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Hydrothermal Syntheses of Layered Uranium Oxyfluorides: lllustrations of Dimensional Reduction
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Rationalizing and predicting changes in the architecture of

Our studies of the hydrothermal preparation and characteriza-

crystalline solids can be accomplished in many cases through thetion of uranium-containing materials has led to the discovery of

application of the dimensional reduction formali$m.Long and

a large number of low-dimensional U(IV) fluorides and U(VI)

co-workers have recently compiled a database demonstrating thaoxyfluorides?”-2 Thus far, all of the U(VI) compounds that we

the structures of numerous low-dimensional transition metal
halides can be interconnected through this thédwhile the

have isolated contain [UBs] pentagonal bipyramids. The use
of these polyhedra as building blocks for low-dimensiéhahd

majority of these compounds have been derived from solid-state open-framework materiafs has recently yielded two striking
reactions, hydrothermal syntheses also provide access to inorgani€xamples of dimensional reduction that demonstrate both the

materials with reduced dimensionality, particularly when structure-
directing agents are employéd-® While many main group and

strengths and weaknesses of this theory. Specifically, the reactions
of UO,(C,H30,), or UO; with aqueous HF in the presence of

transition metal systems have been explored over the past 15pyridine or pyrazole at 180C for 72 h have resulted in the

years, employment of these methods in the preparation of low-
dimensional actinides is quite novel, being first reported by
O’Hare and co-workers in 1998:2¢ Actinide-based materials

isolation of one-dimensional (EsN)UOsF; (AU1-4)28 and
(C3HsN)UO,F3 (AU1-5)% and two-dimensional (§E16N)U2O4Fs
(AU2-4) and (GHsN2)U,04Fs+1.75H0 (AU2-5). Hydrothermal

possess exploitable chemical and physical properties, including methods are particularly advantageous in these syntheses because

use as oxidation catalysfsand as luminescetitand magnetic
materials2%-2
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the products are isolated in high yield as large single crystals.
All of these compounds luminesce brightly at room temperature
when irradiated with long-wavelength UV light (365 nm). The

observed emission, as measured using a fluorescence microscope
on single crystals, is characteristic of the uranyl units contained
in these material&:303!

In both the pyridiniun® and pyrazoliur®® systems, we have
been able to isolate and determine the conditions necessary for
preparing pure phases through the use of compositional space
diagramg3:24.26:3436 One of the difficulties in establishing systems
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autoclave. Water (1 mL) was then added to the solids followed by the
dropwise addition of HF (0.25 mL, 7 mmol). The autoclave was sealed
and placed in a box furnace that had been preheated t6CL88&fter 72
h the furnace was cooled at°@/h to 23°C. The product consisted of
a light-yellow liquid over pale-yellow prisms. The mother liquor was
decanted from the crystals, which were then washed with methanol and
allowed to dry; yield, 698 mg (78% yield). Anal. Calcd forstds-
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where stepwise transformation of a structure can be observed is F(1)

that these reactions often involve complex redox processes T FQ2y T T
yielding U(IV) products?2224.262\\/hile previous reports have
enumerated the isolation of zero-, one-, two-, and three-
dimensional uranium fluorides and oxyfluorides, the fundamental
building blocks in these compounds typically vary drastic#I&p.

We have been able to greatly reduce, but not eliminate, reduction ”’\ @/‘\ /\ /\ /6
of the U(VI) centers through the employment of aromatic amines @/@‘\/ \/e\/ \/- e
as templates. These structure-directing agents are far more stable %

F2y FQy

and less reducing under mild hydrothermal conditions than
saturated amines such as homopiperaZine.

The structure of (€HsN)U,O4Fs (AU2-4)37 consists of two-
dimensional sheets formed from edge- and corner-sharingf4J)O
pentagonal bipyramids, as shown in Figure 1. These sheets can
be sectioned into one-dimensional chains that are linked by the
bridging F(1) anions. As the [U@s] pentagonal bipyramid
translates, this fluoride anion alternates between sides of the chain.
This results in the chains joining at every other uranium center,
creating channels that run down [001]. The pyridinium cations
are located above and beneath these channels, forming hydrogen l +F~
bonds with the fluoride ligands, and further serve to separate the
[UO4F5]* layers. U-F bond distances, all of which are bridging,
range from 2.291(1) to 2.328(5) A. The uranyl, BQ moiety is
within expected ranges, being essentially linear with a ©(1)
U(1)—0(2) bond angle of 179.5(5)nd U=0 bonds distances
of 1.751(1) and 1.762(1) A.

Using dimensional reduction, we can predict that the addition
of 1 equiv of pyridinium fluoride toAU2-4 will result in the o=U o=0 e=F
transformation of the bridging F(1) fluoride ligand into a terminal Figure 1. Conversion of two-dimensional {4Fs]™~ sheets inAU2-4
group, thereby yielding one-dimensional chains, as depicted in 5 [yo,F;]* linear, one-dimensional chainsAu1-4. Ellipsoids for 50%
Figure 1. In fact, AU1-4 contains such linear, one-dimensional displacement are shown fétU2-4. The pyridinium cations have been
[UO,F3]* chains formed through edge-sharing [4§) pentago- omitted for clarity.
nal bipyramid<® This is a particularly spectacular transformation opserved in (GH12N)2(U,04Fs) - 11H,026 As found in the
because there are virtually no other changes in the inorganicpyridinium system, increased concentrations of pyrazolium

architecture. fluoride also leads to dimensional reduction, yieldiAt1-5,
In contrast toAU2-4, the two-dimensional sheets AlU2-5°7 which contains the same one-dimensional chains as fouAtin
are formed solely through corner-sharing of the PB€ poly- 4. Considerable structural rearrangement is required in order to

hedra. The pyrazolium cations lie perpendicular to these layers form these chains. As indicted by Holm and co-worlehgrein
and form hydrogen-bonding networks between layers. The lies the weakness of dimensional reduction theory in that

structural arrangement of pQ,Fs]*~ layers inAU2-5 was also isomerization cannot be predicted at each step of the transforma-
tion.
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reflections withl > 20 and 176 parameters. 1C000668E



