Synthesis of Cl₂InN₃, Br₂InN₃, and Related Adducts

Cory Steffek, Jeff McMurran, Brett Pleune, and J. Kouvetakis*

Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287

Thomas E. Concolino and Arnold L. Rheingold

Department of Chemistry, University of Delaware, Newark, Delaware 19716

Received April 7, 1999

Introduction

Recently we have reported several related routes for GaN synthesis utilizing inorganic azide precursors that incorporate hydride and halide ligands instead of organic groups. Our method for growth of epitaxial nitride films has been primarily focused on the thermodynamically driven decomposition of the newly synthesized Cl₂GaN₃, H₂GaN₃, HBrGaN₃, and HClGaN₃ azidogallanes on SiC and sapphire substrates.¹⁻³ Our search for analogous inorganic azides of indium that might be useful as precursors to InN has led to the development of the new and completely inorganic X_2InN_3 polymeric compounds (X = Cl, Br) and their molecular adducts with common Lewis bases such as tetrahydrofuran (THF) and pyridine. Related organometallic azides of indium, such as N₃In[(CH₂)₃NMe₂]₂ and the tris-(pyridine) complex of $In(N_3)_3$, have been recently synthesized and were successfully used to prepare InN thin films and bulk powders.^{4,5} In this note we describe the synthesis and properties of Cl₂InN₃ and Br₂InN₃ and present the solid-state molecular structure of a novel dinuclear Cl₂InN₃(THF)₂ complex which incorporates an In₂N₂ cyclic core formed by bridging azide ligands.

Results and Discussion

X₂InN₃ (X = Cl, Br) are prepared by reaction of SiMe₃N₃ with InX₃ (X = Cl, Br) as air-sensitive, colorless solids which are nonexplosive and insoluble in organic solvents. Elemental analysis for C, H, N suggests the X₂InN₃ molecular formula for both compounds. The FTIR spectrum of Cl₂InN₃ is very simple and indicates a polymeric structure similar to that of Cl₂GaN₃. The spectrum is consistent with the absence of organic groups and shows the strong asymmetric stretch (ν_{as}) of the azide ligand at 2132 cm⁻¹ as the strongest absorption band. Other notable features include $\nu_{sym}(N_3)$ at 1248 cm⁻¹, ν (In–N) at 390 cm⁻¹, δ (N₃) at 690 cm⁻¹, and γ (N₃) at 575 cm⁻¹. The IR spectrum of Br₂InN₃ is similar to that of Cl₂InN₃ and includes vibrations at 2121 cm⁻¹ ($\nu_{asym}(N_3)$), 1257 cm⁻¹ ($\nu_{sym}(N_3)$), 678 cm⁻¹ (δ (N₃)), and 581 cm⁻¹ (γ (N₃)).

- (4) Fisher, R. A.; Sussek, H.; Miehr, A.; Pritzkow, H.; Herdweck, E. J. Organomet. Chem. 1997, 548, 73.
- (5) Fisher, R. A.; Miehr, A. Chem. Mater. 1996, 8, 1356.

Table 1. Crystallographic Data for [Cl₂InN₃(THF)₂]₂

formula	$C_{16}H_{32}Cl_4In_2N_6O_4$
fw	743.92
space group	Стса
a, Å	12.337(2)
<i>b</i> , Å	14.531(5)
<i>c</i> , Å	15.649(2)
$V, Å^3$	2805.5(11)
Ζ	4
cryst color, habit	yellow block
$D(\text{calcd}), \text{ g cm}^{-3}$	1.761
μ (Mo K α), cm ⁻¹	20.56
temp, K	254(2)
$T(\max)/T(\min)$	0.7479/0.5774
diffractometer	Siemens P4
radiation	Mo K α ($\lambda = 0.710~73$ Å)
$R(F), \%^a$	5.10
$R_{\rm w}(F^2), \%^a$	12.44

^{*a*} Quantity minimized = $R_w(F^2) = \sum [w(F_o^2 - F_c^2)^2] / \sum [(wF_o^2)^2]^{1/2};$ $R = \sum \Delta / \sum (F_o), \ \Delta = |(F_o - F_c)|.$

Pure Cl₂InN₃ does not have any appreciable vapor pressure, even at 150 °C, indicating that the compound is polymeric. The Cl₂InN₃ units are likely to form a chain in which the In atoms are linked by either the α - or the γ -nitrogen of the azide group. It has been previously established that in the polymeric N₃In-[(CH₂)₃NMe₂]₂ compound cross-linking of the In atoms occurs via the γ -nitrogen of the N₃ ligand.⁴ On the other hand, the I₂GaN₃ compound forms a similar polymeric structure in which cross-linking of the Ga atoms occurs via the α -nitrogen of the N₃ ligand.⁶ The volatility of Cl₂InN₃ is significantly increased by coordinating the unsaturated unit with pyridine ligands to form the bis(pyridine) adduct Cl₂InN₃(C₅H₅N)₂. This compound is isolated as colorless crystals that sublime at 130 °C, 10^{-3} Torr. The ¹H and ¹³C NMR spectra revealed the presence of the coordinated pyridine molecules, and the IR spectrum showed that the asymmetric stretch (2080 cm^{-1}) for the azide has shifted to a lower frequency with respect to that of pure Cl₂InN₃ (2132 cm^{-1}), which is consistent with the formation of the adduct. Electron impact mass spectrometric analysis by direct vaporization of the compound into the spectrometer revealed $[Cl_2InN_3]^+$ as the highest energy mass peak at 229 amu and other prominent peaks at 165, 150, and 80 amu corresponding to [ClInN]⁺, $[CIIn]^+$, and $[C_5H_5N]^+$, respectively. The results of the elemental analysis for C, H, and N for the purified material are consistent with the $Cl_2InN_3(C_5H_5N)_2$ empirical formula.

Cl₂InN₃ also combines readily with THF to form the bis-(THF) complex as colorless crystals. The structure of the adduct has been established by X-ray diffraction. The crystallographic data and interatomic distances and angles are summarized in Tables 1 and 2, respectively. An ORTEP diagram showing the molecular conformation and the atom-numbering scheme is presented in Figure 1.

The solid-state structure reveals dimeric units containing an In–N–In linkage rather than the In–N–N–In linkage which has been observed in the coordination polymer (CF₃SO₃)-In[(CH₂)₃NMe₂]₂(μ -N₃)In[CH₂)₃NMe₂)]₂.⁴ As shown in Figure 1, the geometry of each In atom approximates a distorted octahedron with the Cl atoms and the N₃ groups residing in equatorial positions and the oxygen atoms of each THF molecule

McMurran, J.; Kouvetakis, J.; Nesting, D. C.; Smith, D. J.; Hubbard, J. J. Am. Chem. Soc. 1998, 120, 5233.

⁽²⁾ Kouvetakis, J.; McMurran, J.; Matsunaga, P.; O'Keeffe, M.; Hubbard, J. L. Inorg. Chem. 1997, 36, 1792.

⁽³⁾ McMurran, J.; Todd, M.; Kouvetakis, J.; Smith, D. J. Appl. Phys. Lett. 1996, 69, 203.

⁽⁶⁾ Kruger, N.; Dehnicke, K. Z. Anorg. Allg. Chem. 1978, 444, 71.

Table 2. Bond Lengths (Å) and Angles (deg) for $[Cl_2InN_3(THF)_2]_2^a$

		e : e: -	
In(1)-N(1)#1	2.242(8)	In(1) - N(1)	2.242(8)
In(1) - O(2)	2.257(10)	In(1) - O(1)	2.293(13)
In(1)-Cl(1)	2.385(3)	In(1)-Cl(1)#2	2.385(3)
O(1) - C(1)	1.36(2)	O(1) - C(1)#2	1.36(2)
O(2) - C(3)	1.418(12)	O(2)-C(3)#2	1.418(12)
N(1) - N(2)	1.212(19)	N(1)-In(1)#1	2.242(8)
N(2) - N(3)	1.128(18)	C(1) - C(2)	1.39(3)
C(2)-C(2)#2	1.55(10)	C(3) - C(4)	1.468(16)
C(4) - C(4)#2	1.33(2)		
N(1)#1-In(1)-N(1)	69.7(6)	N(1)#1-In(1)-O(2)	88.2(2)
N(1) - In(1) - O(2)	88.2(2)	N(1)#1-In(1)-O(1)	88.6(3)
N(1) - In(1) - O(1)	88.6(3)	O(2) - In(1) - O(1)	176.1(4)
N(1)#1-In(1)-Cl(1)	163.1(3)	N(1) - In(1) - Cl(1)	93.4(3)
O(2) - In(1) - Cl(1)	91.70(18)	O(1) - In(1) - Cl(1)	90.7(2)
N(1)#1-In(1)-Cl(1)	#2 93.4(3)	N(1)-In(1)-Cl(1)#2	163.1(3)
O(2)-In(1)-Cl(1)#2	91.70(18)	O(1)-In(1)-Cl(1)#2	90.7(2)
Cl(1)-In(1)-Cl(1)#2	103.53(17)	C(1) = O(1) = C(1)#2	109(3)
C(1) = O(1) = In(1)	123.0(13)	C(1)#2 - O(1) - In(1)	123.0(13)
C(3)-O(2)-C(3)#2	108.2(12)	C(3) - O(2) - In(1)	124.2(6)
C(3)#2-O(2)-In(1)	124.2(6)	N(2)-N(1)-In(1)#1	124.9(3)
N(2) - N(1) - In(1)	124.9(3)	In(1)#1-N(1)-In(1)	110.3(6)
N(3) - N(2) - N(1)	180.0(4)	C(2) - C(1) - O(1)	112(3)
C(1)-C(2)-C(2)#2	104(3)	O(2) - C(3) - C(4)	106.4(10)
C(4)#2-C(4)-C(3)	109.2(7)		

^{*a*} Symmetry transformations used to generate equivalent atoms: (#1) -x, -y, -z + 1; (#2) -x, y, z.

Figure 1. Molecular structure of $[Cl_2InN_3(THF)_2]_2$ displaying the planar In_2N_2 ring structure.

occupying the axial positions. Although there have been many hexacoordinate indium molecular compounds reported,⁷ the In_2N_2 tetragonal framework has not been previously established in structures of group 13 inorganic and organometallic azides. Nevertheless, such a planar four-membered structure has been proposed for the dimeric azide of indium [(C_2H_5)₂InN₃]₂,⁸ and similar In_2N_2 rings have been found in structures of organometallic amides of indium.^{9,10} Other proven examples of molecular heterocyclics formed by means of bridged azides is the tetrameric gallane (HClGaN₃)₄,¹ with a cyclooctane-like structure, and the trimeric borane (Cl₂BN₃)₃,¹¹ with a cyclohexane-like conformation.

- (7) Wells, R.; Kher, S. S.; Baldwin, R. A.; White, P. S. Polyhedron 1994, 19, 273.
- (8) Muller, J.; Dehnicke, K. J. Organomet. Chem. 1968, 12, 37.
- (9) Kim, J.; Bott, S. G.; Hoffman, D. M. Inorg. Chem. 1998, 37, 3835.
 (10) Atwood, D. A.; Jones, R. A.; Cowley, A. H. J. Organomet. Chem.
- **1992**, *434*, 143. (11) Muller, V. U. Z. Anorg. Allg. Chem. **1971**, *328*, 110.
- (12) Hibbs, D. E.; Jones, C.; Smithies, N. A. Chem. Commun. 1999, 185– 186.

The bond angles In(1)-N(1)-In(1A) (110.3(6)°) and In(1)-N(1)-N(2) (124.9(3)°) as well as N(1A)-In(1)-Cl(1A) (93.4 (3)°), N(1)-In(1)-Cl(1) (93.4(3)°), Cl(1A)-In(1)-Cl(1) (103.53(17)°), and N(1)-In(1)-N(1A) (69.7(6)°), clearly demonstrate that the entire $In_2N_2Cl_4$ molecular core of the Cl_2InN_3 -(THF)₂ dimer is planar. The deviation from the least-squares plane through the In_2N_2 central framework, including the azide branches and the Cl atoms, appears to be negligible (<0.01 Å). In addition, the bond angle O(1)-In(1)-O(2) at 176.1(4)° deviates slightly from the linear value and the N(1)-In(1)-O(1) and Cl(1)-In(1)-O(1) angles are 88.6(2) and 90.7(2)°, respectively. These values indicate that the dative In-O bonds are nearly orthogonal to the plane of the $In_2N_2Cl_4$ core.

The bonding parameters for the azide ligands are typical of those reported for other crystalline group 13 covalent azides. The N–N–N bond angle is exactly 180.0(4)°, and there are two distinct N–N distances within the azide group, with the shorter one corresponding to the terminal N–N bond (1.128(18) Å). The average bond distances for In–Cl (2.385(3) Å) and In–O (2.257(10) Å) are similar to those found for InCl₃(THF)₃ compound (2.420(4) and 2.235(10) Å, respectively).⁶ The In–N bond distances (2.242(8) Å) are close to those found in the related organometallic azide In(N₃)₃(C₅H₅N)₃ (2.233(2) Å).⁴

The X_2InN_3 compounds reported in this note are stable and safe and potentially could be utilized to synthesize mixed hydride, [HIn(X)N₃], and alkyl derivatives, [HIn(CH₃)N₃], which should serve as precursors to InN materials. The report of a stable InH₃ complex, InH₃[P(C₆H₁₁)₃], suggests that a sterically stabilized HIn(X)N₃ compound may be possible.

Safety Note. We have not encountered any difficulties so far in handling the compounds described in this paper. However, azides are potentially explosive and should be handled with caution.

Experimental Section

General Considerations. Reactions were performed under prepurified nitrogen using standard Schlenk and drybox techniques. Dry, air-free solvents were distilled from sodium benzophenone ketyl prior to use. ¹H NMR (300 MHz) and ¹³C NMR (125.7 MHz) spectra were recorded on a Varian Gemini 300 and a Varian Unity 500 spectrometer, respectively. FTIR spectra were recorded on a Nicolet Magna-IR 550 spectrometer either as a Nujol mull between KBr plates or in a 10 cm gas cell with KBr windows. Electron impact mass spectra were performed on a Finnigan-MAT Model 312 mass spectrometer (IE, 70 eV). Elemental analyses were performed by Desert Analytics (Tucson, AZ). Azidotrimethylsilane (Aldrich 95%) was purified by distillation (50 °C/175 mm), and its purity was checked by NMR and gas-phase IR. InCl₃ and InBr₃ (Aldrich) were used as received.

Synthesis of Cl₂InN₃. To a solution of $InCl_3$ (5.0 g, 22.6 mmol) in diethyl ether was added SiMe₃N₃ (4.0 mL, 30 mmol) by syringe at room temperature. The solution was refluxed for 3 days, after which the solvent was removed by distillation to yield a colorless solid. The material was dried under dynamic vacuum for an additional 12 h to remove completely any coordinated solvent and eventually yield Cl_2InN_3 (4.3 g, 84%). IR (Nujol; cm⁻¹): 3357 (w), 2482 (w), 2132 (vs), 1248 (s), 690 (m), 574 (w), 385 (m). Anal. Calcd: C, 0; H, 0; N, 18.44. Found: C, 0.31; H, 0.14; N, 18.64.

Synthesis of Cl₂InN₃(C₅H₅N)₂. Cl₂InN₃ (1.0 g, 3.0 mmol) was combined with 20 mL of dry C₅H₅N at room temperature. The suspension was heated at 40 °C for 1 h, during which time the solid dissolved. The solution was cooled to -20 °C to yield a crystalline, colorless solid which was collected in several crops by successively concentrating and cooling the solution. The crystals were isolated by filtration and dried under vacuum. Yield: 1.5 g, 90%. Mp: 280 °C. IR (Nujol; cm⁻¹): 3118–3000 (w), 2090 (vs), 2070 (vs), 1609 (s), 1445 (s), 1377, 1340, 1277 (w), 1214 (w), 1072–1013 (m), 761–634 (s), 432 (m), 343 (m). ¹H NMR (CDCl₃, 22 °C): δ 8.9 (m), 7.8 (m), and 7.4 (m) (resonances corresponding to the coordinated C_5H_5N). Anal. Calcd: C, 31.16; H, 2.59; N, 18.2. Found: C, 30.51; H, 2.21; N, 19.1. EIMS (*m*/*z*): 229 [Cl₂InN₃]⁺, 165 [ClIn], 150 [ClIn], 80 [C₅H₅N]⁺.

Synthesis of $Cl_2InN_3(THF)_2$. Cl_2InN_3 (1.0 g, 4.4 mmol) was combined with 50 mL of dry THF at room temperature. The solution was cooled to -20 °C to yield a colorless crystalline solid, which was collected in several crops by successively concentrating and cooling the solution. The crystals were filtered and dried under vacuum (1.32 g, yield 88%). Anal. Calcd: C, 25.87; H, 4.31; N, 11.32. Found: C, 25.60; H, 4.29; N, 12.23. ¹H NMR (CDCl₃, 22 °C): δ 1.9 and δ 3.9. IR (Nujol): 3369 (w), 2995–2903 (m), 2566 (w), 2115 (vs), 1345 (w), 1275 (s), 1182 (w), 1024 (s), 920 (m), 1015 (s), 855 (s), 685 (m), 605 (w), 350 (m).

Synthesis of Br₂InN₃. To a solution of InBr₃ (5.0 g, 14.0 mmol) in diethyl ether was added SiMe₃N₃ (3.75 mL, 28 mmol) by syringe at room temperature. The solution was refluxed for 4 days, during which time a light brown precipitate formed. The material was isolated by filtration, washed several times with ether, and dried 60–80 °C under high vacuum to remove any coordinated solvent in the solid. Yield: 1.5 g, 35%. Anal. Calcd: C, 0; H, 0; N, 13.29. Found: C, 1.09; H, 0.05; N, 12.71. IR (Nujol; cm⁻¹): 2121 (vs), 1257 (s), 678 (m), 581 (w). We attribute the organic impurity in the material to traces of residual solvent which is extremely hard to remove completely even by heating the samples under high vacuum. The discrepancy in the N content might be due to loss of N₂ from the N₃ group in the combustion analysis.

X-ray Structure of Cl₂InN₃(THF)₂. A suitable specimen was loaded into a 0.3 mm X-ray capillary and sealed under nitrogen. Data collection and refinement parameters are presented in Table 1. Systematic absences and diffraction symmetry are consistent with the space groups *Cmca* and *C2cb*. The *E*-statistics suggested the centrosymmetric option, which yielded chemically reasonable and computationally stable results of refinement. The structure was solved by direct methods, completed by subsequent difference Fourier syntheses, and refined by full-matrix leastsquares procedures. A ψ -scan absorption correction was applied to the data. All non-hydrogen atoms were refined with anisotropic displacement coefficients. Hydrogen atoms were treated as idealized contributions. One of the THF molecules is partially, but unresolvably, disordered at C(1). One-fourth of the molecule located on a 2/m position comprises the asymmetric unit. All software and sources of the scattering factors are contained in the SHELTXTL (5.10) program library (G. Sheldrick, Siemens XRD, Madison, WI).

Conclusion

The new inorganic indium azides Cl_2InN_3 , and Br_2GaN_3 are obtained as colorless, nonvolatile, polymeric solids by reaction of the corresponding halides with $SiMe_3N_3$. The Cl_2InN_3 compound combines with THF and pyridine to form stable Lewis acid—base complexes with compositions Cl_2InN_3 - $(C_5H_5N)_2$ and $Cl_2InN_3(THF)_2$. The X-ray structure of Cl_2InN_3 - $(THF)_2$ consists of dinuclear units incorporating a planar $[Cl_2InN_3]_2$ framework in which the In atoms are connected by the α -nitrogen of the azide groups to form a four-membered In_2N_2 heterocycle. This conformation is unique among group 13 azides, although similar structures containing Ga_4N_4 eightmembered and B_3N_3 six-membered rings have been observed for the tetramer [HClGaN_3]_4 and the trimer [Cl_2BN_3]_3, respectively.

Acknowledgment. The work was supported by the National Science Foundation (Grant No. DMR-9902417).

Supporting Information Available: X-ray crystallographic files in CIF fornat for the structure determination of $[Cl_2InN_3(THF)_2]$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC990387A