Polylithiated Tetraaminosilanes: Synthesis and Characterization of (Et₂O·Li)₄[Si(Nnaph)₄] and X-ray Structure of {THF·Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂

Justin K. Brask, Tristram Chivers,* and Masood Parvez

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Received October 22, 1999

The treatment of SiCl₄ with 4 equiv of Li₂(Nnaph) (naph = 1-naphthyl) in diethyl ether gives (Et₂O·Li)₄[Si(Nnaph)₄] (4), which, upon reaction with excess 'BuNH₃Cl or MeO₃SCF₃, generates Si[N(H)naph]₄ (5) or Si[N(Me)naph]₄ (6), respectively. The centrosymmetric dimer {THF·Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂ (7), formed via trilithiation of Si[N(H)ⁱPr]₄ with *n*-butyllithium, consists of a bis-THF-solvated Li₆(NⁱPr)₆ cyclic ladder bicapped by two Si-N(H)ⁱPr units. Crystal data for 7: C₃₂H₇₄Li₆N₈O₂Si₂, monoclinic, *P*2₁/*n*, *a* = 10.661(7) Å, *b* = 16.964(5) Å, *c* = 12.405(4) Å, $\beta = 93.22(4)^{\circ}$, V = 2239.9(15) Å³, and Z = 2.

Introduction

Current interests of our research group include the synthesis^{1–5} and reaction chemistry^{1,6} of the lithium derivatives of homoleptic polyimido anions containing p-block element centers. These anions, for example, $[Te(N^{t}Bu)_{3}]^{2-}$ and $[C(N^{t}Bu)_{3}]^{2-}$,^{1,4} are isoelectronic with common oxo anions, for example, $[TeO_{3}]^{2-}$ and $[CO_{3}]^{2-}$, respectively. The tetrakisimido anions $[S(N^{t}Bu)_{4}]^{2-}$ (1) and $[P(Nnaph)_{4}]^{3-}$ (2, naph = 1-naphthyl) were recently

characterized as the highly solvated, spirocyclic monomers $[\text{Li}(\text{THF})_4^+]_x[\text{THF}_2\cdot\text{Li}(\mu-\text{NR})_2\text{E}(\mu-\text{NR})_2\text{Li}\cdot\text{THF}_2]^{x-}$ (E = S, x = 0, R = 'Bu; and E = P, x = 1, R = naph).^{7,8} Generation of the related tetrakisimido tetraanion $[\text{Si}(\text{NR})_4]^{4-}$ (**3**, R = alkyl or aryl), isoelectronic with the orthosilicate ion $[\text{SiO}_4]^{4-}$,⁹ is therefore an intriguing possibility. Herein we report the preparation of the first tetraazasilicate ion **3** (R = naph) as the tetralithium derivative (Et₂O·Li)₄[Si(Nnaph)₄] (**4**) by treatment of silicon tetrachloride with 4 equiv of the dilithium imide Li₂(Nnaph). The structural characterization of the dimer

- (a) Chivers, T.; Gao, X.; Parvez, M. Inorg. Chem. 1996, 35, 4336.
 (b) Chivers, T.; Gao, X.; Parvez, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 2549.
- (2) Chivers, T.; Parvez, M.; Schatte, G. Inorg. Chem. 1996, 35, 4094.
- (3) Brask, J. K.; Chivers, T.; Krahn, M. L.; Parvez, M. Inorg. Chem. 1999, 38, 290.
- (4) Chivers, T.; Parvez, M.; Schatte, G. J. Organomet. Chem. 1998, 550, 213.
- (5) Brask, J. K.; Chivers, T.; Yap, G. P. A. Chem. Commun. 1998, 2543.
- (6) Chivers, T.; Parvez, M.; Schatte, G.; Yap, G. P. A. Inorg. Chem. 1999, 38, 1380.
- (7) (a) Fleischer, R.; Stalke, D. Coord. Chem. Rev. 1998, 176, 431. (b) Fleischer, R.; Rothenberger, A.; Stalke, D. Angew. Chem., Int. Ed. Engl. 1997, 36, 1105.
- (8) Raithby, P. R.; Russell, C. A.; Steiner, A.; Wright, D. S. Angew. Chem., Int. Ed. Engl. 1997, 36, 649.
- (9) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997; Chapter 9.

{THF·Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂ (**7**), formed via trilithiation of the tetraaminosilane Si[N(H)ⁱPr]₄ with *n*-butyllithium, is also described.

Experimental Section

Reagents and General Procedures. Solvents were dried and distilled before use: diethyl ether, toluene, *n*-pentane, tetrahydrofuran, and *n*-hexane (Na/benzophenone). LiⁿBu (2.5 M solution in hexanes), H₂Nnaph (naph = 1-naphthyl), H₂N'Bu, SiCl₄, MeO₃SCF₃, and H₂N'-Pr were used as received (Aldrich). Li₂(Nnaph) was prepared via dilithiation of H₂Nnaph with LiⁿBu in diethyl ether¹⁰ and was utilized in situ. 'BuNH₃Cl was obtained by bubbling anhydrous HCl through a solution of H₂N'Bu in toluene. The compound Si[N(H)ⁱPr]₄ was prepared by the literature procedure.¹¹ The handling of air- and moisture-sensitive reagents was performed under an atmosphere of argon gas using Schlenk techniques or a glovebox.

Instrumentation. ¹H NMR spectra were collected on a Bruker AM-200 spectrometer, and chemical shifts are reported relative to Me₄Si in CDCl₃. ⁷Li and ²⁹Si NMR spectra were recorded on a Varian XL-200 instrument operating at 77.75 and 39.74 MHz, respectively; chemical shifts are reported relative to 1 M LiCl in D₂O and Me₄Si in CDCl₃, respectively. Elemental analyses were provided by the Analytical Services Laboratory of the Department of Chemistry, University of Calgary. Consistently low values for the carbon content of compounds **4**, **5**, and **7** are attributed to the formation of silicon carbide, as has been found for other tetra(alkylamino)silanes and related compounds.¹¹

Preparation of (Et₂O·Li)₄[Si(Nnaph)₄] (4). LiⁿBu (10.00 mL, 25.0 mmol) was added slowly to a stirred solution of H₂Nnaph (1.79 g, 12.5 mmol) in diethyl ether (75 mL) cooled to 0 °C. After 1 h, a solution of SiCl₄ (0.36 mL, 3.13 mmol) in diethyl ether (25 mL) was added dropwise and the cooling bath was removed. The red reaction mixture was stirred for 24 h at 23 °C and subsequently filtered (reaction times of less than 24 h result in incomplete reaction). Removal of all volatiles in vacuo yielded yellow 4 (2.67 g, 2.91 mmol, 93%); mp 110 °C (dec). Anal. Calcd for C₅₆H₆₈Li₄N₄O₄Si: C, 73.35; H, 7.47; N, 6.11. Found: C, 71.94; H, 7.53; N, 5.91. ¹H NMR (in C₆D₆ at 23 °C): δ 8.67 (m, 1H), 7.80 (d, 1H), 7.56 (d, 1H), 7.38 (m, 2H), 7.09 (m, 1H), 6.91 (m, 1H), 2.67 [q, 4H, (CH₃CH₂)₂O], 0.58 [t, 6H, (CH₃CH₂)₂O]. ⁷Li NMR (in C₆D₆ at 23 °C): δ -1.04 (s). ²⁹Si NMR (in C₆D₆ at 23 °C): δ -44.7 (s).

(11) Söldner, M.; Schier, A.; Schmidbaur, H. Inorg. Chem. 1998, 37, 510.

^{*} To whom correspondence should be addressed. Phone: (403) 220-5741. Fax: (403) 289-9488. E-mail: chivers@ucalgary.ca.

⁽¹⁰⁾ Armstrong, D. R.; Barr, D.; Clegg, W.; Drake, S. R.; Singer, R. J.; Snaith, R.; Stalke, D.; Wright, D. S. Angew. Chem., Int. Ed. Engl. 1991, 30, 1707.

Table 1. Crystallographic Data for 7

formula	CasHarl is NoOaSia	7	2
ioiiiiuiu		2	- 102.0
fw	700.80	temp, °C	-103.0
space group	$P2_1/n$ (No. 14)	λ, Å	0.710 69
a, Å	10.661(7)	$d_{\rm calcd}$, g cm ⁻³	1.039
b, Å	16.964(5)	μ , cm ⁻¹	1.13
<i>c</i> , Å	12.405(4)	R^a	0.061
β , deg	93.22(4)	$R_{\rm w}{}^b$	0.061
<i>V</i> , Å ³	2239.9(15)		

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}^{2}]^{1/2}.$

Preparation of Si[N(H)naph]₄ (5). A solution of 4 (0.700 g, 0.763 mmol) in diethyl ether (25 mL) was added to a stirred white slurry of 'BuNH₃Cl (0.500 g, 4.56 mmol) in diethyl ether (30 mL) at 23 °C. The pale-pink reaction mixture was stirred for 2 h and then filtered to remove LiCl and excess 'BuNH₃Cl. Removal of all volatiles in vacuo and subsequent washing of the pink residue with *n*-pentane (2 × 20 mL) yielded, upon drying, white **5** (0.255 g, 0.427 mmol, 56%). Microcrystalline material was obtained from a diethyl ether solution (24 h at -20 °C); mp 159 °C. Anal. Calcd for C₄₀H₃₂N₄Si: C, 80.50; H, 5.40; N, 9.39. Found: C, 79.83; H, 5.28; N, 9.50. ¹H NMR (in C₆D₆ at 23 °C): δ 7.66 (m, 2H), 7.37 (d, 1H), 7.24 (m, 3H), 7.10 (d, 1H), 4.86 (s, 1H, N–H). ²⁹Si NMR (in C₆D₆ at 23 °C): δ -55.2 (s). IR (KBr, Nujol mull): 3305 (br) cm⁻¹ [ν(N–H)]. EI-MS (70 eV): 596 (M⁺, 32%).

Preparation of Si[N(Me)naph]₄ (6). A solution of 4 (0.55 g, 0.60 mmol) in diethyl ether (20 mL) was added to a stirred solution of MeO₃-SCF₃ (0.50 g, 3.0 mmol) in diethyl ether (20 mL) at 23 °C. The resulting white slurry was stirred for 2 h and then filtered to remove LiO₃SCF₃. Removal of all volatiles in vacuo and subsequent washing of the white residue with *n*-pentane (2 × 20 mL) yielded, upon drying, white **6** (0.19 g, 0.29 mmol, 48%). Microcrystalline material was obtained from a diethyl ether solution (24 h at -20 °C); mp 124–125 °C. Anal. Calcd for C₄₄H₄₀N₄Si: C, 80.94; H, 6.18; N, 8.58. Found: C, 80.61; H, 6.02; N, 8.77. ¹H NMR (in C₆D₆ at 23 °C): δ 7.68 (m, 2H), 7.59 (d, 1H), 7.35 (m, 3H), 6.91 (m, 1H), 2.60 (s, 3H, CH₃). ²⁹Si NMR (in C₆D₆ at 23 °C): δ -49.8 (s). EI-MS (70 eV): 652 (M⁺, 17%).

Preparation of {THF·Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂ (7). LiⁿBu (9.21 mL, 23.0 mmol) was added slowly to a stirred solution of Si[N(H)ⁱPr]₄ (2.00 g, 7.68 mmol) in THF (60 mL) cooled to 0 °C. After 0.5 h the cooling bath was removed and the pale-yellow solution was stirred for a further 3 h at 23 °C. Removal of all volatiles in vacuo and subsequent washing of the white residue with n-pentane (30 mL) yielded, upon drying, white 7 (2.48 g, 3.54 mmol, 92%); mp 135 °C (dec). Anal. Calcd for $C_{32}H_{74}\text{--}$ Li₆N₈O₂Si₂: C, 54.84; H, 10.64; N, 15.99. Found: C, 53.63; H, 10.52; N, 16.14. ¹H NMR (in C₆D₆ at 23 °C): δ 3.89 [septet, 6H, (CH₃)₂CH, ${}^{3}J({}^{1}H-{}^{1}H) = 6.1$ Hz], 3.67 [m, 8H, O(CH₂)₂(CH₂)₂], 3.58 [m, 2H, $(CH_3)_2CH$, 1.45 [d, 12H, $(CH_3)_2CH$, ${}^{3}J({}^{1}H-{}^{1}H) = 6.3$ Hz], 1.38 [m, 8H, O(CH₂)₂(CH₂)₂], 1.33 [d, 36H, (CH₃)₂CH, ${}^{3}J({}^{1}H-{}^{1}H) = 6.1$ Hz], 0.78 [d, 2H, N-H, ${}^{3}J({}^{1}H-{}^{1}H) = 9.9$ Hz]. ${}^{7}Li$ NMR (in D₈-THF at 23 °C): δ 2.80, 1.05 (approximate relative intensities of 1:2, respectively). ^{29}Si NMR (in D₈-THF at 23 °C): δ -37.3 (s). IR (KBr, Nujol mull): 3176 (br) cm⁻¹ [ν (N–H)].

X-ray Analyses. All measurements were made on a Rigaku AFC6S diffractometer. Crystallographic data are summarized in Table 1.

7. Crystals of {THF-Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂ were obtained in 24 h from THF/*n*-hexane (1:1) at -30 °C. A colorless block crystal (0.65 mm × 0.60 mm × 0.55 mm) was coated with epoxy and mounted on a glass fiber. Cell constants and an orientation matrix were obtained from a least-squares refinement using the setting angles of 25 carefully centered reflections in the range 20.41 < 2θ < 26.50°. The systematic absences of *h*01, *h* = 2n - 1 and 0*k*0, *k* = 2n uniquely determined the space group to be $P2_1/n$ (No. 14). Scans of (1.10 + 0.34 tan θ)° were made at a speed of 4.0 deg/min⁻¹ to a maximum 2θ value of 55.1°. Of a total of 5618 reflections collected, 5340 were independent ($R_{int} = 0.059$) and were used to refine 226 parameters, with 1351 reflections considered observed [$I > 3\sigma$]. The data were corrected for Lorentz and polarization effects. The structure was solved by and expanded

using Fourier techniques.¹² All of the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included at geometrically idealized positions with C–H and N–H at 0.95 Å but were not refined. The maximum and minimum peaks on the final difference Fourier map correspond to 0.28 and $-0.19 \text{ e}^-/\text{Å}^3$, respectively. Scattering factors were those of Cromer and Waber,¹³ and allowance was made for anomalous dispersion.¹⁴ All calculations were performed using teXsan.¹⁵

Results and Discussion

Preparation and Characterization of (Et₂O·Li)₄[Si(Nnaph)₄]. Synthetic routes to lithiated homoleptic polyimido anions of the p-block elements include (a) the use of secondary amido derivatives, for example, Sb(NMe₂)₃,¹⁶ for transamination with primary lithium amides, (b) the reaction of chalcogen diimides^{1,2,17} or carbodiimides⁴ with primary lithium amides, and (c) the deprotonation of primary amido derivatives, for example, ^tBuN(H)P(μ -N^tBu)₂PN(H)^tBu^{3,18} and Mes*N(H)P(NMes*)₂,¹⁹ with organolithium reagents. The last route may result in the formation of incompletely lithiated products, for example, Li₃[Al₂(N^tBu)₃(NH^tBu)₃]⁵ and, in the present work, ${THF} Li_3[Si(N^iPr)_3(NH^iPr)]_2$. Although the dilithiated primary amine $Li_2(Nnaph)$ (naph = 1-naphthyl) is well-known,¹⁰ this reagent has not been used for the synthesis of polyimido anions. In this work, the first ionic complex containing a tetrakisimidoorthosilicate tetraanion, $[Si(NR)_4]^{4-}$ (3), was prepared as the tetralithium etherate (Et₂O·Li)₄[Si(Nnaph)₄] (4) in 93% yield from the metathetical reaction of SiCl₄ with 4 equiv of Li₂-(Nnaph) (Scheme 1).

Compound 4 is an extremely air- and moisture-sensitive amorphous yellow solid that decomposes above ca. 110 °C. Tetralithiation is indicated by the absence of a ν (N–H) vibration in the IR spectrum. The ¹H NMR spectrum of **4** in D₆-benzene reveals one naphthyl and one diethyl ether environment in a 1:1 stoichiometry. Thus, it can be concluded that each Li⁺ ion is coordinated to one diethyl ether molecule. The CHN analyses for 4 are consistent with this conclusion. Consequently, an ionseparated structure [Figure 1a], similar to that found for the trilithium derivative of the isoelectronic [P(Nnaph)₄]³⁻ trianion 2,8 can be ruled out. The ⁷Li and ²⁹Si NMR spectra of 4 each exhibit single resonances at δ -1.04 and -44.7 ppm, respectively. Taken together, the NMR data indicate single environments for the naphthyl groups as well as for the $Li(OEt_2)^+$ ions. An aesthetically pleasing arrangement that is compatible with these observations involves a Si-centered Li₄N₄ cubane in which Li and N are four- and five-coordinate, respectively [Figure 1b]. This arrangement requires that each Li(OEt₂)⁺ ion is coordinated

- (12) Beuskens, P. T.; Admiraal, G.; Beuskens, G.; Bosman, W. P.; Garcia-Granda, R. S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. *The DIRDIF program system*; Technical Report of the Crystallography Laboratory; University of Nijmegen: The Netherlands, 1994.
- (13) Cromer, D. T.; Waber, J. T. *International Tables for Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A, pp 71–98.
- (14) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
- (15) *teXsan: Crystal Structure Analysis Package*; Molecular Structure Corp.: The Woodlands, TX, 1985 and 1992.
- (16) (a) Beswick, M. A.; Mosquera, M. E. G.; Wright, D. S. J. Chem. Soc., Dalton Trans. 1998, 2437. (b) Beswick, M. A.; Wright, D. S. Coord. Chem. Rev. 1998, 176, 373. (c) Beswick, M. A.; Choi, N.; Harmer, C. N.; Hopkins, A. D.; McPartlin, M.; Paver, M. A.; Raithby, P. R.; Steiner, A.; Tombul, M.; Wright, D. S. Inorg. Chem. 1998, 37, 2177. (d) Edwards, A. J.; Paver, M. A.; Raithby, P. R.; Rennie, M.-A.; Russell, C. A.; Wright, D. S. Angew. Chem., Int. Ed. Engl. 1994, 33, 1277.
- (17) Fleischer, R.; Freitag, S.; Pauer, F.; Stalke, D. Angew. Chem., Int. Ed. Engl. 1996, 35, 204.
- (18) Schranz, I.; Stahl, L.; Staples, R. J. Inorg. Chem. 1998, 37, 1493.
- (19) Niecke, E.; Frost, M.; Nieger, M.; von der Gönna, V.; Ruban, A.; Schoeller, W. W. Angew. Chem., Int. Ed. Engl. 1994, 33, 2111.

to *three* naphN²⁻ ligands of the [Si(Nnaph)₄]⁴⁻ ions. By contrast, half of the Na⁺ ions in the related oxo system²⁰ Na₄SiO₄ are associated in a chelating fashion with only *two* O²⁻ ligands of the tetrahedral [SiO₄]⁴⁻ ions. In the absence of solvation or bulky NR groups, these Na⁺ ions are further linked in a monodentate fashion to three neighboring [SiO₄]⁴⁻ units to give a 3D network. Thus, these Na⁺ ions are five-coordinate, whereas the remaining Na⁺ ions are four-coordinate.²¹

Figure 1. Possible structures for 4: (a) $[\text{Li}(L)_n^+]_2[(L)_n^-\text{Li}(\mu-\text{Nnaph})_2\text{Si-}(\mu-\text{Nnaph})_2\text{Li}(L)_n]^{2-}$; (b) $(L \cdot \text{Li})_4[\text{Si}(\text{Nnaph})_4]$ (L = OEt₂).

Unfortunately, numerous attempts to obtain X-ray quality crystals of **4** were unsuccessful. However, the tetralithiated derivative **4** was further characterized by the preparation of $Si[N(H)naph]_4$ (**5**) and $Si[N(Me)naph]_4$ (**6**) in ca. 50% yields from the reactions of **4** with excess *tert*-butylammonium chloride and methyl triflate, respectively (Scheme 1). These derivatives were characterized by CHN analyses, IR spectra, ¹H, ¹³C, and ²⁹Si NMR spectra, and the observation of parent ions in their mass spectra.

Preparation and X-ray Structure of {**THF**·Li₃[**Si**(**N**ⁱ**Pr**)₃· (**NH**ⁱ**Pr**)]}₂. Attempts to generate **3** via deprotonation of a tetraaminosilane, Si[N(H)R]₄, resulted in incomplete lithiation. For example, the reaction of Si[N(H)ⁱPr]₄ with 4 equiv of *n*-butyllithium in THF gave the dimeric trisimido/amido complex {THF·Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂ (**7**). The presence of the N(H)ⁱPr groups is readily evident in the IR spectrum [ν (N–H)

Figure 2. Molecular structure of {THF·Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂ (7). For clarity, only the α -carbon atoms of the ⁱPr groups and the oxygen atoms of the THF molecules are shown. Displacement ellipsoids are plotted at the 35% probability level. Starred atoms are related by the symmetry transformation: -x + 1, -y, -z + 1.

3176 cm⁻¹]. The yield of **7** is optimized when only three equiv of *n*-butyllithium are utilized:

$$3Li^{n}Bu + Si[N(H)^{i}Pr]_{4} \rightarrow$$

$${}^{1}/_{2} \{THF \cdot Li_{3}[Si(N^{i}Pr)_{3}(NH^{i}Pr)]\}_{2} + 3^{n}BuH (1)$$
...

To our knowledge **4** and **7** are the only known examples of tetra- and trilithiated tetraaminosilanes, respectively; the dilithiated species $\{Li_2[Si(NMe)_2(NH'Bu)_2]\}_4$ was reported previously.²² The tetralithiated cyclodisilazane (N'Bu)₆Si₂Li₄ has also been prepared.²³

X-ray structure analysis revealed a C_{2h} -symmetric 14-atom (Li₆Si₂N₆) ternary cluster for **7**, which can be viewed as a bis-THF-solvated Li₆(NⁱPr)₆ cyclic ladder bicapped by two Si– N(H)ⁱPr units (Figure 2). Selected bond distances and bond angles are listed in Table 2. Similar 14-atom clusters are observed for the homoleptic trisimido antimony(III) species {L·Li₃[Sb(NR)₃]}₂ (R = CH₂CH₂Ph, L = THF; R = Cy, L = HNMe₂; R = 2,4-dmp, L = THF; and R = ⁱBu, unsolvated) in which Sb atoms bicap the Li₆N₆ ladders.¹⁶ The cluster **7** is also isostructural, as well as isoelectronic, with the unsolvated dimers {Li₃[RSi(NⁱBu)₃]}₂ (R = Ph²⁴ and Me²⁴) and {Li₃[RSi-

- (23) Veith, M.; Lisowsky, R. Angew. Chem., Int. Ed. Engl. 1988, 27, 1087.
- (24) (a) Brauer, D. J.; Bürger, H.; Liewald, G. R. J. Organomet. Chem. 1986, 308, 119. (b) Veith, M.; Spaniol, A.; Pöhlmann, J.; Gross, F.; Huch, V. Chem. Ber. 1993, 126, 2625.

⁽²⁰⁾ Unit cell data were reported for Li₄SiO₄, but structural details were not discussed. Wittmann, A.; Modern, E. *Monatsh. Chem.* **1965**, *96*, 581.

⁽²¹⁾ Barker, M. G.; Gadd, P. G. J. Chem. Res., Synop. 1981, 274.

⁽²²⁾ Rakebrandt, H.-J.; Klingebiel, U.; Noltemeyer, M. Z. Anorg. Allg. Chem. 1997, 623, 288.

Table 2. Selected Bond Lengths (Å) and Bond Angles (deg) for {THF-Li₃[Si(NⁱPr)₃(NHⁱPr)]}₂ (7)

	(111)]]2(7)		
Si(1)-N(1)	1.729(5)	N(2)-Li(1)	1.974(13)
Si(1) - N(2)	1.728(5)	N(2)-Li(2)	1.962(13)
Si(1)-N(3)	1.745(6)	N(2)-Li(3*)	2.457(13)
Si(1) - N(4)	1.739(6)	N(3) - C(7)	1.467(8)
N(1) - C(1)	1.451(8)	N(3)-Li(1*)	2.003(13)
N(1)-Li(1)	2.087(13)	N(3)-Li(2)	2.095(13)
N(1)-Li(2*)	2.001(13)	N(3)-Li(3)	2.043(13)
N(1)-Li(3)	2.005(13)	N(4) - C(10)	1.428(9)
N(2) - C(4)	1.457(9)	Li(3)-O(1)	2.007(13)
N(1) - Si(1) - N(2)	108 7(3)	$I_{i}(2) = N(2) = I_{i}(3*)$	64 0(6)
N(1) - Si(1) - N(2)	100.7(3) 101.9(3)	$S_{i}(1) - N(3) - I_{i}(1*)$	123 8(5)
N(1) - Si(1) - N(4)	1145(3)	Si(1) - N(3) - Li(1)	81 0(4)
N(2) - Si(1) - N(3)	106.8(3)	Si(1) - N(3) - Li(3)	85 2(4)
N(2) - Si(1) - N(4)	109.0(3) 109.1(3)	$L_{i}(1^{*}) - N(3) - L_{i}(2)$	69.6(5)
N(3) - Si(1) - N(4)	115.2(3)	$Li(1^*) - N(3) - Li(3)$	74.8(5)
Si(1) - N(1) - Li(1)	80.3(4)	Li(2) - N(3) - Li(3)	124.5(5)
$Si(1) - N(1) - Li(2^*)$	122.6(4)	Si(1) - N(4) - C(10)	132.7(5)
Si(1) - N(1) - Li(3)	86.8(4)	N(1)-Li(1)-N(2)	87.5(5)
$Li(1) - N(1) - Li(2^*)$	69.8(5)	$N(1)-Li(1)-N(3^*)$	108.7(6)
Li(1) - N(1) - Li(3)	124.3(6)	$N(2)-Li(1)-N(3^*)$	114.7(6)
$Li(2^*) - N(1) - Li(3)$	72.8(5)	$N(1^*)-Li(2)-N(2)$	116.5(6)
Si(1) - N(2) - Li(1)	83.6(4)	$N(1^*)-Li(2)-N(3)$	108.4(6)
Si(1) - N(2) - Li(2)	85.4(4)	N(2) - Li(2) - N(3)	86.8(5)
$Si(1) - N(2) - Li(3^*)$	124.8(5)	$N(1)-Li(3)-N(2^*)$	97.7(6)
Li(1) - N(2) - Li(2)	108.2(6)	N(1)-Li(3)-N(3)	83.6(5)
Li(1)-N(2)-Li(3*)	66.3(6)	$N(2^*)-Li(3)-N(3)$	95.8(6)

 $(NSiMe_3)_3]_2$ (R = Ph, Me, 'Bu,²⁵ and H²⁵), formed via trilithiation of the corresponding triaminosilanes. With the exception of the N(2)–Li(3*) distance of 2.457(13) Å, the structural parameters for the Li₆Si₂N₆ clusters in these dimers encompass those for **7**, for example, d(Si-N) = 1.69-1.77 Å and d(N-Li) = 1.91-2.16 Å.^{24,25} The long Li–N bonds are

(25) (a) Brauer, D. J.; Bürger, H.; Liewald, G. R.; Wilke, J. J. Organomet. Chem. 1985, 287, 305. (b) Kosse, P.; Popowski, E.; Veith, M.; Huch, V. Chem. Ber. 1994, 127, 2103. presumably a result of the higher coordination number (λ^4) of Li(3), due to solvation by one molecule of THF, compared to the three-coordinate Li(1) and Li(2) ions. The N–Si–N angles within the cluster of **7** [mean 105.8(3)°, range 101.9(3)–108.7(3)°] are narrower than those involving the exocyclic N(H)ⁱPr group [N(4)–Si(1)–N(cluster): mean 112.9(3)°, range 109.1(3)–115.2(3)°], an indication of the structural rigidity of the Li₆N₆ cyclic ladder.

The inability to tetralithiate $Si[N(H)^iPr]_4$ with *n*-butyllithium is attributed to steric considerations. Formation of the Li₆N₆ ladder directs the ⁱPr substituents of the cluster-forming imido groups toward the exo cluster N(H)ⁱPr groups, effectively encumbering nucleophilic attack by *n*-butyllithium. Attempts at deprotonation with other metallating agents were also unsuccessful. No reaction occurred when THF solutions of **7** were refluxed for 24 h with 2 equiv of LiMe, NaH, KH, or KCH₂Ph (in the presence of 18-crown-6) or with 1 equiv of MgⁿBu^{sec}Bu.

Conclusions

In summary, the dilithium imide $Li_2(Nnaph)$ has been utilized as a source of $[Li(Nnaph)]^-$ to generate $(Et_2O \cdot Li)_4[Si(Nnaph)_4]$ with elimination of LiCl. This novel methodology may provide a general one-pot synthesis for lithiated homoleptic polyimido complexes of the form $Li_x[E(Nnaph)_x]$ (E = p-block element) from the corresponding halides. An investigation of the reactions of $Li_2(Nnaph)$ with other main group halides is in progress.

Acknowledgment. We thank the NSERC Canada for financial support and the Killam Foundation for a scholarship (J.K.B.).

Supporting Information Available: X-ray crystallographic file, in CIF format, for complex **7**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC991238V