(THF)₃LiCl as a Ligand for Low-Coordinate Fe(II): Crystal Structure of [(Me₃Si)₂N]₂Fe(µ-Cl)Li(THF)₃

Ulrich Siemeling, *,† Udo Vorfeld, Beate Neumann, and Hans-Georg Stammler

Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany

Received January 27, 2000

Introduction

Complexes containing three-coordinate non-d¹⁰-configurated transition metal centers are of great current interest.¹ In the chemistry of iron, this has been further spurred by the finding that six of the seven iron atoms in the FeMo cofactor of molybdenum nitrogenase² from Azotobacter vinelandii³ are essentially three-coordinate with a distorted-trigonal geometry. The earliest well-characterized example of a compound containing three-coordinate iron is Fe[N(SiMe₃)₂]₃, which was published by Wannagat and Bürger in 1963.⁴ This paper also describes the synthesis of the two-coordinated Co[N(SiMe₃)₂]₂. Since then, bulky amido ligands have been utilized more extensively than any other type of ligand for the stabilization of coordinatively and electronically unsaturated transition metal complexes.⁵ The common view that bis(triorganosilyl)amido ligands act predominantly as uninegative two-electron σ -bonding ligands toward low-coordinate transition metal centers, exhibiting almost negligible M–N π -bonding,^{5b,6} is currently under revision.⁷ In any case, the extent of M–N π -bonding is expected to be next to nothing for borylamido complexes, since the nitrogen lone pair engages in strong B–N π -bonding.⁸

The iron(II) analogue of Fe[N(SiMe₃)₂]₃ is Fe[N(SiMe₃)₂]₂, which was prepared by metathesis of FeBr₂(THF)₂ with lithium bis(trimethylsilyl)amide in diethyl ether.⁶ It is monomeric in the gas phase but adopts a dimeric amido-bridged structure with three-coordinate iron in the solid state.⁹ The yellow dimer reacts with the Lewis base THF, yielding the pale-green monomeric adduct (THF)Fe[N(SiMe₃)₂]₂.⁹ In contrast to this, bis(trimethylsilylamido)cobalt(II), which is also an amido-bridged dimer in the solid state,¹⁰ does not react with THF,⁴ but it does form adducts with stronger donors, an example being (Ph₃P)Co-[N(SiMe₃)₂]₂.¹¹ The three-coordinated anionic complexes

- (2) Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965.
- (3) (a) Chan, M. K.; Kim, J.; Rees, D. C. Science 1993, 260, 792. (b) Kim, J.; Rees, D. C. Nature (London) 1992, 360, 553.
- (4) Bürger, H.; Wannagat, U. Monatsh. Chem. 1963, 94, 1007.
- (5) (a) Power, P. P. Chemtracts: Inorg. Chem. **1994**, 6, 181. (b) Power, P. P. Comments Inorg. Chem. **1989**, 8, 177.
- (6) Andersen, R. A.; Faegri, K., Jr.; Green, J. C.; Haaland, A.; Lappert, M.; Leung, W. P.; Rypdal, K. *Inorg. Chem.* **1988**, *27*, 1782.
- (7) Palacios, A. A.; Alemany, P.; Alvarez, S. *Inorg. Chem.* 1999, *38*, 707.
 (8) Bartlett, R. A.; Feng, X.; Olmstead, M. M.; Power, P. P.; Weese, K.
- J. J. Am. Chem. Soc. **1987**, 109, 4851. (9) Olmstead, M. M.; Power, P. P.; Shoner, S. C. Inorg. Chem. **1991**, 30,
- 2547.
- (10) Murray, B. D.; Power, P. P. Inorg. Chem. 1984, 23, 4584.
- (11) Bradley, D. C.; Hursthouse, M. B.; Smallwood, R. J.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1972, 872.

 ${M[N(SiMe_3)_2]_3}^-$ are known for both iron and cobalt and may be rationalized as adducts of $M[N(SiMe_3)_2]_2$ with the very strong base $[N(SiMe_3)_2]^-$.¹²

To date, only four examples of structurally characterized monomeric complexes containing three-coordinate iron are known,¹³ viz. {Fe[N(SiMe_3)_2]_3}^{*n*-} (n = 0,¹⁴ 1 ¹²), (THF)Fe-[N(SiMe_3)_2]_2,⁹ and {ClFe[Si(SiMe_3)_3]_2}^{-.15} Here we report on an unusual fifth example.

Results and Discussion

We recently described the synthesis and structure of Cp*FeN-(SiMe₃)₂.¹⁶ This complex was prepared by the reaction of iron-(II) chloride in THF with 1 equiv of KN(SiMe₃)₂ and subsequent addition of Cp*Li. Our attempt to obtain the unmethylated CpFeN(SiMe₃)₂ by an analogous procedure using CpLi instead of Cp*Li led to the formation of the title compound [(Me₃-Si)₂N]₂Fe(μ -Cl)Li(THF)₃, which was isolated as very pale-green, extremely air-sensitive crystals after removal of the second product, ferrocene, by crystallization from *n*-hexane.

A single-crystal X-ray diffraction study was performed for the novel iron complex (Figure 1). The iron atom is surrounded by three ligands in a distorted trigonal planar arrangement (sum of angles is 359.9°). The nitrogen atoms of the two N(SiMe₃)₂ groups are also trigonal planar (sum of angles is 360.0/359.9°). The two NSi₂ planes are almost orthogonal (dihedral angle is 84.2°). The two Fe–N bond lengths [Fe(1)–N(1), 194.5(5) pm; Fe(1)-N(2), 195.4(5) pm] are identical within experimental error. The corresponding Fe-N(terminal amido) distances are 191.6(5) and 192.3(3)/192.7(3) pm, respectively, for the neutral $(THF)Fe[N(SiMe_3)_2]_2^9$ and $\{Fe[\mu-N(SiMe_3)_2][N(SiMe_3)_2]\}_2^9$ and range from 197.3(5) to 199.4(4) pm for the anionic {Fe[N(SiMe₃)₂]₃}^{-.12} A ClLi(THF)₃ moiety acts as the third ligand in the title complex. The chlorine atom brigdes the two metal atoms [Fe(1)-Cl(1)-Li(1), 124.4(3) °]. The Fe-Cl bond length [231.8(2) pm] is slightly, but significantly, longer than that in $[NEt_4]^+$ {ClFe[Si(SiMe_3)_3]_2}⁻ [228.4(6) pm], which contains a terminal chloro ligand.¹⁵ The lithium atom resides in a distorted tetrahedral environment. The Li-O distances range from 190.6(13) to 194.1(14) pm (average, 192.0 pm), as is typical for tetracoordinate Li^{+.17} The Li-Cl distance is 234.5-(13) pm. These values are very similar to those found for the contact ion pairs LiCl(H₂O)(C₅H₅N)₂¹⁸ and LiI(THF)₃¹⁹ (after ionic radius correction). Finally, we note that intermolecular distances are well above 400 pm.

The structure of the title compound closely resembles that of the di(borylamido)cobalt(II) complex $[Ph(Mes_2B)N]_2Co(\mu-Cl)Li(THF)(OEt_2)_2$, which was obtained from the reaction of

- (12) Putzer, M. A.; Neumüller, B.; Dehnicke, K.; Magull, J. Chem. Ber. 1996, 129, 715.
- (13) Melnik, M.; Ondrejkovičková, I.; Vančová, V.; Holloway, C. E. Rev. Inorg. Chem. 1997, 17, 55.
- (14) Hursthouse, M. B.; Rodesiler, P. F. J. Chem. Soc., Chem. Commun. 1972, 2100.
- (15) Roddick, D. M.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Am. Chem. Soc. 1987, 109, 945.
- (16) Siemeling, U.; Vorfeld, U.; Neumann, B.; Stammler, H.-G. Organometallics 1998, 17, 483.
- (17) (a) Wozniak, K.; Krygowski, T. M. Pol. J. Chem. 1993, 67, 1667. (b)
 Olsher, U.; Izatt, R. M.; Bradshaw, J. S.; Dalley, N. K. Chem. Rev. 1991, 91, 137.
- (18) Durant, P. F.; Piret, P.; Van Meerssche, M. Acta Crystallogr. 1967, 22, 52.
- (19) Nöth, H.; Waldhör, R. Z. Naturforsch., B: Chem. Sci. 1998, 53, 1525.

10.1021/ic000086x CCC: \$19.00 © 2000 American Chemical Society Published on Web 09/28/2000

[†] Present address: Fachbereich 18 (Physik), Universität Gesamthochschule Kassel, Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany.

 ⁽a) Alvarez, S. Coord. Chem. Rev. 1999, 193–195, 13. (b) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685.

Figure 1. Molecular structure of $[(Me_3Si)_2N]_2Fe(\mu-Cl)Li(THF)_3$ in the crystal. Selected interatomic distances (Å) and angles (deg) not discussed in the text are the following: Si(1)–N(1) 172.8(5), Si(2)–N(1) 170.6(5), Si(3)–N(2) 172.9(5), Si(4)–N(2) 171.4(5), O(1)–Li-(1) 191.2(13), O(2)–Li(1) 194.1(14), O(3)–Li(1) 190.6(13); N(1)–Fe(1)–N(2) 130.8(2), N(1)–Fe(1)–Cl(1) 114.67(16), N(2)–Fe(1)–Cl(1) 114.43(17), Si(1)–N(1)–Si(2) 123.9(3), Si(1)–N(1)–Fe(1) 117.3(3), Si(3)–N(2)–Fi(1) 118.5(3), Si(4)–N(2)–Fe(1) 117.3(3), Si(3)–N(2)–Si(4) 123.1(3), Si(3)–N(2)–Fe(1) 118.5(3), Si(4)–N(2)–Fe(1) 118.3(3), O(1)–Li(1)–Cl(1) 117.4(6), O(3)–Li(1)–Cl(1) 114.9-(6), O(1)–Li(1)–O(2) 106.1(7), O(1)–Li(1)–O(3) 103.7(6), O(2)–Li(1)–O(3) 106.4(7).

cobalt(II) chloride with 2 equiv of (Et₂O)₂Li[N(BMes₂)Ph] in THF.⁸ The M–Cl distances in this complex are 230.0(2) (M = Co) and 235.3(11) pm (M = Li). The Co-Cl-Li angle has a value of 160.0°.²⁰ The two nitrogen atoms are trigonal planar (sum of angles is 358.2/357.3°; dihedral angle is 17.0°). Only three related crystallographically characterized transition metal complexes have been published, namely, $(t-Bu_2C_5H_3)_3Nd(\mu-$ Br)Li(THF)₃ [Nd-Br-Li, 136.4(6)°],²¹ (*t*-Bu₂C₅H₃)₃Pr(µ-Br)-Li(THF)₃ [Pr-Br-Li, 137.3(3)°],²² and Cl₄(THF)Zr(µ-Cl)Li- $(THF)_3 [Zr-Cl-Li, 117.16(14)^\circ]^{.23}$ An XLi $(THF)_3$ unit (X = Cl, Br) acts as a ligand for a very Lewis acidic metal center in these three cases. This represents a very rare structural motif in coordination chemistry, a much more common one being the simultaneous coordination of both atoms of LiX by a suitable metal-ligand unit.²⁴ In fact, this behavior causes the tenacity of LiX in many transition metal complexes, which is most notorious for the rare-earth elements (Ln), where, for example, $Cp*_{2}Ln(\mu-X)_{2}LiL_{2}$ (L = Et₂O, THF) is a well-known structure type.25

The question arises as to why the title compound is isolated instead of a mixture of the known (THF)Fe[N(SiMe₃)₂]₂ ⁹ and a THF solvate of lithium chloride such as [(THF)LiCl]_n ²⁶ and [(THF)₂LiCl]₂.²⁷ We remind ourselves of the fact that bis-

- (22) Luo, Y.; Yao, Y.; Shen, Q.; Sun, J.; Xue, F. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, 54, 711.
- (23) Polamo, M.; Leskelä, M. Acta Chem. Scand. 1997, 51, 44.
- (24) (a) Wu, Z.; Diminnie, J. B.; Xue, Z. *Inorg. Chem.* **1998**, *37*, 2570. (b) Jones, C.; Black, S. J.; Steed, J. W. *Organometallics* **1998**, *17*, 5924.
 (c) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. *Organometallics* **1998**, *17*, 485. (d) Kräuter, T.; Neumüller, B. *Polyhedron* **1996**, *15*, 2851.
 (e) Neumüller, B.; Heshmatpour, F.; Dehnicke, K. Z. Naturforsch., B: Chem. Sci. **1996**, *51*, 602.
- (25) Evans, W. J.; Foster, S. E. J. Organomet. Chem. 1992, 433, 79.
- (26) Kopp, M. R.; Neumüller, B. Z. Naturforsch., B: Chem. Sci. 1999, 54, 818.

Table 1. Crystallographic Data for [(Me₃Si)₂N]₂Fe(µ-Cl)Li(THF)₃

chemical formula	C24H60ClFeLiN2O3Si4	fw	635.34
a, Å	12.122(6)	space group	<i>P</i> 1 (No. 2)
b, Å	12.627(5)	temp, °C	173
<i>c</i> , Å	14.352(6)	λ, Å	0.710 73
α, deg	82.75(3)	$\rho_{\text{calcd}}, \text{g/cm}^3$	1.101
β , deg	85.38(4)	μ , mm ⁻¹	0.612
γ , deg	61.57(3)	$R(F_{o})^{a}$	0.0987
V, Å ³	1915.9(15)	$R_{\rm w}(F_{\rm o}2)^b$	0.2481
Ζ	2		

 ${}^{a}R(F_{o}) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w}(F_{o}^{2}) = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}.$

(trimethylsilylamido)cobalt(II) does not form a THF adduct (vide supra). However, the adduct $[(Me_3Si)_2N]_2Co(\mu-Cl)Li(THF)_3$ obviously exists, since it is briefly mentioned in ref 8 as unpublished work. It is therefore tempting to conclude that in the present system ClLi(THF)_3 is a better donor ligand than THF. As a caveat, we note that $[Li(THF)_4][ZrCl_5(THF)]$ and (THF)ZrCl₄(μ -Cl)Li(THF)_3 were obtained under very similar conditions,²³ underlining the intricacies caused by differences in experimental parameters.

Experimental Section

All manipulations were performed in an inert atmosphere (purified argon or dinitrogen) by using standard Schlenk and cannula techniques or a conventional glovebox. Solvents and reagents were appropriately dried and purified by using standard procedures. Elemental analyses were performed by Mikroanalytisches Labor Beller, Göttingen, Germany.

Synthesis of $[(Me_3Si)_2N]_2Fe(\mu-Cl)Li(THF)_3$. A solution of KN-(SiMe_3)₂ (3.46 g, 17.4 mmol) in THF (30 mL) was added dropwise to a stirred suspension of FeCl₂ (2.20 g, 17.4 mmol) in THF (30 mL) cooled to 0 °C. After stirring of the mixture at 0 °C for 10 h, CpLi (1.25 g, 17.4 mmol) in THF (60 mL) was added and the mixture allowed to warm to room temperature. After 1 h at room temperature volatile components were removed in vacuo until a viscous greenish-brown oil was left. *n*-Hexane (70 mL) was added and insoluble material removed by filtration. The volume of the filtrate was reduced to ca. 30 mL. Storing of the solution at 0 °C for 2 days afforded the product as a very pale-green crystalline solid. Small amounts of ferrocene (orange crystals) were removed manually. Yield, 3.20 g (58%). Anal. Calcd for C₂₄H₆₀ClFeLiN₂O₃Si₄: C, 45.37; H, 9.52; N, 4.41. Found: C, 44.40; H, 8.71; N, 4.10.

X-ray Crystallography. A suitable single crystal was mounted in inert oil and transferred to the cold gas stream of a Siemens P2₁ fourcircle diffractometer. The structure was solved using direct methods and developed routinely. Programs used were Siemens SHELXTL plus and SHELXL-97. Crystal parameters and details of the data collection and refinement are given in Table 1 (for full details see Supporting Information).

Acknowledgment. The authors thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the University of Bielefeld for financial support.

Supporting Information Available: An X-ray crystallographic file in CIF format for the structure determination of $[(Me_3Si)_2N]_2Fe(\mu-Cl)-$ Li(THF)₃. This material is available free of charge via the Internet at http://pubs.acs.org.

IC000086X

⁽²⁰⁾ Calculated from the data given in ref 8.

⁽²¹⁾ Song, S.; Shen, Q.; Jin, S. Polyhedron 1992, 11, 2863.

^{(27) (}a) Westerhausen, M.; Hartmann, M.; Schwarz, W. *Inorg. Chim. Acta* 1998, 269, 91. (b) De Angelis, S.; Solari, E.; Gallo, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. *Inorg. Chem.* 1992, 31, 2520. (c) Hahn, F. E.; Rupprecht, S. Z. *Naturforsch., B: Chem. Sci.* 1991, 46, 143. (d) Schmuck, A.; Leopold, D.; Wallenhauser, S.; Seppelt, K. *Chem. Ber.* 1990, 123, 761.