Notes

Preparation of Diazoalkane Complexes of Osmium(II)

Gabriele Albertin,* Stefano Antoniutti, Emilio Bordignon, and Barbara Carrera

Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy

Received November 17, 1999

Introduction

Diazoalkanes are interesting molecules which have been used in inorganic or organometallic chemistry as precursors of metal carbene complexes^{1–3} or to coordinate the central metal to give the corresponding diazoalkane derivatives.^{1,3–5} The interaction of a RR'CN₂ species with a transition metal complex may, in fact, proceed either with loss of N₂, to give a carbene species which may or may not be stabilized by the metal, or with coordination of the intact diazo molecule. Diazoalkane complexes may also be obtained from reactions of dinitrogen derivatives.⁶

Interest in this area has been stimulated by the various coordination modes that the diazoalkane ligand may present (η^1 , η^2 , μ , etc.)^{1,4,5} and by the influence that coordination may have on the reactivity of RR'CN₂ species.^{1,4,5} Also of interest is the importance of diazoalkane complexes as models in the chemistry of N₂ fixation.^{1,6,7} However, a comparison of the literature data

- (2) (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (b) Werner, H.; Stüer, W.; Laubender, M.; Lahmann, C.; Herbst-Irmer, R. Organometallics 1997, 16, 2236. (c) Schwab, P.; Mahr, N.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 1480. (d) Clauss, A. D.; Shapley, J. R.; Wilson, S. R. J. Am. Chem. Soc. 1981, 103, 7387. (e) Herrmann, W. A. Angew. Chem, Int. Ed. Engl. 1978, 17, 800. (f) Brown, M. P.; Fisher, J. R.; Franklin, S. J.; Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1978, 749.
- (3) Mizobe, Y.; Ishii, Y.; Hidai, M. Coord. Chem. Rev. 1995, 139, 281.
 (4) (a) Kwen, H.; Young, V. G., Jr.; Maatta, E. A. Angew. Chem., Int. Ed. 1999, 38, 1145. (b) Kaplan, A. W.; Polse, J. L.; Ball, G. E.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 11649. (c) Polse, J. L.; Kaplan, A. W.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 11649. (d) De Sanctis, Y.; Arce, A. J.; Machado, R.; Capparelli, M. V.; Atencio, R.; Deeming, A. J.; Manzur, J. Organometallics 1977, 16, 11520. (e) Deydier, E.; Menu, M.-J.; Dartiguenave, M.; Dartiguenave, Y.; Simard, M.; Beauchamp, A. L.; Brewer, J. C.; Gray, H. B. Organometallics 1986, 5, 854. (g) Curtis, M. D.; Messerle, L.; D'Errico, J. J.; Butler, W. M.; Hay, M. S. Organometallics 1986, 5, 2283. (h) Smegal, J. A.; Meier, I. K.; Schwartz, J. J. Am. Chem. Soc. 1986, 108, 1322. (i) Woodcock, C.; Eisenberg, R. Organometallics 1985, 4, 4.
- (5) (a) Hillhouse, G. L.; Haymore, B. L. J. Am. Chem. Soc. 1982, 104, 1537. (b) Messerle, L.; Curtis, M. D. J. Am. Chem. Soc. 1980, 102, 7791. (c) Schramm, K. D.; Ibers, J. A. Inorg. Chem. 1980, 19, 2435. (d) Schramm, K. D.; Ibers, J. A. Inorg. Chem. 1980, 19, 2441. (e) Schramm, K. D.; Ibers, J. A. Inorg. Chem. 1980, 19, 1231.
- (6) (a) Hidai, M.; Aramaki, S.; Yoshida, K.; Kodama, T.; Takahashi, T.; Uchida, Y.; Mizobe, Y. J. Am. Chem. Soc. **1986**, 108, 1562. (b) Ben-Shoshan, R.; Chatt, J.; Leigh, G. J.; Hussain, W. J. Chem. Soc., Dalton Trans. **1980**, 771. (c) Bevan, P. C.; Chatt, J.; Diamantis, A. A.; Head, R. A.; Heath, G. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. **1977**, 1711. (d) Day, V. W.; George, T. A.; Iske, S. D. A. J. Am. Chem. Soc. **1975**, 97, 4127.

showed that diazoalkane derivatives are far less studied than the related "diazo" complexes^{1,7} such as aryldiazenido and aryldiazene, and relatively few complexes have been synthesized.^{4,5,8}

We recently reported^{9,10} the synthesis and reactivity of aryldiazene, aryldiazenido, hydrazine and dinitrogen derivatives of the iron family of the types $[MH(ArN=NH)P_4]^+$, $[M(ArN=NH_2)P_4]^{2+}$, $[M(ArN_2)P_4]^+$, $[M(RNHNH_2)_2P_4]^{2+}$ (M = Fe, Ru, Os), $[OsH(N_2)P_4]^+$, and $[Fe(ArN_2)(CO)_2P_2]^+$ (P = phosphite). We have now extended these studies to include diazoalkane as ligand, and this paper reports the synthesis and characterization of the first mononuclear^{2d} diazoalkane complexes of osmium.

Experimental Section

All synthetic work was carried out in an inert atmosphere (argon, N₂) using standard Schlenk techniques or a Vacuum Atmospheres drybox. Once isolated, the complexes turned out to be quite air-stable and were stored at -20 °C. All solvents used were dried over appropriate drying agents, degassed on a vacuum line, and distilled into vacuum-tight storage flasks. Phosphites PPh(OEt)₂, PPh₂OEt, and PPh₂OMe were prepared by the method of Rabinowitz and Pellon.¹¹ (CH₃)₃SiCHN₂ and C₂H₅CO₂CHN₂ species were Aldrich products used as received. The other diazoalkanes, 4-ClC₆H₄CHN₂, (C₆H₅)₂CN₂, C₆H₅(C₆H₅CO)CN₂, C₆H₅(4-CH₃C₆H₄)CN₂, C₆H₅(C₅H₅N)CN₂, and C₁2H₈CN₂ (9-diazofluorene) were prepared according to literature procedures.¹² *p*-Tolyl isocyanide was obtained by the method of Ziehn

- (7) (a) Zollinger, H. In *Diazo Chemistry II*; VCH: Weinheim, Germany, 1995. (b) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115. (c) Sellmann, D. Angew. Chem., Int. Ed. Engl. 1993, 32, 64. (d) Kisch, H.; Holzmeier, P. Adv. Organomet. Chem. 1992, 34, 67. (e) Johnson, B. F. G.; Haymore, B. L.; Dilworth, J. R. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, U.K., 1987; Vol. 2, p 130.
 (8) (a) Nakamura, A.; Yoshida, T.; Cowie, M.; Otsuka, S.; Ibers, J. A. J.
- (8) (a) Nakamura, A.; Yoshida, T.; Cowie, M.; Otsuka, S.; Ibers, J. A. J. Am. Chem. Soc. 1977, 99, 2108. (b) Herrmann, W. A.; Ziegler, M. L.; Weidenhammer, K. Angew. Chem., Int. Ed. Engl. 1976, 15, 368. (c) Herrmann, W. A.; Ziegler, M. L.; Weidenhammer, K.; Biersack, H.; Mayer, K. K.; Minard, R. D. Angew. Chem., Int. Ed. Engl. 1976, 15, 164. (d) Herrmann, W. A. J. Organomet. Chem. 1975, 84, C25. (e) Yarrow, D. J.; Ibers, J. A.; Tatsuno, Y.; Otsuka, S. J. Am. Chem. Soc. 1973, 95, 8590. (f) Otsuka, S.; Nakamura, A.; Koyama, T.; Tatsuno, Y. J. Chem. Soc., Chem. Commun. 1972, 1105.
- (9) (a) Albertin, G.; Antoniutti, S.; Bacchi, A.; Barbera, D.; Bordignon, E.; Pelizzi, G.; Ugo, P. *Inorg. Chem.* **1998**, *37*, 5602. (b) Albertin, G.; Antoniutti, S.; Bacchi, A.; Bergamo, M.; Bordignon, E.; Pelizzi, G. *Inorg. Chem.* **1998**, *37*, 479. (c) Albertin, G.; Antoniutti, S.; Bordignon, E.; Pelizzi, Chem. Soc., Dalton Trans. **1997**, 4445. (d) Albertin, G.; Antoniutti, S.; Bacchi, A.; Borcdignon, E.; Pelizzi, G.; Ugo, P. *Inorg. Chem.* **1996**, *35*, 6245.
- (10) (a) Albertin, G.; Antoniutti, S.; Baldan, D.; Bordignon, E. *Inorg. Chem.* 1995, 34, 6205. (b) Amendola, P.; Antoniutti, S.; Albertin, G.; Bordignon, E. *Inorg. Chem.* 1990, 29, 318. (c) Albertin, G.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1989, 2353. (d) Albertin, G.; Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. *Inorg. Chem.* 1988, 27, 829.
- (11) Rabinowitz, R.; Pellon, J. J. Org. Chem. 1961, 26, 4623.
- (12) (a) Aryl diazoalkanes: Closs, G. L.; Moss, R. A. J. Am. Chem. Soc. 1964, 86, 4042. Yates, P.; Shapiro, B. L. J. Org. Chem. 1958, 23, 759. (b) Diaryl diazoalkanes: Smith, L. I.; Howard, K. L. Organic Syntheses; Wiley: New York, 1955; Vol. III, p 351. Miller, J. B. J. Org. Chem. 1959, 24, 560. Baltzly, R.; Mehta, N. B.; Russell, P. B.; Brooks, R. E.; Grivsky, E. M.; Steinberg, A. M. J. Org. Chem. 1961, 26, 3669.

⁽¹⁾ Sutton, D. Chem. Rev. 1993, 93, 995.

et al.¹³ Other reagents were purchased from commercial sources in the highest available purity and used as received. Infrared spectra were recorded on Digilab Bio-Rad FTS-40 or Nicolet Magna 750 FT-IR spectrophotometers. NMR spectra (¹H, ¹³C, ³¹P) were obtained on a Bruker AC200 spectrometer at temperatures varying between -90 and +30 °C, unless otherwise stated. ¹H and ¹³C spectra are referred to internal tetramethylsilane; ³¹P{¹H} chemical shifts are reported with respect to 85% H₃PO₄, with downfield shifts considered positive. The SwaN-MR software package was used to treat NMR data.¹⁴ The conductivity of 10^{-3} M solutions of the complexes in MeNO₂ at 25 °C was measured with a Radiometer CDM 83 instrument.

Synthesis of Complexes. Hydrides OsH_2P_4 [P = PPh(OEt)₂, PPh₂-OEt, PPh₂OMe] were prepared following the reported method.^{10a,c}

[OsH(N₂CHR)P₄]CF₃SO₃ (1, 2, 3) [P = PPh(OEt)₂ (1), PPh₂OEt (2), PPh₂OMe (3); R = CO₂C₂H₅ (a), (CH₃)₃Si (b), 4-ClC₆H₄ (c)]. To a solution of the hydride OsH₂P₄ (0.10 mmol) in 10 mL of toluene cooled to -196 °C was added an equimolar amount of CF₃SO₃CH₃ (0.10 mmol, 11.2 μ L), and the reaction mixture, brought to room temperature, was stirred for 90 min. An excess of the appropriate diazoalkane (0.30 mmol) in 5 mL of toluene or hexane (1.5 mL) was added to the solution, which was vigorously stirred until a solid separated out (10–20 min). After 1 h, the solid was filtered, washed with diethyl ether, and dried under vacuum; yield was between 40 and 50%.

[OsH(N₂CRR')P₄]CF₃SO₃ (1, 2, 3) [P = PPh(OEt)₂ (1), PPh₂OEt (2), PPh₂OMe (3); R = R' = Ph (d); R = Ph, R' = 4-CH₃C₆H₄ (e); R = Ph, R' = C₆H₅CO (f); RR' = C₁₂H₈ (g); R = Ph, R' = C₅H₅N (h)]. These complexes were prepared exactly like the related compounds containing the monosubstituted RHCN₂ diazoalkanes but using a shorter reaction time (40-50 min), which gave a higher yield (50-70%).

[OsH(SO₂)P₄]BPh₄ [P = PPh(OEt)₂ (4), PPh₂OEt (5)]. A solution of [OsH(N₂CC₁₂H₈)P₄]CF₃SO₃ (0.12 mmol) in 10 mL of CH₂Cl₂ was allowed to stand under SO₂ (1 atm) for 30 min. The solvent was removed under reduced pressure, giving an oil, which was treated with ethanol (3 mL). The addition of an excess of NaBPh₄ (0.24 mmol, 82 mg) in 2 mL of ethanol to the resulting solution caused the separation of a yellow-green solid, which was filtered and crystallized from ethanol; yield ≥ 70%.

Results and Discussion

A series of diazoalkane complexes $[OsH(N_2CRR')P_4]CF_3$ -SO₃ (1-3) was prepared by reacting hydride species OsH_2P_4 first with methyl triflate and then with an excess of diazoalkane RR'CN₂, as shown in Scheme 1.

The reaction of OsH₂P₄ with methyl triflate proceeds with the evolution of CH₄ (by NMR) and probable formation¹⁵ of OsH(η^1 -OSO₂CF₃)P₄. η^1 -Triflate is a labile ligand in the compound and may easily be substituted by the diazoalkane molecule, affording the final [OsH(N₂CRR')P₄]CF₃SO₃ (1–3) derivatives. Alternatively, diazoalkane complexes **2** and **3** may also be prepared by displacement of the N₂ ligand with RR'CN₂ in the [OsH(N₂)P₄]CF₃SO₃ derivatives.^{10a} Instead, the related

(13) Appel, R.; Kleinstück, R.; Ziehn, K.-D. Angew. Chem., Int. Ed. Engl. 1971, 10, 132.

Scheme 1^a

$$OsH_2P_4 \xrightarrow{CF_3SO_3CH_3} OsH(\eta^1 - OSO_2CF_3)P_4 \xrightarrow{}$$

RR'CN₂ [OsH(RR'CN₂)P₄]CF₃SO₃ 1, 2, 3

^{*a*} P = PPh(OEt)₂ (1), PPh₂OEt (2), PPh₂OMe (3); R = H, R' = $CO_2C_2H_5$ (a); R = H, R' = (CH₃)₃Si (b); R = H, R' = 4-ClC₆H₄ (c); R = R' = C₆H₅ (d); R = C₆H₅, R' = 4-CH₃C₆H₄ (e); R = C₆H₅, R' = C₆H₅CO (f); RR' = C₁₂H₈ (g); R = C₆H₅, R' = C₅H₅N (h).

Figure 1. Variable-temperature ${}^{31}P{}^{1}H$ NMR spectra in CD₂Cl₂ of $[OsH(N_2CC_{12}H_8)(PPh_2OEt)_4]CF_3SO_3$ (2g).

 $[OsH(\eta^2-H_2)P_4]^+$ cations^{10a,b} are unreactive toward the RR'CN₂ molecule and cannot be used as precursors.

Good analytical data were obtained for all complexes 1-3which are relatively air-stable, green to brown solids, and soluble in polar organic solvents, in which they behave as 1:1 electrolytes.¹⁶ The IR and NMR spectra (Table 1) confirm the proposed formulation. The IR spectra show a medium- or strongintensity band at 1992–2100 cm⁻¹, attributed to the νN_2 of the diazoalkane ligand. Its value also suggests⁵ a singly bent geometry for the RR'CN₂ group. However, in some complexes, this band is of very low intensity or completely absent, although elemental analyses and NMR data indicate the presence of the RR'CN₂ moiety. This fact had already been observed in other diazoalkane complexes^{4,5} and may be explained^{5e} by the competition between the metal and the substituents at the N= N groups for π donation into nitrogen antibonding orbitals. This competition probably has the net effect of making the electron density of these two nitrogen atoms nearly equivalent, with a resulting small dipole, which presumably also makes the change in dipole moment during the vibration small.

The IR spectra also show the bands characteristic of the substituents of the diazoalkane and, for some complexes, weak absorption at $2125-2100 \text{ cm}^{-1}$, due to stretching of the Os-H bond.

In the low-frequency region, the ¹H NMR spectra show a well-resolved quintet between -8.21 and -13.6 ppm, attributed to the hydride ligand coupled with four equivalent phosphorus nuclei. The spectra also reveal the signals of the phosphite ligand and the substituents at the N=N group of the diazoalkane ligand, in agreement with the proposed formulation.

At room temperature, the ³¹P{¹H} NMR spectra of all complexes 1-3 appear as sharp singlets, suggesting the mutually trans position of the hydride and the RR'CN₂ ligand. However, lowering of sample temperature causes a change in the spectra of all the diazoalkane complexes and, in some cases, the spectra resolve at -80 °C in A₂B₂-type multiplets. Figure 1 shows an

(16) Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.

⁽¹⁴⁾ Balacco, G. J. Chem. Inf. Comput. Sci. 1994, 34, 1235.

⁽¹⁵⁾ Albertin, G.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1995, 719.

4648 Inorganic Chemistry, Vol. 39, No. 20, 2000

Table 1. IR and NMR Spectroscopic Data for the Diazoalkane Complexes

		IR ^a		¹ H NMR ^{b,c}			³¹ P{ ¹ H} NMR ^{b,d}
no.	compound	(cm^{-1})	assgnt	(ppm; <i>J</i> , Hz)	assgnt	spin syst	(ppm; J, Hz)
1a	$[OsH\{N_2C(H)COOEt\}\{PPh(OEt)_2\}_4]CF_3SO_3$	2100 w 2050 m 1674 s	ν(OsH) ν(N ₂) ν(CO)	4.25 q 3.91 s 3.66, 3.48 m 1.31 t 1.15 t -11.38 qi Iry = 20	CH ₂ diaz CH CH ₂ phos CH ₃ diaz CH ₃ phos H hydride	A ₄	116.9 s 116.0 m ^e
1f	$[OsH\{N_2C(C_6H_5)COC_6H_5\}\{PPh(OEt)_2\}_4]CF_3SO_3$	2100 m	ν(N ₂)	3.55, 3.41 m 1.04 t -11.02 qi $L_{\text{ry}} = 20$	CH ₂ CH ₃ H hydride	A_4	115.3 s
1g	$[OsH\{N_2CC_{12}H_8\}\{PPh(OEt)_2\}_4]CF_3SO_3{}^f$	2110 w 2009 m	$ u(OsH) $ $ u(N_2) $	3.80-3.50 m 1.20 t -10.84 qi $L_{\text{PM}} = 20$	CH ₂ CH ₃ H hydride	A_4	115.6 s
2a	$[OsH\{N_2C(H)COOEt\}\{PPh_2OEt\}_4]CF_3SO_3$	2110 w 1675 s	ν(OsH) ν(CO)	4.37 br 4.00 s 3.04 m 1.42 t 0.29 t -9.87 qi $I_{\text{rv}} = 20$	CH_2 diaz CH CH_2 phos CH_3 diaz CH_3 phos H hydride	A ₄	101.5 s 100.7 m ^e
2b	$[OsH\{N_2C(H)Si(CH_3)_3\}\{PPh_2OEt\}_4]CF_3SO_3$	2055 m	ν(N ₂)	$3.02 \text{ br} \\ 0.38 \text{ s} \\ 0.32 \text{ t} \\ -13.6 \text{ qi} \\ J_{\text{PH}} = 20$	CH ₂ CH ₃ diaz CH ₃ phos H hydride	A ₄	101.6 s 100.4 m, br ^e
2c	$[OsH\{N_2C(H)-4-ClC_6H_4\}\{PPh_2OEt\}_4]CF_3SO_3$			3.76 s 3.02 m 0.30 t, br -10.80 qi $J_{\rm PH} = 20$	CH CH ₂ CH ₃ H hydride	A_4	101.8 s 101.0 m ^e
2d	$[OsH\{N_2C(C_6H_5)_2\}\{PPh_2OEt\}_4]CF_3SO_3$	1992 m	<i>v</i> (N ₂)	2.98 br 0.40 t -11.07 qi $J_{\rm PH} = 20$	CH ₂ CH ₃ H hydride	$\begin{array}{c} A_4 \\ A_2 B_2{}^e \end{array}$	99.7 s $\delta_{\rm A} = 103.7$ $\delta_{\rm B} = 94.4$ $J_{\rm AB} = 27$
2e	$[OsH\{N_2C(C_6H_5)-4-CH_3C_6H_4\}\{PPh_2OEt\}_4]CF_3SO_3$	2125 w 1995 m	$ u(OsH) $ $ u(N_2) $	2.98 br 2.47 s 0.41 t	CH ₂ CH ₃ diaz CH ₃ phos	$\begin{array}{c} A_4 \\ A_2 B_2{}^e \end{array}$	99.8 s $\delta_{\rm A} = 104.2$ $\delta_{\rm B} = 95.3$
2f	$[OsH\{N_2C(C_6H_5)COC_6H_5\}\{PPh_2OEt\}_4]CF_3SO_3$	2115 w 1595 m	ν (OsH) ν (CO)	3.06 m 0.42 t -9.49 qi $I_{\text{PH}} = 20$	CH ₂ CH ₃ H hydride	A_4	98.4 s
2g	$[OsH\{N_2CC_{12}H_8\}\{PPh_2OEt\}_4]CF_3SO_3^f$	2013 m	ν(N ₂)	3.04 m, br 0.42 t -9.15 qi $J_{\text{PH}} = 20$	CH ₂ CH ₃ H hydride	$\begin{array}{c} A_4 \\ A_2 B_2{}^g \end{array}$	98.2 s $\delta_{\rm A} = 102.3$ $\delta_{\rm B} = 93.8$ $J_{\rm AB} = 27$
2h	$[OsH\{N_2C(C_6H_5)C_5H_5N\}\{PPh_2OEt\}_4]CF_3SO_3$	2105 w	v(OsH)	2.99 br 0.36 t -8.21 qi $J_{PH} = 20$	CH ₂ CH ₃ H hydride	A_4	96.4 s 100.6, 92.2 br ^e
3a	[OsH{N ₂ C(H)COOEt}{PPh ₂ OMe} ₄]CF ₃ SO ₃	1669 s	v(CO)	$\begin{array}{l} 4.23 \text{ q} \\ 3.75 \text{ s} \\ 1.31 \text{ t} \\ 2.58 \text{ d} \\ -9.98 \text{ qi} \\ J_{\text{PH}} = 20 \end{array}$	CH ₂ CH CH ₃ diaz CH ₃ phos H hydride	A_4	104.4 s 104.9 m, br ^e
3g	$[OsH\{N_2CC_{12}H_8\}\{PPh_2OMe\}_4]CF_3SO_3^f$	2013 s	<i>v</i> (N ₂)	2.68 d -9.22 qi $J_{\rm PH} = 20$	CH ₃ H hydride	A ₄	101.0 s
4	$[OsH(SO_2)\{PPh(OEt)_2\}_4]BPh_4$	2052 w 1268 m 1121 m	$ \nu(\text{OsH}) $ $ \nu(\text{SO}_2) $	3.64 m 1.18 t -9.06 qi $J_{\rm PH} = 20$	CH ₂ CH ₃ H hydride	A ₄	113.1 s
5	$[OsH(SO_2)\{PPh_2OEt\}_4]BPh_4$	2062 w 1267 m 1114 m	$ u(OsH) $ $ u(SO_2) $	3.22 m 0.79 t -7.42 qi $J_{\rm PH} = 20$	CH ₂ CH ₃ H hydride	A_4	93.7 s 93.0 s ^h

^{*a*} In KBr. ^{*b*} In CD₂Cl₂ at 25 °C. ^{*c*} Phenyl proton resonances are omitted. ^{*d*} Positive shift downfield from 85% H₃PO₄. ^{*e*} At -90 °C. ^{*f*} N₂CC₁₂H₈ = 9-diazofluorene. ^{*s*} At -105 °C. ^{*h*} At -70 °C.

Scheme 2^a

^{*a*} $P = PPh(OEt)_2$ (4), PPh_2OEt (5).

example of variable-temperature ³¹P spectra. The proton spectra also change with temperature, and at -80 °C the hydride signal appears as a multiplet (A₂B₂X-type spectra). However, some complexes, such as those containing a monosubstituted diazoalkane ligand, i.e., [OsH{N₂C(H)R}P₄]⁺ (**1a**, **2a–c**, **3a**) and [OsH{N₂C(C₆H₅)C₅H₅N}P₄]CF₃SO₃ (**2h**), do show a complicated multiplet which does not resolve even at -90 °C. The spectra are not symmetric, but in the absence of low-exchange conditions no conclusion regarding the type of spectra (A₂B₂, AB₂C, ABC₂, etc.) can be made.

These results may be interpreted on the basis of the existence of a singly bent diazoalkane ligand whose restricted rotation around the OsNN axis makes the phosphorus atoms magnetically inequivalent. In fact, the diazoalkane ligand can be oriented with the N–N–C plane eclipsing an equatorial bond of the octahedral geometry (see structure I) or over a P–Os–P bisector, as in structure II.

The ³¹P spectrum of limit geometry **I** is expected as an ABC₂ or AB₂C multiplet, whereas that of the structure in which the plane of the diazoalkane bisects the P–Os–P angle (**II**) should be a symmetric A₂B₂-type multiplet. Our low-exchange spectra appear as A₂B₂ multiplets and suggest a type-**II** geometry. Even rotation around the NC axis still present at -80 °C should not change the profiles of the spectra, and therefore, although the absence of a crystal structure does not allow conclusive assignment, the ³¹P data suggest the presence in solution of a bent diazoalkane ligand oriented over a P–Os–P bisector, as in geometry **II**.

Some studies on the reactivity of diazoalkane complexes 1-3 were undertaken, and the results are summarized in Scheme 2.

In CH₂Cl₂ or other solvents, the complexes are unstable even at 0 °C and slowly decompose, affording a brown solution from which no solid compounds could be isolated. However, the NMR spectra (¹H, ¹³C) of the resulting oil do not show the presence of a carbene complex forming from the N2CRR' ligand by loss of N₂. The addition of HBF₄ or CF₃SO₃H to the solution increases the decomposition rate of 1-3, but also in this case no carbene complexes could be detected. Treatment with CO or isocyanide proceeds with substitution of the N2CRR' ligand, affording the known^{10a,b} $[OsH(CO)P_4]^+$ (6) and $[OsH(4-CH_3C_6H_3C_6H_4-CH_3CCH_3C_6H_4-CH_3C$ NCP_4 ⁺ (7) cations. Also SO_2 (1 atm) gives rise to the substitution reaction, affording new sulfur dioxide [OsH(SO₂)- P_4]⁺ (4, 5) derivatives, which were isolated as BPh₄⁻ salts and characterized. Instead, the reaction of 1-3 with carbon disulfide or p-tolyl isothiocyanate proceeds to give dithioformato 8 or p-tolylthioformamido 9 complexes,¹⁷ probably the result of substitution of N₂CRR' and further insertion of the CS₂ or 4-CH₃C₆H₄NCS molecule into the Os-H bond.

The sulfur dioxide complexes $[OsH(SO_2)P_4]BPh_4$ (**4**, **5**) are yellow solids, stable in air and in solution of polar organic solvents, in which they behave as 1:1 electrolytes.¹⁶ Spectroscopic (Table 1) and analytical data support their formulation. In particular, the IR spectra show weak bands at 2052 (**4**) or 2062 (**5**) cm⁻¹, attributed to ν OsH. In the 1300–1100 cm⁻¹ region, two bands of medium intensity are present at 1268 and 1121 cm⁻¹ for **4** and at 1267 and 1114 cm⁻¹ for **5**, attributed to the ν SO of the SO₂ ligand. A comparison of these ν SO values with those of structurally characterized sulfur dioxide complexes indicated coplanar MSO₂ geometry¹⁸ for our **4**, **5** derivatives.

In the temperature range between +20 and -80 °C, the ³¹P-

⁽¹⁷⁾ Albertin, G.; Antoniutti, S.; Bordignon, E. Gazz. Chim. Ital. 1994, 124, 355.

4650 Inorganic Chemistry, Vol. 39, No. 20, 2000

{¹H} NMR spectra of compounds **4** and **5** appear as sharp singlets. The proton spectra show well-resolved quintets at -9.06 (**4**) and -7.43 ppm (**5**) due to hydride ligand coupling with four equivalent phosphorus nuclei. A trans geometry **III** was therefore proposed for the unprecedented SO₂ osmium derivatives **4** and **5**.

Acknowledgment. The financial support of MURST, Rome, Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, Cofinanziamento 1998–1999, is gratefully acknowledged. We thank Daniela Baldan for technical assistance.

Supporting Information Available: The complete list of analytical data for all complexes (Table S1). This material is available free of charge via the Internet at http://pubs.acs.org. IC991335O

^{(18) (}a) Kubas, G. J. Inorg. Chem. **1979**, 18, 182. (b) Schenk, W. A. Angew. Chem., Int. Ed. Engl. **1987**, 26, 98.