹F_t-¹⁹F_b) coupling constant for $Re₂O₄F₅⁺$ is larger than ${}^{2}J({}^{19}F_{c,c} - {}^{19}F_b)$ for Re₂O₄F₇⁻ (75 Hz),¹² and comparison with $^{2}J(^{19}F_{c,c} - ^{19}F_{b})$ for Re₂O₄F₇⁻ (75 Hz),¹² and comparison with $^{2}J(^{19}F-^{19}F)$ for OsO₂F₄ (138 Hz)²⁰ and OsO₂F₃⁺ (164 Hz)³ shows the same trend in going from a *cis-*dioxo geometry base shows the same trend in going from a *cis*-dioxo geometry based on an octahedron to a trigonal bipyramidal arrangement where the oxygens are in the equatorial plane.

No other oxofluorides of the type $M_2O_4F_5$ have been reported, and no example of trigonal bipyramidal coordination comprising two singly fluorine-bridged MOF₃ moieties, $M_2O_2F_7$, has been characterized in solution although the structures of the $V_2O_4F_5^{3-}$ and $V_2O_2F_7^{3-}$ anions have been determined by X-ray crystallography²¹ and consist of face-sharing VO_2F_4 and VOF_5 octahedra, respectively, having three bridging fluorine ligands. The $U_2O_4F_5^-$ anion has also been reported,²² but no structural data other than an infrared spectrum, consistent with the linear geometry adopted by the $UO₂$ group in all other U^{VI} dioxo complexes, were reported. The $\text{Re}_2\text{O}_4\text{F}_5^+$ cation, which was only observed in SO2ClF solution, formed the polymeric adduct $ReO₂F₃$. SbF₅ upon crystallization from SO₂ClF (see X-ray Crystal Structures of TcO_2F_3 ·SbF₅ and ReO_2F_3 ·SbF₅). Dissolution of TcO₂F₃·AsF₅ in SO₂ClF resulted in yellow solutions that gave rise to complex, broad ¹⁹F NMR spectra at -80 °C.

- (20) Christe, K. O.; Dixon, D. A.; Mack, H. G.; Oberhammer, H.; Pagelot, A.; Sanders, J. C. P.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **1993**, *115*, 11279.
- (21) Buchholz, N.; Leimkühler, M.; Kiriazis, L.; Mattes, R. *Inorg. Chem.* **1988**, *27*, 2035.
- (22) Davidovich, R. L.; Zemskova, L. A. *Russ. Chem. Bull. (Engl. Transl.)* **¹⁹⁷⁸**, 1492; *Iz*V*. Akad. Nauk SSSR, Ser. Khim.* **¹⁹⁷⁸**, 1708.

⁽¹⁴⁾ Christe, K. O.; Dixon, D. A.; McLemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. *J. Fluorine Chem.* **2000**, *101*, 151.

⁽¹⁵⁾ Gillespie, R. J.; Hargittai, I. *The VSEPR Model of Molecular Geometry*; Allyn and Bacon: Boston, MA, 1991.

⁽¹⁷⁾ Bartlett, N.; Beaton, S.; Reeves, L. W.; Wells, E. J. *Can. J. Chem.* **1964**, *42*, 2531.

⁽¹⁸⁾ Buslaev, Y. A.; Kokunov, Y. V.; Bochkareva, V. A. *J. Struct. Chem. (Engl. Transl.)* **1972**, *13*, 570; *Zh. Strukt. Khim.* **1972**, *13*, 611.

⁽¹⁹⁾ Buslaev, Y. A.; Kokunov, Y. V.; Bochkareva, V. A.; Shostorovich, E. M. *J. Struct. Chem. (Engl. Transl.)* **1972**, *13*, 491; *Zh. Strukt. Khim.* **1972**, *13*, 526.

(d) Solution 19F and 99Tc NMR Studies of the Reactions of MO_2F_3 with AsF_5 and SbF_5 . The ¹⁹F NMR spectrum of TcO_2F_3 ⁻AsF₅/5AsF₅ in HF at -84 °C consists of a broad singlet at 109.2 ppm ($\Delta v_{1/2}$ = 438 Hz), which is significantly deshielded compared to the fluorine resonances of $TcO₂F₃(CH₃CN)$ (25.3) and 37.3 ppm in CH₃CN at 30 °C) and $TcO_2F_4^-$ (-14.1 and -18.7 ppm in CH₂CN: 23.0 ppm in HF) and is consistent with -18.7 ppm in CH₃CN; 23.0 ppm in HF) and is consistent with the formation of the TcO₂F₂⁺ cation. Broad resonances at -67.9
($\Delta v_{12} = 3500$ Hz) and -124.9 ppm ($\Delta v_{12} = 2500$ Hz) are $(\Delta v_{1/2} = 3500 \text{ Hz})$ and $-124.9 \text{ ppm } (\Delta v_{1/2} = 2500 \text{ Hz})$ are assigned to AsF_6^- and exchange-averaged AsF₅ and HF, respectively. The 19F NMR spectrum, recorded at 30 °C, consists of a singlet at -134.7 ppm ($\Delta v_{1/2} = 1675$ Hz) and is the result of rapid fluorine exchange among HF, AsF_5 , AsF_6^- , and fluorine on Tc^{VII} . The ⁹⁹Tc NMR spectrum of $TcO_2F_3 \cdot AsF_5/5AsF_5$ in HF at -54 °C is a singlet at 140.3 ppm ($\Delta v_{1/2} = 2500$ Hz) which is broadened by fast quadrupolar relaxation of the ⁹⁹Tc nucleus ($I = \frac{9}{2}$; $Q = -0.129(6) \times 10^{-28}$ m²).¹¹ Sharpening of the ⁹⁹Tc NMR signal occurs at 30 °C (143.2 ppm; $\Delta v_{1/2} = 793$) Hz) but is not sufficient to observe the $^{1}J(^{99}Tc^{-19}F)$ coupling. The $99Tc$ resonance is deshielded relative to that of TcO_3F in HF (43.7 ppm)²³ but is similar to that of $TcO₃⁺$ in HF (160.7) ppm).²³ The ¹⁹F NMR spectrum of TcO_2F_3 **.**SbF₅ in HF recorded at -80 °C comprises two broad resonances at 106.8 ($\Delta v_{1/2}$ = 1000 Hz) and -127.8 ppm ($\Delta v_{1/2} = 2350$ Hz) and an intense, sharp singlet at -193.7 ppm ($\Delta v_{1/2} = 30$ Hz), which are assigned to fluorine on Tc^{VII} , SbF_6^- , and HF solvent, respectively. An attempt was made to slow the fluorine exchange by dissolving TcO_2F_3 in neat SbF₅, but the high viscosity of SbF₅ increased the quadrupolar relaxation rate of ⁹⁹Tc, resulting in a very broad ⁹⁹Tc resonance, even at 64 °C (128.4 ppm; $\Delta v_{1/2}$ = 18 600 Hz). The 19F NMR spectrum of this solution recorded at 30 °C yielded a broad resonance at -114.1 ppm ($\Delta v_{1/2}$ = 4700 Hz) assigned to SbF₅ exchange-averaged with $\text{Sb}_n \text{F}_{5n+1}$ ⁻ and a singlet at 137.5 ppm ($\Delta v_{1/2}$ = 106 Hz) which is in good agreement with the F-on-Tc^{VII} resonance obtained for $TcO₂F₃$. $MF₅$ dissolved in HF acidified with MF₅.

The ¹⁹F NMR spectra of HF solutions of $\text{ReO}_2\text{F}_3 \cdot \text{AsF}_5/5\text{AsF}_5$ and ReO_2F_3 . $\text{SbF}_5/\text{SbF}_5$ at 30 °C each display a singlet in the fluorine-on-rhenium(VII) region of the spectrum. These resonances are broadened because of fluorine exchange with the solvent and occur at 19.8 ($\Delta v_{1/2}$ = 1625 Hz) and 24.4 ppm $(\Delta v_{1/2} = 1550 \text{ Hz})$ for HF solutions of ReO₂F₃ \cdot AsF₅ and $ReO₂F₃·SbF₅$, respectively. The spectrum of $ReO₂F₃·AsF₅$ / 5AsF₅ also displays an intense singlet at -163.5 ppm ($\Delta v_{1/2}$ = 210 Hz) assigned to HF, AsF₅, and AsF $_6$ ⁻ undergoing rapid fluorine exchange. The spectrum of ReO_2F_3 ⁻SbF₅/5SbF₅ displays two additional resonances at -125.3 ppm ($\Delta v_{1/2} = 2380$ Hz) in the F-on-Sb^V region of the spectrum assigned to SbF₅ exchange-averaged with Sbf_6^- and a resonance at -193.0 ppm
($\Delta v_{10} = 400$ Hz) assigned to HE. The low-temperature (-80) $(\Delta v_{1/2} = 400 \text{ Hz})$ assigned to HF. The low-temperature (-80) to -90 °C) ¹⁹F NMR spectra of ReO₂F₃·PnF₅ in HF and in PnF₅-acidified HF solutions are complex and are not treated in the present work, but they suggest equilibria involving the formation of fluorine-bridged oligomeric cations. Dissolution of ReO_2F_3 in neat SbF_5 slowed intermolecular fluorine exchange sufficiently at 30 °C to give a singlet at 37.4 ppm ($\Delta v_{1/2}$ = 200 Hz) in the F-on-Re^{VII} region of the spectrum. Intense, broad ¹⁹F resonances arising from polymeric $(SbF_5)_n/Sb_nF_{5n+1}$ ⁻ were also observed at -86.2 ($\Delta v_{1/2} = 1500$ Hz), -104.7 ($\Delta v_{1/2} =$ 1100 Hz), and -132.0 ppm ($\Delta v_{1/2} = 1350$ Hz). The chemical shifts corresponding to fluorine on Re^{VII} observed in HF solutions of $\text{ReO}_2\text{F}_3\cdot\text{PnF}_5$ acidified with PnF_5 and of ReO_2F_3

in neat $SbF₅$ are very similar to the chemical shift of the four equivalent terminal fluorines of the $\text{Re}_2\text{O}_4\text{F}_5^+$ cation (23.0 ppm, doublet; vide supra).

The ¹⁹F and ⁹⁹Tc chemical shift behaviors of $MO₂F₃$ in strong fluoride ion acceptor media are consistent with the formation of $MO_2F_2^+$ cations that are likely to interact with the solvent media, HF and SbF5, by formation of fluorine bridges, such as in the HF solvate $cis-MO_2F_2(H)_2^+$ (vide infra).

(e) Raman Spectra of MO2F3'**PnF5.** The Raman spectra of TcO₂F₃ \cdot PnF₅ and ReO₂F₃ \cdot PnF₅ (Pn = As, Sb) as solids and in HF solution are shown in Figures 3 and 4 and frequencies and their assignments are listed in Tables 3 and 4, respectively. Frequencies have also been calculated at several levels of theory for the tetrahedral $MO_2F_2^+$ cations in the gas phase and for the cis -dioxo $MO_2F_2^+$ cations fluorine-bridged to two HF molecules and have mainly been used to assign the spectra (see Theoretical Calculations). Assignments were also confirmed by comparison with those for polymeric $TcO_2F_3^{13}$ and $ReO_2F_3^{12}$, $TcO_2F_4^{-1}$, TcO_2F_4 and $\text{ReO}_2\text{F}_4^{-12}$ Spectral assignments for MO_2F_3 ·PnF₅ in HF
solution were also aided by polarization measurements. The solution were also aided by polarization measurements. The assignments of the fluorine-bridged PrF_6 groups in the solid state and of PrF_6^- in HF solution were made by comparison with their oxonium and alkali metal salts.^{24,25}

In accord with the crystal structures of TcO_2F_3 . SbF₅ and ReO_2F_3 . SbF₅, the spectra of the solid adducts were interpreted in terms of the local symmetries of the *cis*-MO₂F₄ units $(C_{2v}$ point symmetry) and the PnF₆ units (D_{4h} point symmetry). The approach is approximate and does take into account vibrational coupling within the polymer chain, including the coupled M---F---Pn bridging stretching and bending modes. Partially resolved vibrational band splittings, consistent with the couplings that are observed on several bands, are not explicitly assigned but are assigned under the local symmetries of the $MO₂F₄$ and $PhF₆$ units.

Although the assignments in HF solution are given for the " MO_2F_2 ⁺ cation", strong interactions between the cations and the solvent are likely to occur because of the expected strong Lewis acid characters of the $MO_2F_2^+$ cations. The simplicity of the solution spectra and their similarity to those of the solid adducts suggest that the $MO_2F_2^+$ cations are the dominant species and are coordinated to two HF solvent molecules, resulting in a $cis-MO_2F_2F_{2b}$ moiety (where F_b is the bridging fluorine of coordinated HF) having C_{2v} point symmetry. Consequently, the vibrational modes of " $MO₂F₂⁺$ " are assigned under the assumed C_{2v} point symmetry for HF-solvated *cis*dioxo $MO_2F_2(FH)_2^+$ cations.

The intense $MO₂$ and terminal metal-fluorine stretching modes are shifted to significantly higher frequencies both in the solid state and in solution when compared to those of MO_2F_3 , ^{12, 13} consistent with partial removal of fluoride ion. The antisymmetric and symmetric bridging MF_{2b} stretching modes of the solid adducts are assigned to the bands at 576 and 552 [570 and 517] cm^{-1} and 492 and 541 [542 and 503] cm^{-1} , respectively, on the basis of their broad, weak peak profiles, which are typical features in the spectra of other fluorine-bridged species.³ The MO₂ scissoring modes at 413, 416, and 410 [411] and 407] cm^{-1} in the solid adducts and at 409 and 407 [404] and 403] cm⁻¹ in HF solution are consistent features in the Raman spectra of *cis*-dioxo transition metal complexes and are in close agreement with those of TcO_2F_3 (411 cm⁻¹)¹³ and ReO_2F_3 (412 cm⁻¹).¹² The assignments of the remaining

⁽²⁴⁾ Begun, G. M.; Rutenberg, A. C. *Inorg. Chem.* **1967**, *6*, 2212.

⁽²⁵⁾ Christe, K. O.; Charpin, P.; Soulie, E.; Bougon, R.; Fawcett, J.; Russell, D. R. *Inorg. Chem.* **1984**, *23*, 3756.

Figure 3. Raman spectra of microcrystalline (a) TcO_2F_3 As F_5 and (b) ReO_2F_3 ^{AsF₅ recorded in FEP at -150 °C using 514.5-nm excitation} and (c) TcO_2F_3 : SbF_5 (647.1-nm excitation) and (d) ReO_2F_3 : SbF_5 (514.5nm excitation) recorded in Pyrex melting point capillaries at 23 °C. The dagger (†) denotes a plasma line, and asterisks (*) denote FEP sample tube lines.

deformation modes are more tentative. The symmetric terminal fluorine stretching modes for the AsF₆ and SbF₆ units under *D*⁴*^h* symmetry in the solid adducts are assigned to the highintensity bands at 669 [677] and 668, 678, 682 [670, 672] cm^{-1} , respectively. The corresponding out of phase modes for the AsF_6 and SbF_6 units are assigned at lower frequencies to bands at 640 and 613 [616] cm^{-1} , respectively. The in-plane bending modes of the terminal fluorines in the AsF_6 and SbF_6 units are assigned at 370 [372] and 286 [286] cm^{-1} , respectively, and

Figure 4. Raman spectra of HF solutions of (a) TcO_2F_3 AsF₅, (b) $\text{ReO}_2\text{F}_3\cdot \text{AsF}_5$, (c) $\text{TeO}_2\text{F}_3\cdot \text{SbF}_5$, and (d) $\text{ReO}_2\text{F}_3\cdot \text{SbF}_5$ recorded in FEP at 23 °C using 514.5-nm excitation, with the analyzer oriented parallel (\vert) and perpendicular (\bot) to the polarization of the incident beam. Asterisks (*) denote FEP sample tube lines.

are in good agreement with their counterparts in the spectra of octahedral PnF₆⁻ anions.^{24,25} Because PnF₅ and hence $\text{Ph}_n\text{F}_{5n+1}$ ⁻ $(n = 1 \text{ or } 2)$ are present in large excess in HF solutions of the adducts, the relative intensities of the $\text{Ph}_n\text{F}_{5+1}^-$ modes in these solutions are more intense than would be expected for the stoichiometric compound.

(f) Theoretical Calculations. The calculated structures and vibrational frequencies at the local density functional theory

Table 3. Raman Frequencies, Assignments and Mode Descriptions for Solid TcO₂F₃·PnF₅ and ReO₂F₃·PnF₅ (Pn = As, Sb)

		freq ^{a} (cm ⁻¹)		assigntb	
$TcO_2F_3 \cdot AsF_5^c$	$TcO_2F_3\cdot SbF_5^d$	$ReO2F3·AsF5c$	ReO_2F_3 ·Sb $\text{F}_5{}^d$	$F_{2b}MO_{2}F_{2}(C_{2v})$	F_4 Pn F_{2b} (D_{4h})
997 (100)	995 (100)	1035 (100)	1040 (100)	$A_1, \nu_s(MO_2)$	
985, sh 979 (23), sh	982 (14) 972 (17)	1009(32)	1025(39) 1013(16)	B_1 , $\nu_{as}(MO_2)$	
\mathfrak{e}	746 (< 1)	\sim 740 ^e		B_2 , $\nu_{as}(MF_2)^e$	
727, sh^e 714 (15)	721(2)	727 (10)	724 (4) 713 (11)	$A_1, \nu_s(MF_2)$	
700, sh	$702 (-1)$ 699 (<1) ^f		696(6)		E_u , $\nu_{as}(SbF_4)$
		694, sh			E_u , $\nu_{as}(AsF_4)$
	682(6) $678(5)$, sh 668 (89)		672(6) 670 (39)		$A_{1g}, \nu_s(SbF_4)$
669 (80)		677 (20)			$A_{1g}, \nu_s(AsF_4)$
$640 \, (<1)$, sh					$B_{1g}, \nu_s(AsF_4), o.p.$
	613(3)		616(6)		B_{1g} , $\nu_s(SbF_4)$, o.p.
576(5) 492(4)	552 (2), sh 541 (5)	$570(1)$, br $542(2)$, br	$517(2)$, br $503(1)$, br		A_{2u} , $\nu_{as}(PnF_{2b});$ $A_{1g}, \nu_s(PnF_{2b})^g$
416(21) 413 (12), sh	410 (19)	404 (27)	407(15)	A_1 , $\delta_{sc}(MO_2)$	
370(7)		372(6)			$B_{2g}, \delta_{sc}(AsF_4)$
357(2)		351(4)			E_g , δ (AsF ₂ F _{2b})
			342(2)	\boldsymbol{h}	
319 (25)	328 (16)	325(21) $318(17)$, sh	330(6) $318(6)$, sh	B_2 , $\rho_w(MO_2)$	
	312(9) $301(3)$, sh	307(20)	313(8) 298(8)	A_1 , $\nu_s(MF_{2b})$; B_1 , $\nu_{as}(MF_{2b})$	
295(51)	291(4)	291(8)	$294(6)$, sh	A_2 , δ (OMF)/ $\rho_t(MO_2)$	
	286(4)		286(6)		$B_{2g}, \delta_{sc}(SbF_4)$
276(4)		$277(6)$, sh		\boldsymbol{h}	
	270(6)		266(4)		E_{g} , δ (SbF ₂ F _{2b})
252(4) $246(3)$, sh	248(3) 241(3)	240(2) 232(3)	$245 \, (-1)$ 229(3)	B_1 , $\rho_w(MF_2)$	
234(9) $230(5)$, sh	$230(1)$, sh	201(1)		A_1 , $\delta_{sc}(MF_2)$	
208(3)	207(4)			A_1 , $\delta_{sc}(MF_{2b})$	
171(1)	178(3)		176(1)	B_2 , $\rho_w(MF_{2b})$	
157(1)			158(1) 151(1)	B_1 , $\rho_r(MO_2)$	
136(1) $120 (=1)$	127(2)	$132(3)$, br	$137 (-1)$ 129(1) $126 (\leq 1)$	δ (Pn-F---M)	
$104 (-1)$ 92(2) 48 (42)	105(2)		114(1) $105 (=1)$ $98 (=1)$ 89(2)	lattice modes	
83(2)			81 (4)	A_2 , $\rho_t(MF_{2b})$	

^a Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh) and broad (br). *^b* The 15 vibrational modes of the MO₂F₂F_{2b} units belong to the irreducible representations $6A_1 + 2A_2 + 4B_1 + 3B_2$ (the [O, O, M, F_b, F_b] plane is taken as the $\sigma_v(xz)$ plane with the *z* axis as the C_2 axis), and all are Raman and infrared active except the A_2 modes, which are only Raman active. The vibrational modes for the PnF₆ units belong to the irreducible representations $2A_{1g} + B_{1g} + B_{2g} + E_g + 2A_{2u} + B_{2u} + 3E_u$, of which the A_{1g} , B_{1g} , B_{2g} , and E_g modes are Raman active and the A_{2u} and E_u modes are infrared active. Symbols denote stretching (*v*), bend (δ), scissors bend (δ _{sc}) in the MO₂ or MF_{2b} plane, wag (ρ_w) , rock (ρ_r) , and torsion (ρ_t) . F denotes a terminal fluorine cis to oxygens and F_b a bridging fluorine in an M---F_b---Pn bridge; o.p. denotes out of phase. C Spectrum recorded on the microcrystalline solid in FEP at -150 °C using 514.5-nm excitation. d Spectrum recorded on the microcrystalline solid in a rotating Pyrex glass capillary at 23 °C using 647.1-nm (Tc) expected to be weak and, in the cases of TcO_2F_3 AsF₅ and TcO_2F_3 SbF₅, may coincide with FEP sample tube lines at 734 (100) and 752 (9) cm⁻¹.
These bands may be assigned to formally inactive Raman stretches (*f* These bands may be assigned to formally inactive Raman stretches (E_u and A_{2u}) which are visible because of factor group splitting within the unit cell. *g* These bands cannot be unambiguously assigned to either A_{2u}, v_{as} (PnF_{2b}) or A_{1g}, v_s (PnF_{2b}). The formal Raman inactivity of the A_{2u} mode suggests that it should be the weaker line. *^h* Unassigned band.

Table 4. Raman Frequencies, Assignments, and Mode Descriptions for $TcO_2F_3PnF_5$ and $ReO_2F_3PnF_5$ (Pn = As, Sb) in HF Solution^{*a*}

	$\text{assign} \mathfrak{t}^c$			
$TcO2F3·AsF5$	$TcO_2F_3 \cdot SbF_5$	$ReO2F3·AsF5$	$ReO2F3·SbF5$	$MO_2F_2(C_{2\nu})$
992 (100), p	993 (100), p	$1037(100)$, p	$1035(100)$, p	$A_1, \nu_s(MO_2)$
$972(23)$, sh, dp	981 (18), sh, dp	$1012(22)$, dp	$1011(20)$, dp	$B_1, \nu_{as}(MO_2)$
d	d	740 ^d	d	$B_2, \nu_{as}(MF_2)$
701 (15)	680 (34), p	$701(54)$, p	$689(16)$, p	$A_1, \nu_s(MF_2)$
$676(42)$, p	$655(30)$, p	$687(31)$, sh, p	$658(26)$, p	ϵ
664, sh, dp	662 , sh, dp	$620(2)$, dp		ϵ
	$507 \ (-1)$, dp		$503 \ (-1)$, dp	ϵ
$409(15)$, dp	$407(10)$, dp	$404(18)$, dp	$403(20)$, dp	$A_1, \delta_{sc}(MO_2)$
$375(6)$, dp		$371(5)$, sh, dp		ϵ
$321(17)$, dp	321(1), dp	$325(13)$, dp	$321(12)$, dp	B_2 , $\rho_w(MO_2)$
		$311(16)$, dp		A_1 , $\nu_s(MF_{2b})$; B_1 , $\nu_{as}(MF_{2b})$
$295(24)$, dp	$296(15)$, dp	$293(6)$, dp	$289(8)$, dp	A_2 , δ (OMF)/ $\rho_t(MO_2)$
	$290(15)$, sh, dp	$280(3)$, dp	$277(7)$, sh, dp	ϵ
	$274(10)$, sh, dp			ϵ
$234(6)$, dp	$239(4)$, dp	$236(1)$, dp	$239(3)$, dp	B_1 , $\rho_w(MF_2)$
			$223(2)$, dp	$A_1, \delta_{sc}(MF_2)$
$132(4)$, dp		$134(2)$, dp	$122(2)$, dp	ϵ

^a Spectra were recorded in FEP sample tubes at 23 °C using 514.5 nm excitation. *^b* See Table 3, footnote *a*; other abbreviations denote polarized (p) and depolarized (dp). *^c* The MO2F2F2b units of the solvated cations, *cis*-dioxo MO2F2(FbH)2, are assigned by analogy with those of the solid MO₂F₃·PnF₅ adducts (see Table 3, footnote *b*). F denotes a terminal fluorine cis to oxygens, and F_b is a bridging fluorine in an M---F_b-H bridge; remaining symbols are defined in Table 3, footnote *b*. *^d* Weak line likely obscured by overlap with FEP sample tube lines at 734 (100) and 752 (9) cm^{-1} . *e* Assigned to Pn₅F_{5*n*+1}⁻, where *n* = 1 and 2 likely dominate.

Table 5. Predicted LDFT Geometries for $MO_2F_2^+$ and $MO_4^ (M = Tc, Re)^a$

			free $TcO_2F_2^+$				TcO ₄		
geometric parameter	expt for solid adduct ^b	all- electron^c	HW ^d	EC ^e	free cis -TcO ₂ F ₂ (FH) ₂ ⁺ all-electron ^{c}	exp ^f	all- electron ^c	HW ^d	EC ^e
$Tc-O$	1.642	1.668	1.662	1.661	1.676	1.711(3), 1.724 ^g	1.742	1.738	1.735
$Tc-F$ \angle OTcO \angle FTcF \angle FTcO $Tc---Fb(H)$	1.802 103.3 146.2 100.4 2.220	1.801 105.9 113.5 109.3	1.795 105.6 116.1 109.2	1.793 105.6 116.1 108.6	1.823 104.3 137.9 102.7 2.318	$110.5(2)$, $109.0(2)$	109.5	109.5	109.5
geometric	expt for		free ReO_2F_2 ⁺		free cis-ReO ₂ F ₂ (FH) ₂ ⁺		ReO ₄		
parameter	solid adduct ^h	PP ⁱ	HW ^d	EC^e	EC^e	$expt^f$	PP ⁱ	HW ^d	EC^e
$Re-O$	1.656	1.684	1.670	1.668	1.673	$1.719(5)$, $1.733g$	1.755	1.740	1.740
$Re-F$ \angle OReO	1.811 103.2	1.811 105.5	1.798 105.0	1.795 105.0	1.817 103.6	110.2, 109.2	109.5	109.5	109.5

^a Bond distances in angstroms and bond angles in degrees. *^b* Average values for TcO2F3'SbF5 taken from Table 2. *^c* All-electron calculation with a DZVP basis set. *^d* Hay-Wadt ECP (refs 26-28) + DZVP2 basis set. *^e* Ermler-Christiansen ECP's (refs 29, 30) + DZVP2 basis set. *^f* Reference 31. *g* Value corrected for librational oscillations. *h* Average values for ReO₂F₃·SbF₅ taken from Table 2. *i* PP (refs 32, 33) + DZVP2.

(LDFT) level are given in Tables 5 and $6,^{26-34}$ respectively, for $TcO_2F_2^+$ and $ReO_2F_2^+$ and for their adducts with two HF molecules. We also report the calculated geometries (Table 5) and vibrational frequencies (Table 6) for TcO_4^- and ReO_4^- , which show good overall agreement between the different methods for TcO_4^- , with the all-electron and ECP results being

- (26) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 270.
- (27) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 284.
- (28) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 299.
- (29) Ermler, W. C.; Ross, R. B.; Christiansen, P. A. *Ad*V*. Quantum Chem.* **1988**, *19*, 139.
- (30) Ross, R. B.; Powers, J. M.; Atashroo, T.; Ermler, W. C.; LaJohn, L. A.; Christiansen, P. A. *J. Chem. Phys.* **1990**, *93*, 6654.
- (31) Krebs, B.; Hasse, K. D. *Acta Crystallogr.* **1976**, *32B*, 1334.
- (32) Chen, H.; Kraskowski, M.; Fitzgerald, G. *J. Chem. Phys.* **1993**, *98*,
- 8710.
(33) Troullier, N.; Martins, J. L. *Phys. Rev. B* **1991**, 43, 1993.
- (33) Troullier, N.; Martins, J. L. *Phys. Rev. B* **1991**, *43*, 1993. (34) Weinstock, N.; Schulze, H.; Müller, A. *J. Chem. Phys.* **1973**, 59, 5063.

quite similar. For ReO_4^- , the PP results differ from the ECP results by more than might be expected, especially for the frequencies of the bending modes. For $TcO_2F_2^+$, there are only small differences between the all-electron calculations and those done with the ECPs. We did not perform PP calculations for Tc because, in our prior experience, we did not obtain good geometries. The geometries around the metals are pseudotetrahedral, with the $O-M-O$ angle smaller than the ideal angle of 109.5° and the F-M-F angle opened up from the ideal angle, and are opposite to trends based on VSEPR considerations. The difference is accounted for by a π interaction (NHOMO) and a *σ* interaction (HOMO-3) between the cis oxygens. Addition of two HF molecules to mimic the fluorine bridge interactions in the adducts and solvation of the $MO_2F_2^+$ cations in HF solvent had a significant impact on the cation geometries. The HF molecules are weakly complexed to the cation with $(H)F_b--M$

Table 6. Predicted LDFT Vibrational Frequencies for $MO_2F_2^+$ and $MO_4^ (M = Tc, Re)^a$

expt, TcO_2F_3 . PnF ₅ adduct								
	As/Sb ^g	As/Sb^h	free TcO_2F_2 ⁺			free cis -TcO ₂ F ₂ (FH) ₂ ⁺		
symm	HF soln	solid	all-electron ^{c}	HW ^d	EC^e	all-electron ^{c}		assignt
A ₁	992/993	997/995	1034(35)	1050(32)	1056(31)	1016(57)		$v_s(TcO_2)$
	701/680	720/721	757 (42)	759 (43)	762 (44)	705(26)		$v_s(TcF_2)$
	409/407	414/410	374(0)	383(0)	385(0)	380 (23)		$\delta_{\rm sc}(\rm TcO_2)$
		232/230	189(4)	200(5)	197(5)	$224(1) + 303(0)^i$		$\delta_{\rm sc}(\rm TcF_2)$
A ₂	295/296	295/291	250(0)	262(0)	269(0)	286(0)		δ (OTcF)/ ρ_t (TcO ₂)
B_1	972/981	982/977	1035(59)	1046(59)	1052(61)	1019 (108)		$v_{\rm as}(TcO_2)$
	234/239	249/244	237(5)	240(4)	242(6)	$252(21) + 303(0)^i$		$\rho_{\rm w}(TcF_2)$
B ₂		$-.746$	801 (88)	802 (93)	806 (94)	771 (160)		$v_{\rm as}(TcF_2)$
	321/321	319/328	272(4)	281(4)	292(4)	314(13)		$\rho_{\rm w}(TcO_2)$
		expt, $ReO2F3 \cdot PnF5$ adduct						
	As/Sb ^g	As/Sb ^h		free $ReO2F2+$		free cis-ReO ₂ F ₂ (FH) ₂ ⁺		
symm	HF soln	solid	PP ^f	HW ^d	EC^e	EC^e		assignt
A ₁	1037/1035	1035/1040	1058(16)	1076(18)	1081 (19)	1060(41)		$v_s(ReO_2)$
	701/689	727/718	778 (42)	771 (43)	773 (44)	735(25)		$v_s(ReF_2)$
	404/403	404/407	397(0)	378(0)	378(0)	388 (48)		$\delta_{\rm sc}(\rm{Re}O_2)$
	$-./223$	$201/$	236(3)	208(3)	209(3)	$208(1) + 293(0)^i$		$\delta_{\rm sc}(\rm{Re}F_2)$
A ₂	293/289	291/294	314(0)	276(0)	277(0)	296(0)		δ (OReF)/ ρ_t (ReO ₂)
	1012/1011	1009/1019	1032(52)	1056(57)	1060(58)	1042 (96)		$v_{\rm as}$ (ReO ₂)
	236/239	236/237	262(4)	227(4)	228(4)	231 (19) + 296 (0) ⁱ		$\rho_{\rm w}(\text{Re}F_2)$
B ₂	740/		793 (75)	787 (80)	788 (81)	762 (138)		$v_{\rm as}$ (ReF ₂)
	325/321	322/324	335(3)	288(0)	279(3)	313(14)		$\rho_{\rm w}(\text{ReO}_2)$
			TcO ₄		ReO ₄			
symm	exp ^b	all-electron ^c	HW ^d	EC^e	exp ^b	PPf	HW ^d	EC^e
A	912	905(0)	923(0)	929(0)	971	953(0)	965(0)	969(0)
E	325	307(0)	312(0)	313(0)	331	374(0)	323(0)	324(0)
T_1	912	922 (665)	932 (678)	937 (683)	920	911 (655)	926 (656)	928 (662)
	336	326(16)	326(18)	328 (18)	331	332(16)	309(23)	310(23)

a Vibrational frequencies are in cm⁻¹, and values in parentheses are infrared intensities in km mol⁻¹. *b* Reference 34. *c* All-electron calculation with DZVP basis set. *^d* Hay-Wadt ECP (refs 26-28) + DZVP2 basis set. *^e* Ermler-Christiansen ECPs (refs 29, 30) + DZVP2 basis set. *^f* PP (refs 32,33) ⁺ DZVP2. *^g* Average values taken from Table 4. *^h* Average values taken from Table 3. *ⁱ* Minor contribution.

distances of 2.32 [2.34 (rhenium values in square brackets)] Å and an $(H)F_b$ ---M--- $F_b(H)$ angle of 78.8 [78.1]^o. The complex was fully optimized to C_{2v} symmetry, which resulted in two imaginary frequencies corresponding to the HF groups moving in and out of the plane. These geometries should, however, provide a reasonable representation of what is occurring in the first coordination sphere of the metal. Coordination of the HF molecules causes the $M-O$ and $M-F$ bonds to lengthen relative to those in free $MO_2F_2^+$. The biggest change is in the $F-M-F$
angle, which increases from 116 [118] to 138 [138]^o. However angle, which increases from 116 [118] to 138 [138]°. However, the geometry clearly is not an ideal octahedron, with the ^F-M-F angle being closer to the tetrahedral angle than to 180° for the octahedron.

The LDFT geometries and vibrational frequencies calculated for the *cis*-dioxo HF adducts of both $MO_2F_2^+$ cations are in the best overall agreement with the experimental values for the solid SbF_5 adducts of MO_2F_3 and for the PnF₅ adducts in PnF₅acidified HF solutions. As in the case of the experimental M--- F_b bridge distances in the Sb F_5 adducts (see X-ray Crystal Structures of TcO_2F_3 . Sb F_5 and ReO_2F_3 . Sb F_5), the calculated M---F_b bridge distances of the HF adducts of $MO_2F_2^+$ are similar to each other and reflect the stronger Lewis acid character of $ReO₂F₃$. The calculated M--- F_b distances are both significantly longer than those in the $SbF₅$ adducts, and this is in accord with the anticipated greater fluoride ion affinity of H^+ relative to that of SbF_5 .

The vibrational spectra for the isolated $MO_2F_2^+$ ions agree reasonably well with the experimental results except for the ^M-F stretches and bends. For the stretches, the isolated ion spectra predict higher values than observed whereas the FMF

bends are predicted to be too low. Addition of the two HF molecules significantly improves the agreement with experiment. The $M-O$ stretches exhibit a slight decrease whereas the $M-F$ symmetric stretch exhibits a significant decrease. The FMF bend shows a significant increase on complexation, and we note that it contributes to two modes with the higher one in good agreement with experiment. The OMO bend is essentially unchanged on complexation, but the OMO out-of-plane bend increases to give better agreement with experiment. Complexation has a greater impact on the $MF₂$ moiety and is consistent with the geometry changes on complexation. The asymmetric $(H)F_b-M$ stretch is predicted to be at 303 [296] cm⁻¹ with a contribution to the MF_2 out-of-plane bending mode at 252 [231] cm^{-1} . The symmetric (H)F_b---M stretch is predicted to be at 303 [293] cm⁻¹, and the $(H)F_b$ ---M--- $F_b(H)$ bend is predicted to be at 70 [64] cm^{-1} .

The $\text{ReO}_2\text{F}_2(\text{CH}_3\text{CN})_2^+$ Cation. (a) NMR Spectroscopy. The ¹⁹F NMR spectrum of ReO_2F_3 . SbF₅ dissolved in CH₃CN at 0 \degree C consists of a multiplet at -122.8 ppm resulting from the superposition of an equiintense sextet and an equiintense octet (relative integrated intensities 1.00:2.85) arising from the Sbf_6^- anion $\frac{1}{J}$ ($\frac{19F-121}{S}$ b) = 1932 Hz; $\frac{1}{J}$ ($\frac{19F-123}{S}$ b) = 1044 Hz], in excellent agreement with the literature values for [Ag]- [SbF₆] in CH₃CN [-123 ppm; ¹*J*(¹⁹F-¹²¹Sb) = 1934 Hz; 1 *J*(¹⁹F-¹²¹Sb) = 1047)]³⁵ and a singlet at 7.2 ppm ($\Delta v_{1/2}$ = 15 Hz) assigned to F on Re^{VII}. The well-resolved spin-spin couplings between ¹⁹F and the quadrupolar ¹²¹Sb and ¹²³Sb nuclei and relative intensities of the F-on-Re^{VII} and F-on-Sb^V

(35) Kidd, R. G.; Matthews, R. W. *Inorg. Chem.* **1972**, *11*, 1156.

resonances (3:1) indicate dissociation of the adduct into distinct cations and anions. The ReO_2F_2^+ cation is expected to be highly acidic and to coordinate to two solvent molecules in order to achieve a coordination number of 6. The occurrence of a sharp singlet in the ¹⁹F NMR spectrum indicates that the two fluorine ligands are symmetry equivalent. The ¹H NMR spectrum consists of two singlets at 2.00 and 2.64 ppm, corresponding to the solvent and a single chemical environment for complexed $CH₃CN$, respectively. The ¹³C NMR spectrum also shows a single chemical environment for complexed CH₃CN at 125.4 (CN) and 3.10 ppm (CH_3) , as well as the solvent at 117.4 (CN) and 0.48 (CH₃) ppm. The complexation shifts for $\text{ReO}_2\text{F}_2(\text{CH}_3-$ CN)₂⁺ (0 °C; $\Delta \delta(^{1}H) = 0.64$ ppm; $\Delta \delta(^{13}CH_3) = 2.62$ ppm;
 $\Delta \delta(^{13}CN) = 8.00$ ppm) are significantly larger than those $\Delta\delta$ ⁽¹³CN) = 8.00 ppm) are significantly larger than those observed for ReO2F3(CH3CN) in SO2ClF solvent (-⁸⁰ °C; [∆]*δ*- $(1H) = 0.46$ ppm; $\Delta\delta(^{13}CH_3) = 1.08$ ppm; $\Delta\delta(^{13}CN) = 1.54$ ppm).12 These observations are consistent with two symmetryequivalent CH3CN ligands and the greater Lewis acidity of the ReO_2F_2 ⁺ cation relative to that of ReO_2F_3 . The arrangement of the oxygens in the complex is expected to be cis, as in all d^0 $dioxo$ -transition metal complexes, and the CH₃CN ligands are expected to coordinate to the positions trans to the oxo ligands, as observed for $MoO₂F₂(thf)₂$ ³⁶ $MOF₄(CH₃CN)$ (M = Mo, W)³⁷ $MOF₄(CH₃CN)$ (M = T_C¹¹ Re¹²) and ReQ₂F(CH₂-W),³⁷ MO₂F₃(CH₃CN) (M = Tc,¹¹ Re¹²), and ReO₃F(CH₃- CN)₂.¹² As a result, the ligand arrangement inferred for the $ReO_2F_2(CH_3CN)_2^+$ cation is shown in structure **III**.

Acetonitrile solutions of $[ReO₂F₂(CH₃CN)₂][SbF₆]$ slowly decomposed at 0 °C, with the original colorless solution turning dark red within ca. 20 min. As the decomposition proceeded, a doublet and a triplet $[{}^1J({}^{19}F-{}^{19}F) = 117 \text{ Hz}]$ appeared at -24.6 and -33.1 ppm, respectively, arising from the colorless $ReO₂F₃(CH₃CN)$ adduct. The low solubility of the $[ReO₂F₂(CH₃ CN_{2}$ [SbF₆] salt in CH₃CN prevented the acquisition of NMR spectra at temperatures lower than 0° C, and no attempt was made to identify the species responsible for the intense dark red color.

(b) Raman Spectroscopy. The Raman spectrum of $[ReO₂F₂ (CH₃CN)₂$ [SbF₆] isolated from CH₃CN solution is shown in Figure 5. The observed frequencies and their assignments for the cation $(C_{2v}$ point symmetry) and the anion (O_h) point symmetry) are listed in Table 7. The vibrational assignments were made by comparison with the Raman spectra of polymeric ReO_2F_3 ,¹² ReO_2F_3 ·PnF₅ (Tables 3 and 4), $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$,¹² ReO_2F_3 ,¹² $\text{ReO}_2\text{F}_3\cdot\text{PnF}_5$ (Tables 3 and 4), $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$,¹²
CH₃CN,^{38,39} and ReO_2F_4 ⁻¹² and by comparison with the calculated values for the ReO_2F_2 ⁺ and *cis*- $\text{ReO}_2\text{F}_2(\text{FH})_2$ ⁺ cations (Table 6).

The antisymmetric and symmetric ReO_2 stretching modes are readily assigned to bands at 998 and 1012 cm^{-1} , respectively, and their presence confirms the *cis*-dioxo arrangement predicted for the cation (see NMR Spectroscopy). The antisymmetric and symmetric $\text{Re}F_2$ stretching modes occur at 574 and 648 cm⁻¹,

(37) Buslaev, Y. A.; Kokunov, Y. V.; Bochkareva, V. A.; Shostorovich, E. M. *Russ. J. Inorg. Chem. (Engl. Transl.)* **1972**, *17*, 1675; *Zh. Neorg. Khim.* **1972**, *17*, 3184.

(39) Yamadera, R.; Kremm, S. *Spectrochim. Acta* **1968**, *24A*, 1677.

Figure 5. Raman spectrum of microcrystalline $[ReO₂F₂(CH₃CN)₂]$ [SbF₆] recorded in FEP at -150 °C using 514.5-nm excitation. Asterisks $(*)$ denote FEP sample tube lines.

Table 7. Raman Frequencies, Assignments, and Mode Descriptions for [ReO2F2(CH3CN)2][SbF6]*^a*

	assignt c	
freq ^b $\rm (cm^{-1})$	$ReO_2F_2(CH_3CN)_2^+(C_{2\nu})$	$SbF_6^ (O_h)$
3012 (21)	$v_{\rm as}$ (CH ₃)	
2950 (86), sh	ν _s CH_3)	
2330 (71), 2327 (66), sh	$\nu(CN)$	
1448(3)	$\delta_{\rm as}$ (CH ₃)	
1411(3)	$\delta_{as}(CH_3)$	
1355 (13)	$\delta_{s}(CH_3)$	
1012 (100)	B_1 , ν_{as} (ReO ₂)	
998 (49)	$\nu(CC)$	
956 (24)		
672 (29)		$A_{1g}, \nu_s(SbF_6)$
648 (82)	$A_1, \nu_s(ReF_2)$	
574 (10)	$B_2, \nu_{as}(ReF_2)$	
558(1)		E_g , $\nu_{as}(SbF_4)$
419(4)	δ (CCN)	
414(4)	δ (CCN)	
388 (32)	A_1 , δ (ReO ₂)	
365 (3), 340 (3)	d	
313 (19)	A ₁ , δ (ReF ₂)	
304 (35)	B_2 , $\rho_w(ReO_2)$	
293 (15)	B_1 , δ (ReF ₂)	
277 (17)	A_2 , $\rho_t(ReO_2)$	$T_{2g}, \delta_s(SbF_4)$
264 (5)	A_1 , $\nu_s(ReN_2)$	
253(2)	B_1 , $\delta_{as}(ReN_2)$	
$209(5)$, sh	\overline{d}	
199 (10)	B_2 , $\rho_w(ReN_2)$	
177(1)	d	
101(22)	A_1 , δ (ReN ₂)	
86 (19)	B_1 , $\rho_r(ReO_2)$	
54 (5)	A_2 , $\rho_t(ReN_2)$	

^a The spectrum was recorded on the microcrystalline solid in FEP at -150 °C using 514.5-nm excitation. Bands assigned to residual CH₃CN solvent (C_{3v} point symmetry): $v_1(A_1)$, 2945 (90), 2 v_3 , 2730 (1); $v_3 + v_4$, 2293 (21), 2300 (24), $v_2(A_1)$, 2252 (45), 2256 (48), $v_3(A_1)$, 1374 (16), $v_4(A_1)$, 919 (12). *b* Abbreviations are defined in Table 3, footnote *a*. *^c* Symbols are defined in Table 3, footnote *b*. *^d* Unassigned band.

respectively, and display an ordering which is opposite to that for the MO_2F_3 ·PnF₅ adducts but the same as that for TcO_2F_4 ⁻

and for ReO_2F_4 ⁻. The band at 388 cm⁻¹ is assigned to the ReO_2 scissoring motion, which is at lower frequency than those for $ReO₂F₃$ (412 cm⁻¹), $ReO₂F₃$ SbF₅ (407 cm⁻¹), and $ReO₂F₃(CH₃$ - CN) (408 cm⁻¹). The remaining low-frequency bands are very similar to those in the ReO_2F_3 . SbF₅ spectrum and are tentatively assigned to $\text{Re}F_2$ bending motions as well as to $\text{Re}O_2$ and $\text{Re}N_2$ wagging, twisting, and rocking motions. The antisymmetric and symmetric $\text{Re}N_2$ stretching modes are expected to occur in the $200-300$ cm⁻¹ region of the spectrum as observed for other transition metal complexes with $CH₃CN³⁸$ and are tentatively assigned to the bands at 253 and 264 cm^{-1} , respectively. The Raman-active $v_1(A_g)$, $v_2(E_g)$, and $v_5(T_{2g})$ modes associated with the octahedral SbF_6^- anion are in good agreement with the values previously reported in the literature²⁴ and are consistent with an SbF_6^- anion that is not significantly distorted from O_h symmetry. The bands assigned to v_8 (378 cm⁻¹), v_4 (920 cm⁻¹), v_6 (1448 cm⁻¹), and $v_3 + v_4$ (2297 cm⁻¹) of free CH₃CN are shifted to 414/419, 956, 1411, and $2327/2330$ cm⁻¹, respectively, in $[ReO_2F_2(CH_3CN)_2][SbF_6]$ and are similar to those observed for $\text{ReO}_2\text{F}_3(\text{CH}_3\text{CN})$,¹² $\text{TeO}_2\text{F}_3(\text{CH}_3\text{CN})$,¹¹ and alkali, alkaline earth, and transition metal complexes such as the $Co(CH_3CN)_6^{2+}$ cation.^{40,41}

The TcO2F3'**XeO2F2 Adduct.** Xenon hexafluoride is used in the preparation of $TcO₂F₃$ to scavenge water produced by the solvolysis of Tc_2O_7 in HF and to fluorinate TcO_3F to TcO_2F_3 (eqs $4-6$).¹³ The stoichiometry for the complete conversion of

$$
Tc_2O_7 + 4 HF \rightarrow 2TcO_3F + H_3O^+ + HF_2^-
$$
 (4)

$$
XeF_6 + H_3O^+ + HF_2^- \to XeOF_4 + 4HF
$$
 (5)

$$
TcO_3F + XeF_6 \rightarrow TcO_2F_3 + XeOF_4 \tag{6}
$$

 Tc_2O_7 to TcO_2F_3 and formation of $XeOF_4$ corresponds to the molar ratio XeF_6 :Tc₂O₇ = 3:1. When smaller quantities of XeF_6 are used (a 1.5:1 molar ratio was used in the present work), $XeOF_4$ acts as a fluorinating agent and XeO_2F_2 is formed (eq 7). The pale yellow adduct TcO_2F_3 . Xe O_2F_2 was sublimed from

$$
\text{TeO}_3\text{F} + \text{XeOF}_4 \rightarrow \text{TeO}_2\text{F}_3 + \text{XeO}_2\text{F}_2 \tag{7}
$$

a mixture of TcO_2F_3 and TcO_2F_3 'Xe O_2F_2 under static vacuum at 45 °C and showed no sign of decomposition when stored under dry nitrogen at room temperature for at least 2 weeks.

(a) X-ray Crystal Structure of TcO2F3'**XeO2F2.** Details of the data collection parameters and other crystallographic information are given in Table 1 and in the Supporting Information. Important bond lengths, bond valences, and bond angles and significant long contacts are listed in Table 2.

The structure of TcO_2F_3 'Xe O_2F_2 consists of infinite chains of TcO_2F_3 running parallel to the *c* axis and bridged to XeO_2F_2 chains by long Tc-F…Xe contacts (Figure S2 (Supporting Information)). There is one O \cdots O contact between the TcO₂F₃ chains $(O(1)\cdots O(2), 2.781 \text{ Å})$ and one O \cdots F contact between a TcO₂F₃ chain and XeO₂F₂ (O(2) \cdots F(3), 2.799 Å) which are at the limit of the sum of the van der Waals radii of F and O.9,10

The Tc atoms in the $TcO₂F₃$ chains are bonded to two oxygens that are cis to each other (Figure 6a) and trans to the bridging fluorines and two fluorine atoms that are cis to the oxygens and trans to each other, as was observed in the crystal

Figure 6. Structures of (a) the TcO_2F_3 infinite chain and (b) the XeO_2F_2 infinite chain portions of the TcO₂F₃·XeO₂F₂ adduct. Thermal ellipsoids are shown at the 50% probability level.

structure of TcO_2F_3 .¹³ All bond lengths and bond angles are identical (within 3σ) to those reported previously for polymeric $TcO₂F₃$.

The arrangement of the light atoms around Xe is similar to what was observed in the structure of $XeO₂F₂$ and is consistent with the disphenoidal AX_2Y_2E geometry predicted by the VSEPR model;15 i.e., the doubly bonded oxygen atoms and the lone pair occupy the equatorial plane and the fluorine atoms lie in axial positions. An interesting feature of this structure is that the $XeO₂F₂$ molecules have secondary contacts to Xe through fluorine bridging within the XeO_2F_2 chains (Figure 6b), rather than through Xe \cdots O contacts as in the structure of XeO_2F_2 .⁴² The Xe-O distance (1.734(9) \AA) is equal (within XeO_2F_2 . (1.714(4) \AA) and similar to the $Xe=O$ 3σ) to that in XeO₂F₂ (1.714(4) Å) and similar to the Xe=O bond lengths of XeOF₄ (1.706(15),⁴³ 1.708(2),⁴⁴ 1.711(3)⁴⁵ Å) and $XeO₃$ (1.76(3) Å).⁴⁶ There are two types of axial $Xe-F$ bonds in the present structure. One is slightly longer $(1.925(13)$ Å) than the other $(1.892(13)$ Å) as a result of a secondary fluorine bridge contact with Xe in a neighboring $XeO₂F₂$ molecule, and both agree well with the $Xe^{VI}-F$ bond lengths previously reported for XeO_2F_2 (1.899(3) Å)⁴² and $XeOF₄ (1.903(5),⁴³ 1.9024(9),⁴⁴ 1.892(2)⁴⁵ Å). All bond angles$ are identical to those in XeO_2F_2 . Contrary to the VSEPR model prediction, the F-Xe-F angle is bent *toward* the nonbonding electron pair on xenon both in the present structure and in the structure of XeO_2F_2 . This feature was also observed in the X-ray structures of $XeO_2F_2^{42}$ and $XeO_2(OTeF_5)_2^{47}$ as well as in the gas phase (microwave 43 and electron diffraction 44) structures of XeOF₄. Huston and co-workers⁴² explained this feature in

- (42) Peterson, S. W.; Willett, R. D.; Huston, J. L. *J. Chem. Phys.* **1973**, *59*, 453.
- (43) Martins, J. F.; Wilson, E. B. *J. Mol. Spectosc.* **1968**, *26*, 410. (44) Jacob, E. J.; Thompson, H. B.; Bartell, L. S. *J. Mol. Struct.* **1971**, *8*,
- 383.
- (45) Pointner, B. E.; Schrobilgen, G. J. Unpublished results.
- (46) Templeton, D. H.; Zalkin, A.; Forester, J. D.; Williamson, S. M. In *Noble Gas Compounds*; Hyman, H. H., Ed.; University of Chicago: Chicago, IL,1963; p 221.
- (47) Turowsky, L.; Seppelt, K. *Z. Anorg. Allg. Chem.* **1992**, *609*, 153.

⁽⁴⁰⁾ Reedijk, J.; Groeneveld, W. L. *Recl. Tra*V*. Chim. Pays-Bas* **¹⁹⁶⁸**, *⁸⁷*, 1079.

⁽⁴¹⁾ Reedijk, J.; Zuur, A. P.; Groeneveld, W. L. *Recl. Trav. Chim. Pays-Bas* **1967**, *86*, 1127.

Table 8. Raman Frequencies, Assignments, and Mode Descriptions for the TcO₂F₃**·XeO**₂F₂ Adduct^{*a*}

152 (1), 129 (2), 111 (2), 94 (<1), 74 (3) unassigned deformation and lattice modes

^a The spectrum was recorded on microcrystalline solid in FEP at 23 °C using 514.5-nm excitation. ^b Values in parentheses denote rela intensities. Abbreviations are defined in Table 3, footnote *a*. *^c* Symbols are defined in Table 3, footnote *b*. *^d* Reference 58. *^e* The vibrational modes of the TcO₂F₄ units (point symmetry C_{2v}) belong to the irreducible representations $6A_1 + 2A_2 + 4B_1 + 3B_2$ (the [O, O, Tc, F_b, F_b] plane is taken as the $\sigma_v(xz)$ plane with the *z* axis as the principal axis) and are all Raman active whereas only the A₁, B₁, and B₂ modes are infrared active. ^{*f*} The vibrational modes of the XeO₂F₂ units (point symmetry C_{2v}) belong to the irreducible representations $4A_1 + A_2 + 2B_1 + 2B_2$ and are all Raman active whereas the A_1 , B_1 , and B_2 modes are infrared active.

the structure of XeO_2F_2 by assuming that the $Xe-O$ double bonds repel the Xe-F bonds more effectively than the Xe lone pair, whereas the small O-Xe-O angle results from an inherent preference of the oxygen ligands to bond to the Xe p orbitals rather than to the Xe s orbital, and not because of repulsion from the lone valence electron pair on Xe. Gillespie and Robinson⁴⁸ explain these apparent inconsistencies by assuming that the lone-pair domain exerts directional repulsive effects; i.e., a lone-pair domain in an equatorial position spreads out more in the equatorial direction than in the axial direction.

The total bond valence for the technetium atom is 7.08 vu, with contributions of 2.06 vu/oxygen atom, 0.97 vu/terminal fluorine atom, and 0.52 vu/bridging fluorine atom, which are essentially identical to those calculated for polymeric TcO_2F_3 .¹³ The total bond valence for the xenon atom is 6.02 vu, with contributions of 1.79 vu/oxygen atom and 0.91 vu/terminal fluorine atom. The coordination sphere around Xe is completed by one long contact with a terminal fluorine of another $XeO₂F₂$ unit $(2.985(13)$ Å, 0.20 vu) and two terminal fluorines of the $TcO₂F₃$ chain (2.848(8) Å, 0.23 vu) (vide supra). The long contacts between Xe and the terminal fluorine atoms on Tc are significantly shorter than the sum of the van der Waals radii (3.63 Å) ,¹⁰ as indicated by their bond valence values (0.23 vu) , and clearly indicate that XeO_2F_2 is acting as a fluoride ion acceptor toward $TcO₂F₃$. This Lewis acid-base interaction, in which the $TcO₂F₃$ chain is only slightly perturbed, is significantly weaker than that in the TcO_2F_3 . Sb F_5 adduct, in which the SbF₅ is incorporated directly into the $TcO₂F₃$ chain, and is consistent with the significantly stronger Lewis acid character of SbF_5 relative to that of XeO_2F_2 . It is also noteworthy that the three long Xe'''F contacts are directed so that they avoid the valence lone pair of the xenon atom, as observed in the structures of $XeF_3^{+,49-51} XeF_5^{+,52-56}$ and $XeOF_3^{+,57}$ salts.

Figure 7. Raman spectrum of TcO₂F₃·XeO₂F₂ recorded in FEP at 23 °C using 514.5-nm excitation. Asterisks (*) denote FEP sample tube lines.

(b) Raman Spectrum of TcO2F3'**XeO2F2.** The Raman spectrum of the TcO_2F_3 'Xe O_2F_2 adduct is shown in Figure 7, and the vibrational frequencies and their assignments are listed in Table 8. Vibrational assignments for the adduct are largely based on correlations with the Raman spectra of polymeric TCO_2F_3 ,¹³ TCO_2F_4 ⁻¹¹ and TCO_2F_3 · PnF_5 (Tables 3 and 4)
calculated values for TCO_2F_4 · $FTh+$ (Table 6) and XeO_2F_2 ⁵⁸ calculated values for $TcO_2F_4(FH)_2^+$ (Table 6) and $XeO_2F_2^{58}$

- (49) Boldrini, P.; Gillespie, R. J.; Ireland, P. R.; Schrobilgen, G. J. *Inorg. Chem.* **1974**, *13*, 1690.
- (50) McKee, D. E.; Zalkin, A.; Bartlett, N. *Inorg. Chem.* **1973**, *12*, 1713. (51) Gillespie, R. J.; Martin, D.; Schrobilgen, G. J. *J. Chem. Soc., Dalton*
- *Trans.* **1977**, 2234. (52) Adams, C. J.; Bartlett, N. *Isr. J. Chem.* **1978**, *17*, 114.
- (53) Bartlett, N.; Gennis, M.; Gibler, D. D.; Morrell, B. K.; Zalkin, A. *Inorg. Chem.* **1973**, *12*, 1717.
- (54) Bartlett, N.; Einstein, F.; Stewart, D. F.; Trotter, J. *J. Chem. Soc., Chem. Commun.* **1966**, 550.
- (55) Bartlett, N.; Einstein, F.; Stewart, D. F.; Trotter, J. *J. Chem. Soc. A* **1967**, 1190.
- (56) Frlec, B.; Bohinc, M.; Charpin, P.; Drifford, M. *J. Inorg. Nucl. Chem.* **1972**, *34*, 2938.
- (57) Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S. *Inorg. Chem.* **1993**, *32*, 386.
- (58) Christe, K. O.; Wilson, W. W. *Inorg. Chem.* **1988**, *27*, 3763.

A number of deformation modes associated with $XeO₂F₂ (XeO₂)$ twist, $XeO₂$ wag, and out-of-plane $XeF₂$ bend) were not observed but are expected to be very weak on the basis of the intensities reported for $XeO₂F₂$ (see Table 8).

The symmetric and antisymmetric $Tc-O$ stretches are assigned to bands at 984 and 959 cm^{-1} , respectively, and occur at higher frequency compared to the corresponding stretches for polymeric $TcO₂F₃$ (974 and 963 cm⁻¹), which is consistent with the increased valence bond orders observed in the crystal structure of $TcO₂F₃ \cdot XeO₂F₂$ and the fluoride ion donor properties of TcO₂F₃ in this adduct. The preference for fluorine bridge (Xe…F secondary contact) formation within $XeO₂F₂$ chains in $TcO_2F_3 \cdot XeO_2F_2$ (see X-ray Crystal Structure of $TcO_2F_3 \cdot XeO_2F_2$) versus oxygen bridge (Xe'''O secondary contact) formation in solid $XeO₂F₂$ is not unambiguously reflected in their relative Xe-F and Xe-O stretching frequencies (Table 8). The $v_{\text{as}}(XeO_2)$ modes of solid XeO_2F_2 (881 cm⁻¹) and of the adduct (889 cm^{-1}) exhibit the expected trend and are significantly lower than those for matrix-isolated XeO_2F_2 (906 cm⁻¹), where no short Xe…F or Xe…O contacts can occur. Although the $v_s(XeO₂)$ stretches show no consistent trend, the symmetric and antisymmetric Xe-F stretches at 499 and 553 cm⁻¹ for the adduct display significant shifts to lower frequency relative to those of solid $XeO₂F₂$ (537 and 578 cm⁻¹) and matrix-isolated $XeO₂F₂$ (537 and 585 cm⁻¹) that likely arise from $Xe^{...}F$ interactions in the adduct. The stretching frequencies for XeO_2F_2 in the adduct are generally intermediate between those of pure XeO_2F_2 and the $XeO_2F_3^-$ anion^{58,59} and reflect the more polar nature of the XeO_2F_2 bonding in the adduct and the Lewis acid behavior of XeO_2F_2 toward TcO_2F_3 in this adduct; they are also consistent with Tc-F $\cdot\cdot\cdot$ Xe secondary interactions found in the crystal structure of $TcO_2F_3 \cdot XeO_2F_2$.

Conclusion

Both $TcO₂F₃$ and $ReO₂F₃$ were shown to behave as fluoride ion donors toward the strong fluoride ion acceptors AsF_5 and SbF₅. Although discrete $TcO_2F_2^+$ and $ReO_2F_2^+$ cations could not be definitively characterized in PrF_5 -acidified HF and SbF_5 solutions by NMR and Raman spectroscopy, the spectroscopic findings are consistent with the formation of solvated $MO_2F_2^+$ cations such as $cis-MO_2F_2(FH)_2^+$. Although the solution structures of the cations could not be firmly established because of lack of detail in the vibrational and NMR spectra, the assumptions are reasonable and are supported by theoretical calculations. The high solubilities of the MO_2F_3 ·PnF₅ adducts in HF and the characterization of $[ReO_2F_2(CH_3CN)_2][SbF_6]$ in CH₃-CN solutions of ReO_2F_3 . SbF₅ also support these findings. In the solid state, the MO_2F_3 . PnF₅ adducts show strong interactions through the formation of strong fluorine bridges and adduct structures comprising of chains of alternating fluorine-bridged MO_2F_4 and PhF_6 units. In contrast, $TcO_2F_3 \cdot XeO_2F_2$ only shows weak interactions in the form of long fluorine atom contacts between XeO_2F_2 and the TcO_2F_3 chains. In each case, the *cis*dioxo arrangement around the transition metal is maintained and bridging always occurs trans to the oxygen ligands. The ReO_2F_3 ⁻SbF₅ adduct undergoes dissociation and self-association in SO₂ClF solvent to give the fluorine-bridged binuclear $Re₂O₄F₅⁺$ cation, a rare example of a five-coordinate transition metal oxofluoride.

Experimental Section

All operations were conducted in laboratories that were monitored routinely by the McMaster University Health Physics Group for

radioactive contamination. All work involving ⁹⁹Tc was licensed and performed according to the regulations and recommendations of the Canadian Atomic Energy Control Board.⁶⁰

Apparatus and Materials. Volatile materials were handled in vacuum lines constructed of nickel, stainless steel, FEP, and Pyrex, and nonvolatile materials were handled in the dry nitrogen atmosphere of a drybox as previously described.13 *Caution!* Anhydrous HF must be handled using appropriate protective gear with immediate access to proper treatment procedures in the event of contact with the liquid or vapor. Solid residues and HF solutions containing XeO_2F_2 may hydrolyze in air to form highly shock-sensitive and explosive XeO₃. Such residues and all other HF solutions were disposed of by slowly pouring the cold solid or the cold HF solution $(-78 \degree C)$ into a mixture of ice and NaOH solution inside a fume hood.

The methods for the preparation of TcO_2F_3 ,¹³ ReO_2F_3 ,¹² AsF_5 ,⁵⁷ and XeF6 ⁶¹ have been described previously. Antimony trifluoride (Aldrich, 98%) was sublimed under dynamic vacuum at ca. 200 °C prior to use. Fluorine gas (Air Products) was used without further purification. The solvents, CH₃CN⁶² (HPLC Grade, Caledon Laboratories Ltd.), SO₂-ClF63 (Columbia Organic Chemical Co.), HF64 (Harshaw Chemical Co.), and SbF₅⁶⁵ (Ozark-Mahoning Co.), were dried/purified by the standard literature methods.

 TcO_2F_3 **'SbF₅** and $\text{Re}O_2F_3$ **'SbF₅**. The preparation of $\text{Re}O_2F_3$ **'SbF**₅ was similar to that of TcO_2F_3 ·SbF₅ except where indicated in brackets. In typical preparations and in the drybox, 0.0737 g (0.392 mmol) of TcO₂F₃ [0.0997 g (0.362 mmol) of ReO₂F₃] and 0.0783 g (0.438 mmol) [0.0653 g $(0.365$ mmol)] of SbF₃ were loaded into the vertical and horizontal arms, respectively, of a T-shaped reactor constructed from three lengths of $\frac{1}{4}$ -in-o.d. FEP tubing, two of which (each ca. 20 cm in length) were heat-sealed at one end and connected through a PTFE Swagelok T-piece while the remaining shorter length (ca. 7 cm) was fitted with a Kel-F valve. Approximately 0.3 mL of HF was condensed onto the SbF_3 and reacted with excess F_2 gas until a clear, colorless solution was obtained (ca. 1 h). The resulting $SbF₅/HF$ solution was then decanted onto TcO_2F_3 [ReO₂F₃], which dissolved upon agitation. The reactor was then evacuated, and the HF and excess SbF_5 were pumped off through an FEP U-trap cooled to -196 °C, yielding a pale yellow [white] solid, which was dried overnight under dynamic vacuum; yield 0.1616 g (0.399 mmol) [0.1721 g (0.350 mmol)]. Single crystals were grown by dissolving 0.1100 g of TcO_2F_3 ·SbF₅ [0.2483 g of ReO_2F_3 'SbF₅] in 0.3 [0.5] mL of HF [SO₂ClF] inside a ¹/₄-in. FEP
reaction tube. Crystals of TcO₂E₂'SbE₆ were grown by pressurizing reaction tube. Crystals of TcO_2F_3 . SbF₅ were grown by pressurizing the reaction tube with ca. 1000 Torr of nitrogen and allowing the HF to slowly diffuse through the walls of the tube for 5 d. The ReO_2F_3 . SbF_5 mixture in SO₂ClF was sonicated at 40 °C, and the resulting supernate was decanted into the bent portion of the reaction tube, which was then immersed in a dewar filled with water at 40 °C and left to cool overnight. The supernatant solution was decanted off the pale yellow plates [colorless blocks] that had formed into a depression created by bending the tube, and the remaining solvent was removed under vacuum before transferring the reactor to the drybox. Single crystals were selected under a microscope and individually sealed inside Lindemann capillaries. The crystal used for data acquisition had the dimensions $0.10 \times 0.25 \times 0.35$ [0.20 $\times 0.25 \times 0.31$] mm³.

 $T_{c}O_{2}F_{3}$ **'**As F_{5} and $\text{Re}O_{2}F_{3}$ **'**As F_{5} . The preparation of $\text{Re}O_{2}F_{3}$ **'**As F_{5} was similar to that of the Tc analogue except where indicated in brackets. In the drybox, 0.0500 g (0.266 mmol) of TcO₂F₃ [0.1911 g (0.6944 mmol) of ReO_2F_3] was loaded into a 4-mm-o.d. FEP reactor, fitted with a Kel-F valve. Approximately 0.3 mL of HF was distilled into the reactor followed by condensation of As $F₅$ (1.20 mmol) [2.40] mmol] from the calibrated manifold of a metal vacuum line onto the frozen solution at -196 °C. The yellow [colorless] solid dissolved

- (61) Chernick, C. L.; Malm, J. G. *Inorg. Synth.* **1966**, *8*, 258.
- (62) Winfield, J. M. *J. Fluorine Chem.* **1984**, *25*, 91.
- (63) Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. *Inorg. Chem.* **1978**, *17*, 980.
- (64) Emara, A. A. A.; Schrobilgen, G. J. *Inorg. Chem.* **1992**, *31*, 1323.
- (65) Gillespie, R. J.; Netzer, A.; Schrobilgen, G. J. *Inorg. Chem.* **1974**, *13*, 1445.

⁽⁵⁹⁾ Gillespie, R. J.; Schrobilgen, G. J. *J. Chem. Soc., Chem. Commun.* **1977**, 595.

⁽⁶⁰⁾ Atomic Energy Control Board; Radioisotope Safety-Basic Laboratories; INFO-0142-1/Rev. 3; Sept. 5, 1997; AECB: Ottawa.

completely upon warming to room temperature with agitation. Hydrogen fluoride and excess AsF₅ were then pumped off at -50 [-45] °C through an FEP U-trap at -196 °C for ca. 8 h [16 h], yielding a pale yellow [white; 0.3001 g (0.6742 mmol)] solid. Samples for NMR analysis were prepared in a manner similar to that described above but were heat-sealed after the addition of AsF₅.

 $[\text{ReO}_2\text{F}_2(\text{CH}_3\text{CN})_2][\text{SbF}_6]$. In the drybox, 0.0744 g (0.151 mmol) of ReO2F3'SbF5 was loaded into a 4-mm-o.d. FEP tube fitted with a Kel-F valve. Approximately 0.4 mL of dry CH₃CN was condensed into the reactor at -196 °C, which was then briefly warmed to room temperature (less than 1 min) and sonicated until the solid dissolved. The solvent was then pumped off at -40 °C to yield a white solid, which was maintained at -78 °C until the low-temperature Raman spectrum could be recorded. An NMR sample was prepared by condensing 0.4 mL of CH₃CN onto 0.0251 g (0.0510 mmol) of ReO_2F_3 · SbF₅ at -196 °C. The sample was only warmed to 0 °C immediately before acquisition of the NMR spectrum.

TcO2F3'**XeO2F2.** Approximately 1 mL of anhydrous HF was condensed onto Tc_2O_7 (0.4280 g, 1.1.382 mmol) in a $\frac{1}{4}$ -in. FEP T-shaped reactor fitted with a Kel-F valve. Two liquid phases formed upon warming at room temperature and vigorous agitation. The mixture was allowed to stand at room temperature for 1 h prior to condensing XeF_6 (0.4234 g, 1.726 mmol) into the reaction tube at -196 °C. A bright yellow precipitate formed upon warming to room temperature, and the supernate over the TcO_2F_3 remained slightly yellow as a consequence of the formation of $[XeF_5][TcO_2F_4]$.¹³ The supernate was then decanted into the sidearm of the reactor, and HF was slowly distilled back onto the solid by slowly cooling the vertical tube with liquid nitrogen. The mixture was then agitated and the supernate decanted again into the sidearm. This procedure was repeated five times in an attempt to wash the TcO_2F_3 free of $XeOF_4$ and XeO_2F_2 . The sidearm was then heat-sealed and disposed of, and the residual HF was removed from the yellow solid. The lower portion of the reactor was warmed to 45 °C under dynamic vacuum until yellow crystals sublimed, which were identified as $TcO_2F_3 \cdot XeO_2F_2$ by Raman spectroscopy. The reactor was transferred into the drybox, where single crystals were selected under a microscope and individually sealed inside Lindemann capillaries. The crystal used for the data acquisition had the dimensions $0.05 \times 0.15 \times 0.25$ mm³.

Crystal Structure Determinations. The crystals were centered on a Syntex P2₁ diffractometer, using silver radiation monochromatized with a graphite crystal ($\lambda = 0.560 86$ Å). The acquisition parameters are given for TcO_2F_3 'SbF₅ followed by those for ReO_2F_3 'SbF₅ in parentheses and TcO_2F_3 'Xe O_2F_2 in square brackets. Accurate cell dimensions were determined at 24 (-50) [-100] °C from a leastsquares refinement of the setting angles $(\chi, \phi, \text{ and } 2\theta)$ obtained from 22 (15) [20] accurately centered reflections (with $20^{\circ} \le 2\theta \le 30^{\circ}$) chosen from a variety of points in reciprocal space. Integrated diffraction intensities were collected by a $\theta - 2\theta$ scan technique with scan rates varying from 1.5 to 14.65°/min (in 2 θ) and a scan range of ± 0.5 ° so that weaker reflections were examined more slowly to minimize counting errors. The data collected included $-1 \le h \le 11, -15 \le k$ \le 15, $-14 \le l \le 14$, and $5.34^{\circ} \le 2 \theta \le 50.2^{\circ}$ ($-1 \le h \le 9$, $-1 \le$ $k \le 17$, $-22 \le l \le 22$, and $4.14^{\circ} \le 2 \theta \le 60.2^{\circ}$) [$-1 \le h \le 10$, -7 $\le k \le 22$, $-7 \le l \le 7$, and $4.52^{\circ} \le 2 \theta \le 45.0^{\circ}$. During data collection, the intensities of three standard reflections were monitored every 97 reflections to check for crystal stability and alignment; no decay was observed during data collection. In total, 3568 (5558) [1251] reflections were collected, with 2442 (4042) [538] unique reflections remaining after averaging of equivalent reflections. An empirical absorption correction was applied to the data with a ψ -scan method. Corrections were made for Lorentz and polarization effects.

Solution and Refinement of the Structures. The XPREP program⁶⁶ was used to confirm the unit cell dimensions and the crystal lattice. Solutions were obtained with a Patterson function which located the heavy atoms. Successive difference Fourier syntheses revealed the positions of the light atoms, which were assigned on the basis of their bond distances to the heavy atoms. The final refinement was obtained

by introducing anisotropic thermal parameters for all the atoms and a weight function and gave rise to a residual, R_1 , of 0.0649 (w R_2 = 0.1112) (0.0533 (wR₂ = 0.1158)) [0.0402 (wR₂ = 0.0822)]. All calculations were performed on a Silicon Graphics 4600PC workstation using the SHELXL software package for structure solution and refinement and for molecular graphics.⁶⁶

Nuclear Magnetic Resonance Spectroscopy. Nuclear magnetic resonance spectra were recorded unlocked (field drift ≤ 0.1 Hz h⁻¹) on
a Bruker AC-300 (7.0463. T) spectrometer equipped with an Aspect a Bruker AC-300 (7.0463 T) spectrometer equipped with an Aspect 3000 computer. The ${}^{1}H$, ${}^{13}C$, and ${}^{19}F$ spectra were acquired with a 5-mm ¹H/¹³C/³¹P/¹⁹F combination probe. The ⁹⁹Tc spectra were obtained with a 10-mm broad-band VSP probe (tunable over the range 23-202 MHz). The 19F (282.409 MHz) spectra were recorded using a ∼90° pulse width of 7 *µ*s. A total of 2000 transients were acquired in 32K memories using spectral width settings of 50 kHz, acquisition times of 0.328 s, resolutions of 3.05 Hz/data point, and line broadenings of 1 Hz. The ⁹⁹Tc (67.555 MHz) spectra were recorded using a ∼90° pulse width of 9 *µ*s. A total of 2000 transients were acquired in 16K memories using spectral width settings of 50 kHz, acquisition times of 0.164 s, resolutions of 6.10 Hz/data point, and line broadenings of 10 Hz. The 1H (300.133 MHz) spectra were recorded using a ∼90° pulse width of 2 μ s. A total of 200 transients were acquired in 16K memories using spectral width settings of 3.6 kHz, acquisition times of 2.277 s, resolutions of 0.44 Hz/data point, and line broadenings of 0.3 Hz. The ¹³C (75.469 MHz) spectra were recorded using a \sim 90° pulse width of 2 *µ*s. A total of 10 000 transients were acquired in 16K memories using spectral width settings of 18 kHz, acquisition times of 0.459 s, resolutions of 2.18 Hz/data point, and line broadenings of 2 Hz. Spectra have been referencing with respect to neat CFCl₃ (¹⁹F), neat TMS (¹H, ¹³C), and aqueous TcO_4 ⁻ (⁹⁹Tc) at 30 °C.

Raman Spectroscopy. Raman spectra were recorded as previously described⁶⁷ using 514.5-nm excitation. The spectra of thermally stable samples were recorded at room temperature on the spinning samples (ca. 5 Hz) which were sealed inside Pyrex melting point capillaries dried at 250 °C under vacuum. The spectra of thermally unstable samples were recorded at -150 °C in 4-mm FEP tubes using the macrochamber of the instrument. Low temperatures were achieved as previously described.⁶⁷ The Raman spectrometer was frequencycalibrated using the 1018.3-cm-¹ line of neat indene. The laser power was approximately 300 mW at the sample (900 mW output power), and the monochromator slits were set to 200 μ m, corresponding to a resolution of 1 cm⁻¹. A total of 10 reads having $30-60$ s integration times were summed for the Raman spectra. Depolarization measurements were obtained using the macrochamber of the instrument and method VII described by Claassen et al.⁶⁸

Calculations. All calculations were done at the density functional theory level with the program $DGauss^{69-71}$ (DGauss is a density functional program which is part of Unichem and is available from Oxford Molecular) on SGI computers. The DZVP basis set⁷² and the A1 fitting set were used for H, O, F, and Tc in the all-electron calculations. For the effective core potential (ECP) and pseudopotential (PP) calculations, the DZVP2 basis set⁷² for H, O, and F was used with the A1 fitting set. For the ECP and the PP calculations, the core electrons for Tc and Re were replaced with a PP or an ECP and the remaining electrons were treated with a polarized double-*ú* basis set. We used $PP's^{32,33}$ that included only valence electrons so that there were 36 electrons in the core for Tc and 54 electrons in the core for Re. For the ECPs, we used the ECPS of Ermler et al.29,30 and of Hay and Wadt. $26-28$ The small-core versions of these were used so that there

- (70) Andzelm, J. In *Density Functional Theory in Chemistry*; Labanowski, J., Andzelm, J., Eds.; Springer-Verlag: New York, 1991; p 155.
- (71) Andzelm, J. W.; Wimmer, E. *J. Chem. Phys.* **1992**, *96*, 1280.
- (72) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. *Can. J. Chem.* **1992**, *70*, 560.

⁽⁶⁶⁾ Sheldrick, G. M. *SHELXL*, Release 5.03; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.

⁽⁶⁷⁾ Casteel, W., Jr.; Kolb, P.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1996**, *35*, 929.

⁽⁶⁸⁾ Claassen, H. H.; Selig, H.; Shamir, J. *Appl. Spectrosc.* **1969**, *23*, 8.

⁽⁶⁹⁾ Andzelm, J.; Wimmer, E.; Salahub, D. R. In *The Challenge of d and f Electrons: Theory and Computation*; Salahub, D. R., Zerner, M. C., Eds.; ACS Symposium Series, No. 394; American Chemical Society: Washington, DC, 1989; p 228.

Fluoride Ion Donor Properties of TcO2F3 and ReO2F3 *Inorganic Chemistry, Vol. 39, No. 12, 2000* **2487**

were 28 electrons in the core for Tc and 46 electrons in the core for Re. On the basis of our previous work on these types of metal compounds,^{11,12} we performed the calculations at the local level with Slater exchange⁷³ and the correlation potential fit of Vosko, Wilk, and Nusair.74 The geometries were optimized by using analytical gradient methods, and second derivatives were also calculated analytically.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work under Grant ACS-PRF 31198-AC3. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. MSCF is funded by the Office of Biologi-

cal and Environmental Research, U.S. Department of Energy. Pacific Northwest is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. We thank the Natural Sciences and Engineering Research Council of Canada for the award of graduate scholarships to N.L. and the Canada Council for the award of a Killam Research Fellowship (1998-1999) to G.J.S. We also thank Dr. Hélène P. A. Mercier for her helpful comments and assistance in preparing the original manuscript.

Supporting Information Available: Unit cell diagrams and X-ray crystallographic files in CIF format, for TcO₂F₃·SbF₅, ReO₂F₃·SbF₅ and $TcO_2F_3 \cdot XeO_2F_2$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC9908221

⁽⁷³⁾ Slater, J. C. *Ad*V*. Quantum Chem*. **¹⁹⁷²**, *⁶*, 1.

⁽⁷⁴⁾ Vosko, S. J.; Wilk, L.; Nusair, W. *Can. J. Phys*. **1980**, *58*, 1200.