$$\label{eq:statestarder} \begin{split} Facile Syntheses and Structures of New \\ Metal-Maleonitrilediselenolates \\ [K([2.2.2]-cryptand)]_3[Ag(Se_2C_2(CN)_2)(Se_6)], \\ [K([2.2.2]-cryptand)]_2[Ni(Se_2C_2(CN)_2)_2], and \\ Ni(dppp)(Se_2C_2(CN)_2) \end{split}$$

Craig C. McLauchlan and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received February 10, 1999

Introduction

Metal complexes containing the maleonitriledithiolate (mnt, $[S_2C_2(CN)_2]^{2-}$ ligand have been extensively studied. The literature abounds with uses of metal-mnt complexes for charge transfer, for charge storage, and as molecular metals.^{1–3} Despite the abundance of metal-mnt complexes and the extensive literature on $[Se_2C_2R_2]^{2-}$ species, 4-8 complexes of the selenium analogue of mnt, maleonitrilediselenolate (mns, $[Se_2C_2(CN)_2]^{2-}$) were unknown until recently. The first metal-mns complex was isolated as [NBu₄]₂[Ni(mns)₂],⁹ although unsuccessful earlier efforts are reported.⁴ The [Ni(mns)₂]²⁻ species was isolated by a difficult synthesis involving carbon diselenide and dicyanoacetylene.⁹ Recently, we reported the serendipitous syntheses of two metal-mns complexes, [K([2.2.2]-cryptand)]₃[Sb(mns)₂] and $[K([2.2.2]-cryptand)]_3[Ag(mns)(Se_6)]$ (1).¹⁰ We report here an improved synthesis of complex 1 and the syntheses of $[K([2.2.2]-cryptand)]_2[Ni(Se_2C_2(CN)_2)_2]$ (2) and Ni(dppp)(Se_2C_2- $(CN)_2$ (3), where dppp = 1,3-bis(diphenylphosphino)propane.

Experimental Section

General Procedures. Infrared spectra were collected on a Bio-Rad Digilab FTS-60 FTIR spectrometer for samples as KBr mulls. ¹H and ³¹P NMR spectra were collected on a Gemini 300 instrument; ³¹P NMR spectra were referenced to neat H₃PO₄. K₂Se was prepared stoichiometrically from the elements in liquid ammonia. KNH₂ was prepared by reaction of KH with liquid ammonia. Ni(dppp)Cl₂ (97%), Se (99.9%), AgBF₄ (98%), and [2.2.2]-cryptand (=4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) (98%) were purchased commercially and were used without further purification. *N*,*N*-dimethylforma-mide (dmf) was dried over 4 Å sieves and degassed prior to use. Electrospray mass spectroscopic analyses were performed on a Microscan Quattro II instrument operated in a positive ion mode. Energy dispersive spectroscopy was performed on an EDAX equipped Hitachi S-4500 field emission scanning electron microscope. Microanalyses were performed by Oneida Research Services, Whitesboro, NY.

- (1) Bähr, G.; Schleitzer, G. Chem. Ber. 1955, 88, 1771-1777.
- (2) McCleverty, J. A. Prog. Inorg. Chem. 1968, 10, 49-221.
- (3) Clemenson, P. I. Coord. Chem. Rev. 1990, 106, 171-203.
- (4) Davison, A.; Shawl, E. T. Inorg. Chem. 1970, 9, 1820–1825.
- (5) Nigrey, P. J. Synth. React. Inorg. Met. Org. Chem. 1986, 16, 1351-1355.
- (6) Olk, B.; Olk, R.-M.; Sieler, J.; Hoyer, E. Synth. Met. 1991, 41-43, 2585-2588.
- (7) Olk, R.-M.; Röhr, A.; Olk, B.; Hoyer, E. Z. Chem. 1988, 8, 304– 305.
- (8) Dietzsch, W.; Franke, A.; Hoyer, E.; Gruss, D.; Hummel, H.-U.; Otto, P. Z. Anorg. Allg. Chem. 1992, 611, 81–84.
- (9) Morgado, J.; Santos, I. C.; Duarte, M. T.; Alcácer, L.; Almeida, M. J. Chem. Soc., Chem. Commun. 1996, 1837–1838.
- (10) Smith, D. M.; Albrecht-Schmitt, T. E.; Ibers, J. A. Angew. Chem., Int. Ed. Engl. 1998, 37, 1089–1091.

X-ray Structure Determinations. Intensity data were collected at -120 °C on a Bruker AXS SMART-1000 diffractometer equipped with a CCD area detector. Graphite monochromatized Mo K α radiation was used. Structures were solved by means of direct methods and were refined on F^2 with the use of full-matrix least-squares techniques.¹¹ The crystallographic results are summarized in Table 1. Further details are provided in Supporting Information.

Synthesis of $[K([2.2.2]-cryptand)]_3[Ag(Se_2C_2(CN)_2)(Se_6)]$ (1). A mixture of 5.6 mg (0.1 mmol) of KNH₂, 40 mg (0.2 mmol) of AgBF₄, 63 mg (0.4 mmol) of K₂Se, 158 mg (2 mmol) of Se, and 340 mg (0.9 mmol) of [2.2.2]-cryptand was dissolved in 10 mL of acetonitrile; a green solution resulted. The reaction flask was wrapped in aluminum foil to keep out light. After 20 h the solution was filtered and the green filtrate was cooled to 4 °C and kept there for 1–3 h. The filtrate was layered with 10 mL of diethyl ether/toluene (10:1), and dark red crystals of 1 were isolated after 48 h. Yield: 0.164 g (40% based on Ag). Reaction with AgCl in lieu of AgBF₄ yields the same product.

Synthesis of $[K([2.2.2]-cryptand)]_2[Ni(Se_2C_2(CN)_2)_2]$ (2). For method 1, 15 mg (7.2 μ mol) of 1 was dissolved in 5 mL of dmf to afford a brown solution. NiCl₂ (0.4 mg, 3.2 μ mol) was suspended in 2 mL of dmf. After 1 h the NiCl₂ suspension was added to the solution of $[K([2.2.2]-cryptand)]_3[Ag(Se_2C_2(CN)_2)(Se_6)]$ (1) to give a lighter brown solution. After 4 h this solution was filtered to remove Se, and the resultant orange filtrate was reduced 70% in volume in vacuo. The resultant solution was layered with 7 mL of diethyl ether/ toluene (10:1), and red plates of 2 were isolated after 24 h. Yield: 5 mg (50% on 1)

For method 2, a mixture of 11 mg (0.2 mmol) of KNH₂, 63 mg (0.4 mmol) of K₂Se, 158 mg of Se (2 mmol), and 340 mg (0.9 mmol) of [2.2.2]-cryptand was dissolved in 10 mL of acetonitrile to give a green solution. Ni(dppp)Cl₂ (55 mg, 0.1 mmol) was dissolved in 5 mL of acetonitrile. After 1 h the Ni(dppp)Cl₂ solution was added to the first solution; a green solution resulted. After 14 h the solution was filtered and the green filtrate was cooled to 4 °C for 1–3 h. The filtrate was layered with 11 mL of diethyl ether/toluene (10:1), and dark red crystals of **2** were isolated after 48 h. Yield: 0.148 g (54% on Ni). IR (KBr) (CN region, cm⁻¹): 2187. UV/vis (dmf (nm, ϵ)): 281 (6695), 331 (5237), 399 (2376), 495 (1264). Anal. Calcd for C₄₄H₇₂K₂N₈NiO₁₂Se₄: C, 38.92; H, 5.34; N, 8.25. Found: C, 38.42; H, 5.08; N, 7.75. ³¹P NMR spectrum of the reaction mixture of method 2 in CH₃CN spiked with CD₃CN: –18.3 ppm.

Synthesis of Ni(dppp)(Se₂C₂(CN)₂) (3). An amount of 10 mg (4.8 μ mol) of [K([2.2.2]-cryptand)]₃[Ag(Se₂C₂(CN)₂)(Se₆)] (1) was dissolved in 5 mL of dmf to give a brown solution. An orange solution was obtained when Ni(dppp)Cl₂ (9 mg, 18.0 µmol) was dissolved in 2 mL of dmf. After being stirred for 1 h, the Ni(dppp)Cl₂ solution was added to the solution of 1. After 4 h the solution was filtered to remove Se and the resultant filtrate was reduced to dryness in vacuo. The residue was redissolved in a minimum of dmf (~2 mL) and layered with 5 mL of diethyl ether/toluene (10:1). Orange needles were isolated after 48 h. Yield: 0.15 mg (4% on 1). Mp, 119 °C. IR (KBr) (CN region, cm⁻¹): 2204. UV/vis (CH₂Cl₂ (nm, ϵ)): 271 (5700), 285 (6734), 301 (5211), 331 (1764), 392 (638), 578 (82). ¹H NMR (CD₂Cl₂, ppm, 300 MHz) & 2.41 (dt, 4H, CH₂), 2.79 (m, 2H, CH₂), 7.10 (dd, 8H, Ar-H), 7.46(d, 8H, Ar-H), 7.76(t, 4H, Ar-H). ESI MS(+): 678.9 (m/z, (Ni- $(dppp)(Se_2C_2CN))^+$). EDS shows consistent ratios of 2:1:2 for P/Ni/Se for $C_{31}H_{26}N_2NiP_2Se_2$ (3).

Results and Discussion

Previously, we reported that addition of $[Ir(cod)Cl]_2$ (cod = 1,5-cyclooctadiene) to AgBF₄, K₂Se, Se, and [2.2.2]-cryptand in liquid ammonia followed by evaporation of the ammonia and dissolution of the residue in acetonitrile yielded [K([2.2.2]-

⁽¹¹⁾ Sheldrick, G. M. SHELXTL DOS/Windows/NT, version 5.10; Bruker Analytical X-Ray Instruments, Inc.: Madison, WI, 1997.

Table 1. Crystallographic Data for $[K([2.2.2]-cryptand)]_2[Ni(Se_2C_2(CN)_2)_2]$ (2) and $Ni(dppp)(Se_2C_2(CN)_2)$ (3)

compound	2	3	
chemical formula	C44H72K2N8NiO12Se4	$C_{31}H_{26}N_2NiP_2Se_2$	
fw	1357.85	705.11	
a, Å	12.220(1)	12.400(1)	
<i>b</i> , Å	15.860(2)	15.407(1)	
<i>c</i> , Å	15.306(1)	14.451(1)	
β , deg	107.64(2)	90	
$V, Å^3$	2827(1)	2952(1)	
space group	$P2_{1}/c$	Pnma	
Ž	2	4	
λ, Å	0.710 73	0.710 73	
$\rho_{\rm calc}, {\rm g} {\rm cm}^{-3}$	1595	1587	
μ , cm ⁻¹	313	326	
Т, К	153(2)	153(2)	
$R_1(\mathbf{F})^a$	0.044	0.026	
$wR2(F_o^2)^b$	0.081	0.059	

 $\label{eq:alpha} \begin{array}{l} {}^{a}R_{1}(F) = \sum (|F_{o}| - |F_{c}|) / \sum |F_{o}|. \ ^{b} \mathrm{wR2}(F_{o}^{2}) = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \\ \sum wF_{o}^{4}]^{1/2}; \ w^{-1} = \sigma^{2}(F_{o}^{2}) + (0.03F_{o}^{2})^{2} \ \mathrm{for} \ F_{o}^{2} > 0; \ w^{-1} = \sigma^{2}(F_{o}^{2}) \ \mathrm{for} \ F_{o}^{2} = 0. \end{array}$

Figure 1. Structure of the anion in **2**, $[Ni(Se_2C_2(CN)_2)_2]^{2-}$. Here and in Figure 2 displacement ellipsoids are drawn at the 50% probability level.

cryptand)]₃[Ag(Se₂C₂(CN)₂)(Se₆)] (1).¹⁰ A more direct synthesis has been devised in which a mixture of AgBF₄, K₂Se, Se, [2.2.2]-cryptand, and KNH₂ in acetonitrile affords complex **1**. This route leads to higher yields (40% vs 16%) and avoids the use of both the relatively costly Ir starting material and of liquid ammonia as a solvent.

$$4''\{K\}_{2}Se_{4}'' + \{K\}[NH_{2}] + 2AgBF_{4} \xrightarrow{1. MeCN} \\ \{K\} = [K([2.2.2]\text{-cryptand})] \\ \{K\}_{3}[Ag(mns)(Se_{6})] (1)$$

The addition of NiCl₂ to complex **1** in dmf affords red crystals of $[K([2.2.2]-cryptand)]_2[Ni(Se_2C_2(CN)_2)_2]$ (**2**) and gray Se. Complex **2** can also be formed under conditions similar to those used to make complex **1**. Complex **2** can be made directly in 54% yield by reaction of KNH₂, K₂Se, Se, and [2.2.2]-cryptand with Ni(dppp)Cl₂ in acetonitrile. In this reaction the mns ligand displaces the chloro and dppp ligands. The presence of free dppp in solution was confirmed by a ³¹P NMR spectrum. But the addition of Ni(dppp)(Se₂C₂(CN)₂) (**3**), [K([2.2.2]-cryptand)]₂-[NiCl₄], and gray Se.

 $[K([2.2.2]-cryptand)]_2[Ni(Se_2C_2(CN)_2)_2]$ (2) possesses wellseparated anions and cations. The $[Ni(mns)]^{2-}$ anion of 2 is depicted in Figure 1. This anion, which is similar to that in $[NBu_4]_2[Ni(mns)_2]$,⁹ comprises a square-planar Ni center coordinated by two mns ligands. Since a square-planar environment is that expected for Ni(II) and since the overall charge on the anion is -2, we assign a formal charge of -2 to the mns ligand. The "noninnocence" of mnt, however, is well documented,^{2,3,12} and mns is expected to behave similarly. The molecule

Figure 2. Structure of 3, $Ni(dpp)(Se_2C_2(CN)_2)$. Hydrogen atoms are drawn as arbitrarily small circles. The molecule has a crystallographically imposed mirror plane.

 Table 2.
 Average Bond Distances (Å) and Bond Angles (deg) in Metal-mns Complexes

	Ni ^a	Ni (2) ^b	Ni (3) ^b	\mathbf{Sb}^{c}	Ag (1) ^c		
Bond Distances							
M-Se	2.285	2.292(1)	2.285(1)	2.654(2)	2.567(4)		
Se-C	1.876	1.874(4)	1.884(2)	1.866(17)	1.853(2)		
C=C	1.357	1.350(5)	1.349(4)	1.358(20)	1.38(3)		
C-CN	1.422	1.439(6)	1.433(3)	1.439(24)	1.43(3)		
C-N	not	1.136(5)	1.146(3)	1.138(20)	1.116(3)		
	reported						
Bond Angles							
Se-M-Se	92.8	93.17(2)	92.08(2)	87.81(7)	91.44(13)		
M-Se-C	102.1	101.34(12)	102.86(6)	96.71(48)	97.54(8)		
Se-C=C	121.4	121.89(31)	118.18(14)	128.28(1.22)	128.05(1.85)		
C=C-CN	121.4	121.33(38)	120.64(11)	117.59(1.48)	114.11(2.22)		
C-C-N	178.3	178.87(51)	178.20(23)	177.08(1.90)	175.92(3.15)		

^{*a*} [Ni(mns)₂]²⁻; ref 9. ^{*b*} [Ni(mns)₂]²⁻ and Ni(dppp)(mns); this work. ^{*c*} [Sb(mns)₂]³⁻ and [Ag(mns)(Se₆)]³⁻; ref 10.

 $Ni(dppp)(Se_2C_2(CN)_2)$ (3) (Figure 2) has a square-planar Ni-(II) center coordinated by the bidentate dppp ligand and a single mns ligand. Table 2 shows average bond lengths within the mns ligand for the known metal—mns complexes.

In the reaction to form mns, the most likely CN source is acetonitrile. In our original report¹⁰ of the synthesis of [K([2.2.2]-cryptand)]₃[Sb(mns)₂] and [K([2.2.2]-cryptand)]₃[Ag(mns)(Se₆)] (1), we proposed that K or [Ir(cod)Cl]₂ reacts with ammonia to produce a strong base—KNH₂ or an Ir species,^{13,14} respectively. The base likely deprotonates acetonitrile to form a ⁻CH₂CN species, since $[As(Se)_3(CH_2CN)]^{3-}$ is formed under similar reaction conditions.¹⁰ This proposal is supported here, since the formation of complex 1 has been achieved in the absence of an Ir source and liquid ammonia by introducing the strong base KNH₂ into an acetonitrile solution. The present results provide no insight into what transpires after the proposed deprotonation of acetonitrile. The ⁻CH₂CN species may couple head to head and be further deprotonated. The ⁻CH₂CN may react with Se to form an unstable and reactive selenoaldehyde.^{15,16} Alterna-

- (12) Fourmigué, M.; Domercq, B. Actual. Chim. 1998, 11-12, 9-13.
- (13) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. Inorg. Chem. 1987, 26, 973–976.
- (14) Koelliker, R.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 707-709.
- (15) Meinke, P. T.; Krafft, G. A. Tetrahedron Lett. 1987, 28, 5121-5124.

tively, $^{-}CH_2CN$ may react with Se to afford a species that dimerizes in solution to form the mns ligand, similar to the reaction by which the sodium salt of the mnt ligand is formed.^{1,17}

Although complex 1 is not the ideal synthon, its reaction with metal chlorides and their derivatives is a viable route to other metal—mns complexes, as illustrated here. For example, the reaction of 1 with a Pd source affords the $Pd(mns)(Se_4)^{2-}$ anion.¹⁸ With the use of such a facile reaction, a variety of new metal—mns complexes may be synthesized and their physical properties systematically studied.

(16) Kirby, G. W.; Trethewey, A. N. J. Chem. Soc., Perkin Trans. 1 1988, 1913–1922.

Acknowledgment. This research was supported by the National Science Foundation (Grant CHE-9819385). The Quattro II spectrometer was provided by the National Institutes of Health, Grant S10 RR11320.

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of $[K([2.2.2]-cryptand)]_2-[Ni(Se_2C_2(CN)_2)_2]$ (**2**) and Ni(dppp)(Se_2C_2(CN)_2) (**3**). This material is available free of charge via the Internet at http://pubs.acs.org.

IC9901719

(17) Davison, A.; Holm, R. H. *Inorg. Synth.* 1967, 10, 8–26.(18) McLauchlan, C. C.; Ibers, J. A. Unpublished results.

Additions and Corrections

2000, Volume 39

Zenghe Liu and Fred C. Anson*: Electrochemical Properties of Vanadium(III,IV,V)–Salen Complexes in Acetonitrile. Four-Electron Reduction of O_2 by V(III)–Salen.

Page 280. A paragraph describing the available Supporting Information was omitted. The paragraph is provided below.

Supporting Information Available: Three figures showing ${}^{51}V$ NMR, ESR, and UV–vis spectra of various vanadium–salen complexes and kinetic plots for the reaction of O₂ with V^{III}(salen)⁺. This material is available free of charge via the Internet at http://pubs.acs.org.

IC992000+

10.1021/ic992000+ Published on Web 03/06/2000