Synthesis and Characterization of a Homoleptic Thiolate Complex of Titanium(IV)

Claire J. Carmalt,^{*,†} Christopher W. Dinnage,[†] Ivan P. Parkin,[†] and Jonathan W. Steed[‡]

Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom, and Department of Chemistry, King's College London, Strand, London WC2R 2LS, United Kingdom

Received November 29, 1999

Introduction

Early transition-metal thiolate complexes have received some attention in recent years because of their importance in a wide range of areas including biological systems, hydrodesulfurization, and some organic transformations.¹ Much of the work has focused on the synthesis and characterization of this class of compounds, and the known chemistry of these species is very limited. In the particular case of titanium thiolate complexes, interest has grown due to the fact that such compounds might serve as single-source precursors for the CVD (chemical vapor deposition) of titanium disulfide (TiS₂).^{2,3} In turn, TiS₂ is useful for applications such as the active cathode material in highenergy rechargeable batteries² and as a solid lubricant.^{4,5} A stable titanium thiolate complex, namely, [Ti(S-t-Bu)₄] (1),^{6,7} has been isolated, characterized, and tested as a single-source precursor to TiS₂. Preliminary studies describing the CVD of 1 observed the formation of amorphous TiS films at 130-200 °C.6 However, more recent studies have shown that TiS₂ films can be grown from 1 under similar conditions (substrate temperatures 150-270 °C).7 It has been suggested that the formation of TiS from 1 may be the result of hydrolysis of the films, which accounts for the loss of sulfur. Other single-source precursors to TiS₂ include [TiCl₄(HSR)₂] (2, R = cyclohexyl; 3, R = cyclopentyl),⁸ although precursors with Ti-Cl bonds are potentially corrosive to metal substrates at CVD temperatures.⁸

Titanium thiolate complexes represent a class of compounds which have only been studied to a limited extent.¹ Early preparative routes to titanium thiolates involved the reaction of $[Ti(NR'_2)_4]$ (R' = Me or Et) and R''SH (R'' = Me, Et, or *i*-Pr), resulting in the formation of complexes of general formula [Ti-(SR'')₄(HSR'')_x(NHR'₂)_y] (where x + y varied from 0.8 to 1.33).⁹ Titanium(IV) complexes containing unidentate thiolate ligands which have been structurally characterized include [Ti(S-2,3,5,6-Me₄C₆H)₄] (**4**),¹⁰ [Ti₃(SMe)₁₂] (**5**),¹¹ [NMe₂H₂][Ti₂(SMe)₉] (**6**),¹¹

- [†] University College London.
- [‡] King's College London.
- (1) Stephan, D. W.; Nadasdi, T. T. *Coord. Chem. Rev.* **1996**, *147*, 147 and references therein.
- CVD of Nonmetals; Rees, W. S., Jr., Ed.; VCH Publishers: Weinheim, 1996.
- (3) Lewkebandara, T. S.; Winter, C. H. Adv. Mater. 1994, 6, 237. Bochmann, M. Chem. Vap. Deposition 1996, 2, 85.
- (4) Whittingham, M. S. Prog. Solid State Chem. 1978, 12, 41.
- (5) Bill, R. C. Wear 1985, 106, 283.
- (6) Bochmann, M.; Hawkins, I.; Wilson, L. M. Chem. Commun. 1988, 344.
- (7) Cheon, J.; Gozum, J. E.; Girolami, G. S. Chem. Mater. 1997, 9, 1847.
- (8) Winter, C. H.; Lewkebandara, T. S.; Proscia, J. W.; Rheingold, A. L. *Inorg. Chem.* **1994**, *33*, 1227.
- (9) Bradley, D. C.; Hammersley, P. A. J. Chem. Soc. A 1967, 1894.

and $[TiCl_2(S-t-Bu)(Diars)]$ (7) [Diars is *o*-phenylene bis-(dimethylarsine)].¹²

In this paper, we present the synthesis and characterization of a homoleptic thiolate complex of titanium. Our motivation was to explore further the utility of titanium thiolates as precursors to titanium sulfide.

Results and Discussion

Initial attempts to prepare homoleptic thiolate complexes of titanium involved the addition of 10 equiv of benzyl mercaptan (PhCH₂SH) to a toluene solution of $[Ti(NEt_2)_4]$ at room temperature. An immediate color change from orange to blood red was observed, and after workup a dark red solid resulted. Crystallization from CH₂Cl₂—hexane mixtures afforded a 60% yield of dark red crystalline **8** (Scheme 1). Analytical and

Scheme 1

spectroscopic data for 8 indicated that the ionic species [NEt₂H₂]- $[Ti_2(\mu$ -SCH₂Ph)₃(SCH₂Ph)₆] had formed rather than the expected product [Ti(SCH₂Ph)₄] (9). The structure of 8 was confirmed by X-ray crystallography, the results of which are shown in Figure 1; selected bond lengths and angles are presented in Table 1. Compound 8 crystallizes in the monoclinic space group $P2_1/$ c. The structure of 8 is ionic, comprising $[NEt_2H_2]^+$ cations and $[Ti_2(\mu$ -SCH₂Ph)₃(SCH₂Ph)₆]⁻ anions, with no close interionic contacts. In the anion in 8 the two titanium atoms are each coordinated by three terminal (Ti-S 2.3183(9)-2.4090-(10) Å) and three bridging (Ti-S 2.5132(10)-2.5609(9) Å) PhCH₂S ligands. Thus, the coordination number at each titanium center is six, and the geometry is approximately octahedral (trans-S-Ti-S 158.75(3)-172.34(3)°; cis-S-Ti-S 75.53(3)- $102.35(3)^{\circ}$). As such, the structure is similar to that of the anion $[Ti_2(SMe)_9]^-$ in 6^{11} in which the Ti_2S_9 framework also has a face-sharing bioctahedral arrangement.

The behavior of **6** in solution (at room temperature) was described as being complicated, and it was suggested that **6** dissolves to afford $[Ti_3(SMe)_{12}]$ (**5**) and at least one other compound. At lower temperatures the ¹H NMR spectrum of **6** undergoes a series of changes which were tentatively assigned to the presence of **5** and possibly a complex of the type $[Ti-(SMe)_4(HSMe)_x(NHMe_2)_y]$.¹¹ In contrast, the room temperature ¹H NMR spectrum of **8** contains only peaks which can be assigned directly to compound **8**, therefore suggesting that in solution **8** is more stable than **6**. However, at lower temperatures (0 to -90 °C; 10° intervals) the ¹H NMR spectrum of **8** also undergoes a series of changes, and it is clear that the behavior of **8** in solution (at low temperatures) is also complicated.

Unfortunately, the low volatility of complex 8 precluded studies by conventional LPCVD or APCVD. However, we

- (10) Corwin, D. T.; Corning, J. F.; Koch, S. A.; Millar, M. Inorg. Chim. Acta 1995, 229, 335.
- (11) Stüer, W.; Kirschbaum, K.; Giolando, D. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1981.
- (12) Jones, R. A.; Schwab, S. T.; Whittlesey, B. R. Polyhedron 1984, 3, 505.

Table 1. Selected Bond Distances (Å) and Angles (deg) for 8

Ti(1) - S(1)	2.5609(9)	Ti(1)-S(2)	2.5395(10)	Ti(1)-S(3)	2.5364(9)
Ti(1) - S(4)	2.3308(9)	Ti(1) - S(5)	2.3183(9)	Ti(1) - S(6)	2.3582(10)
Ti(2) - S(1)	2.5132(10)	Ti(2) - S(2)	2.5249(9)	Ti(2) - S(3)	2.5295(10)
Ti(2)-S(7)	2.3366(11)	Ti(2)-S(8)	2.4090(10)	Ti(2)-S(9)	2.3484(11)
S(5)-Ti(1)-S(4	l)	98.64(3)	S(8)-Ti(2)-S	5(1)	102.35(3)
S(5) - Ti(1) - S(6)		92.27(4)	S(9) - Ti(2) - S(8)		88.96(3)
S(4) - Ti(1) - S(6)		99.54(4)	S(7)-Ti(2)-S(8)		98.20(3)
S(5)-Ti(1)-S(3	3)	95.66(3)	S(9)-Ti(2)-S	5(3)	98.68(3)
S(4) - Ti(1) - S(3)	3)	165.02(3)	S(7)-Ti(2)-S	5(3)	171.75(3)
S(6)-Ti(1)-S(3	3)	84.26(3)	S(8)-Ti(2)-S	5(3)	88.53(3)
S(5) - Ti(1) - S(2)	2)	96.14(4)	S(9)-Ti(2)-S	5(2)	92.05(3)
S(4) - Ti(1) - S(2)	2)	98.44(3)	S(7)-Ti(2)-S	5(2)	97.41(3)
S(6) - Ti(1) - S(2)	2)	158.75(3)	S(8)-Ti(2)-S	5(2)	164.39(3)
S(3) - Ti(1) - S(2)	2)	75.53(3)	S(2)-Ti(2)-S	5(3)	75.91(3)
S(5) - Ti(1) - S(1)	.)	172.34(3)	S(9)-Ti(2)-S	5(1)	168.63(3)
S(4) - Ti(1) - S(1)	.)	83.45(3)	S(7)-Ti(2)-S	5(9)	86.26(3)
S(6) - Ti(1) - S(1)	.)	94.65(3)	S(7)-Ti(2)-S	5(1)	91.00(3)
S(3) - Ti(1) - S(1)	.)	81.79(3)	S(1)-Ti(2)-S	5(3)	82.87(3)
S(2) - Ti(1) - S(1)	.)	76.23(3)	S(1)-Ti(2)-S	5(2)	77.35(3)
Ti(2)-S(1)-Ti(1)		86.14(3)	Ti(2)-S(2)-Ti(1) 86.35		86.35(3)
Ti(2) - S(3) - Ti(1)	86.32(3)			

Table 2. Crystallographic Data for 8

empirical formula	$C_{68}H_{75}N_1S_9Ti_2$	fw	1276.62
space group	$P2_{1}/c$	$V(Å^3)$	6479(2)
cryst syst	monoclinic	Z	4
a (Å)	21.573(4)	$T(\mathbf{K})$	100(2)
b (Å)	17.224(3)	λ (Å)	0.71070
c (Å)	17.577(4)	ρ_{calcd} (g cm ⁻¹)	1.309
β (deg)	97.287(16)	$\mu (\text{mm}^{-1})$	0.576
F(000)	2684	no. of reflns collected	55 504
no. unique reflns	14 854	cryst size (mm)	$0.3 \times 0.1 \times 0.1$
θ range (deg)	2.55 - 27.50	$R^{\rm a}({\rm all \ data})$	0.0834
$R^{a}(I \geq 2\sigma(I))$	0.0521	$w\hat{R}'^{b}$ (all data)	0.1303
$\mathrm{wR'^{b}}(I \geq 2\sigma(I))$	0.1162	. ,	

 ${}^{a}R = \sum (\Delta F) \sum (F_{o}). {}^{b}wR' = [\sum \{w(\Delta F^{2})^{2}\} \sum \{w(F_{o}^{2})^{2}\}]^{1/2}. w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2}], where P = [max(F_{o}^{2}) + 2(F_{c}^{2})]/3 and a = 0.0003.$

Figure 1. Molecular structure of the anion in 8 showing the atom numbering scheme. Ellipsoids are drawn at the 30% level. Hydrogen atoms are omitted.

investigated the pyrolysis of **8** to gain some insight into the decomposition pathway. A sample of **8** was heated in a quartz tube at 500, 600, 800, and 1000 °C under dynamic vacuum for 3 h. The byproducts formed during decomposition were collected in a liquid N₂ cooled trap and analyzed by ¹H NMR. The resulting gray/black solids were analyzed by powder X-ray diffraction (XRD) and EDAX. Powder XRD¹³ of the material obtained at the thermolysis temperatures 500, 600, and 800 °C revealed it was X-ray amorphous. In addition, the EDAX data showed a degree of inhomogeniety in these solids, particularly for the material isolated after the sample was heated to 600 °C,

with the ratio Ti:S varying over a number of spots. However, powder XRD of the gray/black material obtained after the sample was heated to 1000 °C showed that nanocrystalline Ti_2S_3 had formed. The formation of the sesquisulfide Ti_2S_3 (at 1000 °C) was confirmed by the EDAX data, which showed good agreement to a 2:3 ratio of Ti:S over a number of spots. The NMR spectrum of the byproducts obtained when **8** was thermolyzed showed resonances assigned to Et_2NH and (PhCH₂)₂S₂.

In conclusion, a new homoleptic thiolate complex of titanium-(IV) has been synthesized and structurally characterized. Pyrolysis of **8** resulted in the formation of the sesquisulfide Ti_2S_3 at 1000 °C. We are currently investigating the formation of neutral monomeric titanium(IV) thiolates to study the CVD of these complexes.

Experimental Section

General Procedures. All manipulations were performed under a dry, oxygen-free dinitrogen atmosphere using standard Schlenk techniques or in a MBraun Unilab glovebox. All solvents were distilled from appropriate drying agents prior to use (sodium for toluene and hexanes; potassium for THF; CaH₂ for CH₂Cl₂). All other reagents were procured commercially from Aldrich and used without further purification. Microanalytical data were obtained at University College London (UCL).

Physical Measurements. NMR spectra were recorded on Brüker AMX300 or DRX500 spectrometers at UCL. The NMR spectra are referenced to CD₂Cl₂, which was degassed and dried over molecular sieves prior to use; ¹H and ¹³C chemical shifts are reported relative to SiMe₄ (0.00 ppm). Mass spectra (CI) were run on a micromass ZABSE instrument, and IR spectra on a Nicolet 205 instrument. Melting points

⁽¹³⁾ PDF-2 database, International Center for Diffraction Data, Swarthmore, PA 19081, 1990.

were obtained in sealed glass capillaries under argon and are uncorrected. Thermolysis studies were performed in a Carbolite tube furnace. Powder XRD measurements were recorded on a Siemens D5000 transmission diffractometer using germanium-monochromated Cu K α_1 radiation ($\lambda = 1.5406$ Å) as thin films. EDAX was performed on a Hitachi S570.

Synthesis of 8. Benzyl mercaptan (2.1 mL, 17.8 mmol) was added dropwise to an orange solution of Ti(NEt₂)₄ (0.6 mL, 1.66 mmol) in toluene (20 mL) at room temperature with stirring. The solution turned dark red immediately on addition of the thiol. The mixture was stirred for 2 h at room temperature, and then the solvent was removed in vacuo. The resulting dark red oil was dissolved in toluene (20 mL) and filtered through Celite. The solution was reduced in volume to approximately 10 mL under vacuum and cooled to -20 °C, which over a period of days resulted in the formation of a dark red solid. This solid was redissolved in CH₂Cl₂ (4 mL), and an overlayer of hexanes (20 mL) was added carefully. Solvent diffusion over a period of days at -20 °C afforded dark red crystals of 8 (0.518 g, 60% yield), mp 103-105 °C. Anal. Calcd for C68H75N1S9Ti2: C, 59.57; H, 5.60; N, 1.04. Found: C, 60.07; H, 5.63; N, 1.59. ¹H NMR (CD₂Cl₂): δ 0.85 (t, 6H, NCH₂CH₃), 2.40 (q, 4H, NCH₂CH₃), 4.90 (s, 6H, µ-SCH₂C₆H₅), 5.32 (s, 12H, t-SCH₂C₆H₅), 7.26–7.65 (m, 45H, SCH₂C₆H₅). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂): δ 13.1 (NCH₂CH₃), 43.7 (NCH₂CH₃), 51.6 (SCH₂C₆H₅), 128.8-145.8 (SCH₂C₆H₅).

X-ray Structure Determination of 8. Crystals of **8** were mounted on a glass fiber using silicone grease and cooled on the diffractometer. Crystallographic measurements were carried out with a Nonius Kappa CCD diffractometer equipped with graphite-monochromated Mo K α radiation using ϕ rotations with 2° frames and a detector-to-crystal distance of 25 mm. Integration was carried out by the program DENZO- SMN.¹⁴ Data sets were corrected for Lorentz and polarization effects and for the effects of absorption using the program Scalepack.¹⁴ The structure was solved using the direct methods option of SHELXS-97¹⁵ and developed using conventional alternating cycles of least-squares refinement and difference Fourier synthesis (SHELXL-97)¹⁵ with the aid of XSeed.¹⁶ All non-hydrogen atoms were refined anisotropically, while hydrogen atoms were fixed in idealized positions and allowed to ride. Hydrogen atom thermal parameters were tied to those of the atom to which they were attached. All calculations were carried out on a Silicon Graphics Indy workstation or an IBM-PC compatible personal computer. Crystal data and details of the data collections and refinements are given in Table 2.

Acknowledgment. We thank EPSRC for financial support and a studentship (C.W.D.) and King's College London and EPSRC for provision of the diffractometer system. C.J.C. is also grateful to the Royal Society for a Dorothy Hodgkin fellowship and London University Central Research Fund for financial support.

Supporting Information Available: X-ray crystallographic file in CIF format for the structure of compound **8**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC991382G

- (14) Otwinowski, Z.; Minor, W. In *Methods in Enzymology;* Carter, C. W., Sweet, R. M., Eds.; Academic Press: New York, 1996.
- (15) Sheldrick, G. M. SHELX-97; University of Göttingen: Göttingen, Germany, 1997.
- (16) Barbour, L. J. XSeed–A Graphical Interface for the Solution and Refinement of X-ray Crystal Structures; University of Missouri: Columbia, MO, 1999.