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The superexchange interactions in four three-center model systems A-L-B, for A and B being paramagnetic
centers and L a diamagnetic bridging ligand, are analyzed by valence bond configuration interaction models in
combination with fourth-order perturbation theory. We analyze the four distinct cases where a bridging ligand
orbital simultaneously interacts with half-filled orbitals localized on A and B (case i), a half-filled orbital localized
on A and an empty orbital localized on B (case ii), a full orbital localized on A and a half-filled orbital localized
on B (case iii), and finally a full orbital localized on A and an empty orbital localized on B (case iv). In all four
cases we compare our new results using localized orbitals with the equivalent results obtained using the Anderson
ansatz of delocalized (magnetic) orbitals. The effective metal-to-metal electron transfer energyUeff in the old
formalism with delocalized orbitals is expressed in terms of the metal-to-metal electron transfer energyU and the
ligand-to-metal electron transfer energy∆ using localized orbitals. We find that the old formalism containing
only Ueff is in general not sufficient. For cases i and ii we show thatUeff can be regarded as an effectiveU
strongly reduced with respect to the free ion as a result of hybridization effects, whereas the same reduction of
U for the cases iii and iv is not possible. The relevance and applicability of our theoretical results is demonstrated
on magnetochemical data from the literature.

1. Introduction

Understanding the magnetic consequences of weak interac-
tions between paramagnetic metal ions is not only a classical
goal in inorganic physical chemistry. It is indeed a prerequisite
for an understanding of macroscopic magnetic phenomena and
for the design of new magnetic materials.1,2

In extended lattices the nearest neighbor interactions are the
leading ones. Dimers and higher clusters of magnetic ions can
therefore be considered as molecular models for a detailed study
of the microscopic magnetic interactions. Cooperative phenom-
ena and more extended interactions do not complicate the
situation in these systems, and an analysis in terms of simple
molecular models can be done.

Another context in which understanding the magnetic proper-
ties of transition metal complexes has gained importance is that
of natural enzymatic systems containing paramagnetic metal ions
and especially polynuclear transition metal units. Compositional
and structural information is contained in a temperature de-
pendent magnetic susceptibility curve of a polynuclear transition
metal complex, natural or not. However, a successful extraction

of this information heavily depends on whether suitable labora-
tory-synthesized model systems are available for comparative
purposes.3,4

The dimer interaction has traditionally been formulated in
terms of the Heisenberg-Dirac-van Vleck (HDvV) spin
Hamiltonian

We are in the following only interested in the ground state
magnetic properties.SA andSB are thus the ground state spin
values of the paramagnetic metal centers A and B, respectively,
and they are both non-zero. Equation 1 leads to a Lande´ interval
splitting of the spin multiplets withS) SA + SB, SA + SB - 1,
..., |SA - SB|. ForJ ) 0, these spin multiplets are all degenerate.
As defined in eq 1 positive and negative values of the exchange
parameterJ correspond to antiferromagnetic and ferromagnetic

(1) Gatteschi, D.AdV. Mater. 1994, 6, 635.
(2) Kahn, O.Molecular Magnetism; VCH: New York, 1993.

(3) Hartmann, J. R.; Rardin, R. L.; Chaudhuri, P.; Pohl, K.; Wieghardt,
K.; Nuber, B.; Weiss, J.; Papaefthymiou, G. C.; Frankel, R. B.;
Lippard, S. J.J. Am. Chem. Soc.1987, 109, 7387. Armstrong, W. H.;
Spool, A.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J.J.
Am. Chem. Soc.1984, 106, 3653.

(4) Weihe, H.; Gu¨del, H. U.J. Am. Chem. Soc.1997, 119, 6539.
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interaction, respectively, between the centers A and B.J is a
parameter to be determined from experiment.

Equation 1 provides an excellent basis for rationalizing bulk
properties such as magnetic susceptibility and heat capacity in
dimer systems as well as systems with extended interactions.
There has therefore been a great effort to interpret the parameter
J in eq 1 in terms of more fundamental quantities for the metal
pair in question.

Among the models proposed, the Goodenough-Kanamori
rules5-9 are probably the best known. They were formulated as
a result of an interplay between experimental studies and
theoretical considerations. In short, these rules state that when
there is a non-zero one-electron interaction matrix element
between orbitals centered on different paramagnetic centers, then
this one-electron interaction can lead to an antiferromagnetic
or ferromagnetic energy splitting. The magnitude and sign of
the contribution toJ depends on the filling of the interacting
orbitals.10-12 There are the following four possibilities to
consider:

(i) both orbitals are half-filled;
(ii) one orbital is half-filled and the other one is empty;
(iii) one orbital is full and the other one is half-filled;
(iv) one orbital is full and the other one is empty.

If, on the other hand, there is no such one-electron interaction
matrix element, the interaction can be ferromagnetic due to a
true two-center two-electron exchange integral. There are other
contributions to J than the one-electron and two-electron
interactions.11 These are small and will not be considered here.

The conceptual framework to understand the interaction
within pairs of paramagnetic ions in insulating lattices was first
developed by Anderson.5,10 A valence bond configuration
interaction (VBCI) model expliciely including the bridging
ligands was introduced and applied to molecular systems in refs
13 and 14. A splitting of the spin multipletsS ) SA + SB, SA

+ SB - 1, ...,|SA - SB| from the ground electron configuration,
and hence a nonzeroJ value of eq 1, arises because these spin
multiplets can interact with spin multiplets arising from two
distinct energetically higher-lying electron configurations.10

These are first a bridging ligand-to-metal electron transfer
(LMCT) and second a metal-to-metal electron transfer (MMCT)
electron configuration at energies∆ andU, respectively, relative
to the ground state electron configuration. The ground config-
uration interacts under the action of the one-electron part of
the Hamiltonian directly with the LMCT configuration, which
in turn interacts with the MMCT configuration. This latter
interaction is spin dependent and hence produces a splitting of
the spin multiplets arising from the ground electron configu-
ration. In a configuration interaction model this splitting appears
on going to fourth order in perturbation theory. Such a
perturbational treatment is valid when the parameterV describ-
ing the one-electron interaction is much smaller than bothU
and∆.

Magnetic insulators can be characterized as being of Mott-
Hubbard type (U < ∆) or of charge-transfer type (∆ < U).15 It
has been shown that Anderson’s original treatment of the
exchange phenomenon only gives a reasonable description of
the situation whenU , ∆.16 This might be a fair assumption
for materials like the divalent titanium and vanadium oxides,
in which the band gap is known to be of d-d (MMCT)
character.15 This is also qualitatively easy to understand from a
chemical point of view. Ti2+ and V2+ are both strongly reducing
species. This implies that the orbital energies of the valence d
orbitals are relatively high compared to the later divalent
members of the first transition series, making ligand (oxide) to
metal electron transfers high-energy excitations. However, the
assumptionU < ∆ will certainly break down for most other
insulating transition metal compounds in which the metal is less
reducing and/or the anion less electronegative.17 In a reinves-
tigation of the magnetic properties of the oxides of divalent
manganese, iron, cobalt, and nickel,16 it was concluded that∆
and U in these substances were in the ranges 48400-79800
cm-1 and 71000-77400 cm-1, respectively, and hence of equal
magnitudes. We conclude that1/2U < ∆ < U is a typical range
of ∆ values relative toU.

The position of the first charge transfer bands in an absorption
spectrum of a coordination compound is known to depend
strongly on the nature of the ligands as well as the cation.18

For classical monomeric coordination compounds LMCT bands
usually appear in the blue or the near ultraviolet spectral region.
This makes∆ ≈ 30000-40000 cm-1, and U values are
estimated to be typically at least twice this, see above.

We will use the valence bond configuration interaction
(VBCI) model as introduced and applied to molecular systems
by Solomon and Tuczek.13,14 We will show that the restriction
of one unpaired electron per magnetic center13 can be overcome
and that a similar treatment of cases ii, iii, and iv is justified.

Our paper is organized as follows. In the next section we
outline some of the problems which are met when the old
formalism for exchange interactions is used to interpret experi-
mental J values. Section 3 gives an introduction to the
configuration interaction model and defines the orbitals and one-
electron parameters that are used. In section 4 we apply the
configuration interaction model to the four above-mentioned
cases i-iv in turn. In section 5 we discuss the results and
demonstrate their applicability to experimentalJ values from
the literature. The obtained results will allow us to predict which
electron configurations can give rise to large ferromagnetic
interaction between paramagnetic centers in a solid.

2. The Problems

In this section we briefly outline the commonly used
formalism and discuss the model parameters.

We consider a system consisting of two metal centers A and
B. Both A and B have their individual environments of
nonbridging and bridging ligands. The geometry and symmetry
of the system is not relevant at this point.

We are interested in the interaction between the orbitals ai

and bj centered on the metal centers A and B, respectively. ai is
essentially an antibonding A orbital, i.e., it contains some
bridging-ligand character; similarly with orbital bj. These so-

(5) Anderson, P. W. InMagnetism; Rado, G. T., Suhl, H., Eds.; Academic
Press: New York, 1963; Vol. 1, Chapter 2.

(6) Goodenough, J. B.Phys. ReV. 1955, 79, 564.
(7) Goodenough, J. B.J. Phys. Chem. Solids1958, 6, 287.
(8) Kanamori, J.J. Phys. Chem. Solids1959, 10, 87.
(9) Wollan, E. O.; Child, H. R.; Koehler, W. C.; Wilkinson, M. K.Phys.

ReV. 1958, 112, 1132.
(10) Anderson, P. W.Phys. ReV. 1959, 115, 2.
(11) Goodenough, J. B.Magnetism and the Chemical Bond; Interscience:

New York, 1963.
(12) Weihe, H.; Gu¨del, H. U. Inorg. Chem.1997, 36, 3632.
(13) Tuczek, F.; Solomon, E. I.Inorg. Chem.1993, 32, 2850.
(14) Brown, C. A.; Remar, G. J.; Musselmann, R. L.; Solomon, E. I.Inorg.

Chem.1995, 34, 688.

(15) Zaanen, J.; Sawatzky, G. A.; Allen, J. W.Phys. ReV. Lett. 1985, 55,
418.

(16) Zaanen, J.; Sawatzky, G. A.Can. J. Phys.1987, 65, 1262.
(17) Ronda, C. R.; Arends, G. J.; Haas, C.Phys. ReV. B 1987, 35, 4038.
(18) Jørgensen, C. K.Prog. Inorg. Chem.1970, 12, 101.
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called magnetic orbitals19 ai and bj are made orthogonal by an
orthogonalization process. The reason for this redefinition of
the relevant orbitals is simply that the splitting of the spin
multiplets arising from the ground electron configuration will
now appear already in second order in perturbation theory.

If both ai and bj are half-filled (case i), an interaction between
ai and bj contributes to theJ value with12

nA and nB are the total number of unpaired electrons in the
ground state of A and B, respectively.hij is a parameter formally
defined as

with ĥ the appropriate one-electron interaction Hamiltonian.Ueff

is the energy difference between the ground electron configu-
ration and an electron configuration in which one electron has
been taken from the magnetic orbital ai and restored in the other
magnetic orbital bj, and vice versa. We distinguish clearly
betweenU andUeff in this paper.Ueff is the electron transfer
energy appearing in the old formalism with magnetic orbitals,
whereasU is the electron transfer energy involving localized
metal orbitals with no bridging-ligand character. The relationship
betweenUeff andU will be established below.

If ai is half-filled and bj is empty (case ii), we find the
following contribution toJ:

Here we introduced the symbolInB+1 which accounts for one-
center exchange interactions on center B. The ratioInB+1/Ueff

can be approximated as12

with IB a constant which is an average one-center exchange
integral for centerB. See refs 12 and 20 for a detailed discussion
of this quantity. The average one-center exchange integral is
closely related to the spin-pairing energy discussed by Jør-
gensen.21

If ai is full and bj is half-filled (case iii), we find the following
contribution toJ12

Notice the similarity between equations 4 and 6. Cases ii and
iii are particle-hole equivalents as long as we operate with
magnetic orbitals only. This is clearly no longer so when the
bridging ligands are included. We will show that inclusion of
the bridging ligand orbitals will dramatically influence the
relative magnitudes ofJii andJiii .

Finally, if ai is full and bj is empty (case iv), we find the
following contribution toJ:12,22

Equations 4, 6, and 7 are all valid whenUeff . InA+1InB+1.
Case i has received by far the most attention, and eq 2 has

been used for numerous successful analyses of experimentalJ
values of transition metal dimers in which the constituting metal
ions are antiferromagnetically coupled.4,20,23-26 However, in
most of these studies, the ratiohij

2/Ueff has been taken as an
effective parameter. No critical analysis of this ratio seems to
have been performed. We now list several examples in which
the hij

2/Ueff ratios obtained in this way clearly deviate from
hij

2/U.
The µ-oxo-decaammine-dichromium(III) cation [(NH3)5-

CrOCr(NH3)5]4+ (basic rhodo) has a special place in this context,
by having a high symmetry (close toD4h) and having been
investigated with several techniques. Temperature dependent
magnetic susceptibility measurements27 as well as optical
spectroscopy28,29 have determinedJ ≈ 450 cm-1. Due to the
high symmetry, the parameterhij can be related to theeπ ligand
field parameter in the angular overlap model (AOM) descrip-
tion29,30 (see also section 4.1) as follows:

Using eq 2 we then obtain12,20,29,30

The AOM parametereπ is a measure of theπ donor strength of
the oxide ion as ligand to trivalent chromium. It was estimated
in ref 29 to have the value 4000 cm-1, which makes the oxide
ion an outstandingly strongπ donor compared to other simple
ligands. This high value is supported by the analysis of single
crystal absorption spectra of oxo coordinated Ni+ and Ni2+

species, in whicheπ values of 3000 and 3500 cm-1, respectively,
were determined.31 Insertingeπ ) 4000 cm-1 andJ ) 450 cm-1

in eq 9 we obtainUeff ) 31600 cm-1. An upper limit forU, on
the other hand, can be estimated from the free ion ionization
potentials.10 This upper limit is for a chromium(III) dimerU ≈
146300 cm-1 32 which is obtained as the difference between

(19) Construction of magnetic orbitals in a three-center model system is
discussed in some detail by Mayer and Angelov: Mayer, I.; Angelov,
S. A. Int. J. Quantum Chem.1980, 18, 783.

(20) Weihe, H.; Gu¨del, H. U.J. Am. Chem. Soc.1998, 120.
(21) Jørgensen, C. K.Modern Aspects of Ligand Field Theory; North-

Holland Publishing Company: Amsterdam, 1971.

(22) An algebraic mistake appears in ref 12 when deriving eq 49 from eqs
41-44. There it was erroneously stated that the contribution to netJ
was proportional to the differenceInA+1 - InB+1. In the limit InA+1,
InB+1 , Ueff is proportional to the productInA+1InB+1 as given in eq
7 of the present paper.

(23) Glerup, J.; Hodgson, D. J.; Pedersen, E.Acta Chem. Scand.1983,
A37, 161.

(24) Glerup, J.; Goodson, P. A.; Hodgson, D. J.; Michelsen, K.Inorg. Chem.
1995, 34, 6255.

(25) Lambert, S. L.; Hendrickson, D. N.Inorg. Chem.1979, 18, 2683.
Lambert, S. L.; Spiro, C. L.; Gagne´, R. R.; Hendrickson, D. N.Inorg.
Chem.1982, 21, 68. See also ref 43.

(26) Hotzelmann, R.; Wieghardt, K.; Flo¨rke, U.; Haupt, H.-J.; Weatherburn,
D. C.; Bonvoisin, J.; Girerd, J.-J.J. Am. Chem. Soc.1992, 114, 1681.

(27) Pedersen, E.Acta Chem. Scand.1972, 26, 333.
(28) Güdel, H. U.; Dubicki, L.Chem. Phys.1974, 6, 272.
(29) Glerup, J.Acta Chem. Scand.1972, 26, 3775.
(30) Atanasov, M.; Angelov, S.Chem. Phys.1991, 150, 383.
(31) Möller, A.; Hitchman, M. A.; Krausz, E.; Hoppe, R.Inorg. Chem.

1995, 34, 2684. Hitchman, M. A.; Stratemeier, H.; Hoppe, R.Inorg.
Chem.1988, 27, 2506.

(32) Handbook of Chemistry and Physics, 69th ed.; CRC Press: Boca
Raton, FL, 1988-1989 (table with ionization potentials).

Ji ) + 4
nAnB

hij
2

Ueff
(2)

hij ) 〈ai|ĥ|bj〉 (3)

Jii ) - 2
nA(nB + 1)

hij
2

Ueff

InB+1

Ueff
(4)

InB+1

Ueff
) (nB + 1)

IB

Ueff
(5)

Jiii ) - 2
(nA + 1)nB

hij
2

Ueff

InA+1

Ueff
(6)

Jiv ) +
2hij

2

(nA + 1)(nB + 1)
2

Ueff
3

InA+1InB+1 (7)

hij ) eπ (8)

J ) 8
9

eπ
2

Ueff
(9)
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the fourth and the third ionization potentials of chromium. These
values are significantly reduced in a solid or a complex, but
even allowing a reduction down to 50-60% of the free-ion
value10 we conclude that the above-calculatedUeff value of
31600 cm-1 is a factor of 2-3 lower thanU, i.e.,

We note in passing that in CuCl4
2- U has been determined to

be≈53000 cm-1,33 and that the MMCT energyU is expected
to increase with oxidation number,32 thus lending support to
the above conclusion. Another semiempirical treatment of the
basic rhodo ion30 inserted an estimatedUeff value of 74500 cm-1

into eq 9. This led to aneπ value of 6150 cm-1, which is much
too high, and has not been supported by independent experi-
ments (see above).

This problem is not specific for the basic rhodo ion. In ref
20 we analyzed experimentalJ values of linear and bent oxo
bridged trivalent transition metal dimers with d1d1, d2d2, d2d3,
d3d3, d3d4(hs), d3d5(hs), d4(hs)d4(hs), d4(ls)d4(ls), d4(hs)d5(hs)
and d5(hs)d5(hs) electron configurations (hs and ls stand for high-
spin and low-spin, respectively). The ratioshij

2 /Ueff were found
to be transferable between the various electron configurations,
so we conclude that the problem is a general one.

This conclusion is further supported by a similar investigation
of the ratioI/Ueff using eq 5 and a comparison withI/U. The
theoretical value of the ratioI/U is estimated as follows.I is an
average one-center exchange integral which takes the value
4000-5000 cm-1 for di- and trivalent 3d transition metals.U
values for dimers with trivalent 3d metal ions, as estimated
above, are of the order 80000-100000 cm-1. Consequently,
I/U values should be of the order1/20 to 1/15. In an analysis of
the ground state magnetic properties of an extensive series of
homo- and heteronuclear oxo bridged 3d transition metal dimers
with trivalent metals we foundI/Ueff ) 1/4,20 a factor of 4-5
bigger than the estimatedI/U ratio, i.e.,

This clearly indicates that the parameterUeff as used in the
original Anderson theory must not be equated with the MMCT
energyU. The model needs refinement if the model parameters
are to be correlated with other physical properties of the system.
This will be done in the next sections by explicitly including
the relevant orbital on the bridging ligandL.

3. The Model

In our A-L-B three-center system the paramagnetic centers
A and B may be identical or they may be different. (a) is a set
of pure A orbitals centered on A; similarly with (b). We consider
a pure ligand orbitall′ centered onL, and this orbital has an
overlapSa with only one orbital ai centered on A and an overlap
Sb with only one orbital bj centered on B. We define a new
“ligand” orbital13

With the definition eq 12 the orbitall is orthogonal to both ai
and bj. In addition, any orbital in (a) is assumed orthogonal to

any orbital in (b). Notice, that we have made no assumption on
the nature of the two overlapsSa andSb. They can be pureσ-
or π-type overlaps, but might as well be a mixture of both due
to misoriented orbitals. Similarly, we have made no assumptions
about the nature of the ai and bj orbitals. They can be valence
or core orbitals. We do, however, assume that the bridging
ligand has no unpaired electrons, i.e., that the orbitall is doubly
occupied in the ground electron configuration of the A-L-B
three-center system. Notice that the orbitals (a) and (b) contain
no bridging-ligand character, but they might contain nonbridg-
ing-ligand character not explicitly included in the description.

The hybridization matrix elements describing the one-electron
interaction between A and L and between L and B are in the
following designatedVA and VB, respectively.VA is formally
defined as

with ĥ being the one-electron part of the Hamiltonian; similarly
with VB. ĥ is spin independent; thereforeVA is zero unless the
electrons in the orbitalsl and ai have the same spin quantum
numbers. Following the approximation by Wolfsberg and
Helmholz34 or Ballhausen and Gray,35 the first term in the square
bracket of eq 13 is proportional to the overlap between the
orbitals l′ and ai, namely,Sa. The term〈bj|ĥ|ai〉 is therefore
vanishing since bj and ai do not overlap. This leads to the simple
relationship thatVA is proportional toSa. Similarily VB is
proportional toSb.

The key matrix elements to be calculated in the following
are of the type

where each function is characterized by the spin quantum
numbersS andMS as well as the irreducible representationΓ
and its componentMΓ. We will not present a lengthy derivation
of a general theory for the computation of this matrix element
(cf. ref 12). We generate explicit expressions for the two
functions |S′Γ′M′SM′Γ and |SΓMSMΓ〉 and then evaluate the
matrix element (eq 14). The eigenvalues of the matrixes thus
obtained will be examined with nondegenerate perturbation
theory up to fourth order.36

The basis functions representing the states arising from the
electron configuration (a)NA(l)NL(b)NB with NA, NL, andNB being
the total number of electrons on A, L, and B, respectively, are
generated by applying the following coupling scheme,

where we have left out the spatial transformation properties for
clarity. In using eq 15 we first take the product in the square
bracket to form the intermediate spinSLB. Then we form the
SA X SLB product to obtain the final function with spin quantum
numberS. The relevant coupling schemes for the cases i-iv
are listed in the Appendices A1-A4, respectively.

(33) Didziulis, S. V.; Cohen, S. L.; Gewirth, A. A.; Solomon, E. I.J. Am.
Chem. Soc.1988, 110, 250.

(34) Wolfsberg, M.; Helmholz, L.J. Chem. Phys.1955, 23, 1841.
(35) Ballhausen, C. J.; Gray, H. B.Inorg. Chem.1962, 1, 111.
(36) Dalgarno, A. In: Quantum Theory; Bates, R. D., Ed.; Academic

Press: New York, 1961; Vol. I, p 171.

2
U

< 1
Ueff

< 3
U

(10)

4
U

< 1
Ueff

< 5
U

(11)

l ) 1

x1 - Sa
2 - Sb

2
(l′ - Saai - Sbbj) (12)

VA ) 〈l|ĥ|ai〉 )
1

x1 - Sa
2 - Sb

2
[〈l′|ĥ|ai〉 - Sa〈ai|ĥ|ai〉 - Sb〈bj|ĥ|ai〉] (13)

〈S′Γ′M′SM′Γ|ĥ|SΓMSMΓ〉 (14)

{(a)NASA X [(l)NLSL X (b)NBSB]SLB}S (15)
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4. Results

4.1.Ji: ai Half-Filled and b j Half-Filled. Although this case
has been discussed by other authors,13,37,38we have chosen to
include it here in order to illustrate the method, to introduce
the approximations, and to illustrate how the parametershij in
section 2 are related to ligand field parameters.

We consider first the frequently studied three-center four-
electron system. Distribution of the four electrons in the three
relevant orbitals gives rise to six different electron configura-
tions, see Figure 1. The electron configurations I, II, and III
give rise to singlets (S) 0) as well as triplets (S) 1), whereas
IV, V, and VI give rise to singlets only due to the Pauli exclusion
principle. Since we do not take into account two-center two-

electron exchange integrals, the singlet and triplet states arising
from configuration I are degenerate in the absence of an
interaction, i.e., forVA ) VB ) 0. The same applies for the
singlets and triplets arising from II and III.

The interaction matrices for the singlet and triplet states are
given in eq 43 and 44 in Appendix A1, respectively. The
splitting of the lowest-energy triplet and singlet is given by
application of fourth-order perturbation theory as

As defined in Figure 1, the quantities∆A and∆B correspond to
LMCT and the quantitiesUA and UB to MMCT excitation
energies.∆AB corresponds to a double LMCT excitation. We
now introduce the approximations∆A ) ∆ ) ∆B andUA ) U
) UB, which are valid if A and B are identical. We thus obtain

which is valid for this particular four-electron system, i.e., for
nA ) nB ) 1.

We also performed calculations for model systems with the
ground electron configuration (a)nA(l)2(b)nB with nA and/ornB

(37) Geertsma, W.Physica B1990, 164, 241.
(38) Shen, Z.; Allen, J. W.; Yeh, J. J.; Kang, J.-S.; Ellis, W.; Spicer, W.;

Lindau, I.; Maple, M. B.; Dalichaouch, Y. D.; Torikachvili, M. S.;
Sun, J. S.; Geballe, T. H.Phys. ReV B 1987, 36, 8414.

Figure 1. Possible electron configurations for the most simple A-L-B
four-electron model (case i). Configuration I represents the ground
electron configuration; II and III represent single LMCT electron
configurations; IV and V represent MMCT electron transfer configura-
tions; and VI represents a double LMCT electron configuration. The
function illustrated for each electron configuration is the highestMS

component of the highest possible spin value. Non-zero hybridization
matrix elementsVA andVB are indicated with double arrows. Possible
spin valuesS and diagonal energiesE are given to the right of each
configuration. The numbers in parentheses are basis function numbers
used in Appendix A1.

Figure 2. Illustration of the relationship between thehij parameters of
section 2 and the ratioVA

2 /∆.

Figure 3. The relevant electron configurations for case ii where the
ligand orbital interacts with a half-filled orbital on A and an empty
orbital on B. Configuration I represents the ground electron configu-
ration. Configurations II and IV are single LMCT configurations. III
and VI are double LMCT configurations, and V is a MMCT config-
uration. Non-zero hybridization matrix elementsVA andVB are indicated
with double arrows. Possible spin valuesS and diagonal energiesE
for each configuration are given to the right. The numbers in parentheses
refer to the basis functions used in Appendix A2.

E(1) - E(0) )

VA
2 VB

2 [ 2

∆B
2UB

+ 2

∆A
2UA

+ 2

∆B
2∆AB

+ 2

∆A
2 ∆AB

+ 4
∆A∆B∆AB]

(16)

E(1) - E(0) ) 4
VA

2

∆
VB

2

∆ [1
U

+ 2
∆AB] (17)
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different from 1. The general expression for the contribution to
J is

where we have assumed∆AB ) 2∆.14,37 Notice that there will
be no splitting unless both one-electron interaction matrix
elementsVA andVB are non-zero.

If the energy difference between the metal and the ligand
orbital is the main contribution to the LMCT energy∆, then
the factorVA

2 /∆ can be identified as the second-order energy
shift of orbital ai due to the presence of the ligand. The ratios
VA

2 /∆ and, similarly,VB
2/∆ are thus closely related to a ligand

field parameter, see Figure 2.
4.2.Jii : ai Half-Filled and b j Empty. Now the ligand orbital

l′ has non-zero overlaps with the half-filled a1 orbital on A and
the empty b2 orbital on B. The six relevant electron configura-
tions are illustrated in Figure 3. Apart from the ground electron
configuration we have only included single and double LMCT
and MMCT configurations.

The situation here is slightly more complicated than in the
previous section, since we now have the possibility to generate
excited configurations with two unpaired electrons on center
B, see configurations II, V, and VI in Figure 3. We thus have
to include one-center two-electron exchange integrals. The
diagonal energies of the spin multiplets arising from the
configurations II, V, and VI are determined as follows. We take
configuration II as an example. The subconfiguration b1

1 b2
1

gives rise to a singlet and a triplet. Due to Hund’s rule the triplet
is lower in energy. The separation between the singlet and the
triplet is 2IB where IB is the exchange integral involving the
orbitals b1 and b2. The possible spin valuesS for the total
configuration a1

1 l1b1
1 b2

1 are obtained by inspection of the
following series of products,

with SA ) 1/2, SL ) 1/2, andSB ) 0 or 1. All spin multipletsS
obtained forSB ) 0 are degenerate and similarly with the spin
multiplets obtained withSB ) 1. This degeneracy is retained
because we neglect two-center two-electron exchange integrals.

The configuration interaction matrices for the singlets and
triplets are given in eq 46 and 47 in Appendix A2, respectively.
After applying fourth-order perturbation theory we find the
following energy difference between the lowest triplet and
singlet:

This result is specific for A and B each having one unpaired
electron, i.e.,nA ) nB ) 1. The general expression for the
contribution toJ of this type of interaction is

InB+1 ) (nB + 1)IB accounts for the intra-atomic exchange
interaction on center B.

It is interesting to note that the double LMCT configuration
III at energy∆B2 in Figure 3 does not contribute to the splitting
to this order of perturbation theory. The reason for this is that
this electron configuration only involves center B and not both
centers. The quantities∆A, ∆B, ∆AB, U, andIB are all positive.
Consequently, the content of the square brackets in eq 20 is
positive leading to a negativeJii . If the double LMCT config-
uration VI at energy∆AB was not included in the model, the
content of the square brackets would be reduced to the first
two terms.

In order to discuss in simple terms the importance of
configuration VI in the model, we first assume∆AB ) ∆A +
∆B andInB+1 , U, ∆A, ∆B.39 Equation 21 then becomes

With the assumption∆A ) ∆B ) ∆ we get

The effect of including configuration VI in the model is
condensed in the second term in the square brackets of equation
23.

4.3.Jiii : ai Full and b j Half-Filled. Now the ligand orbitall′
interacts with a full orbital on A and a half-filled orbital on B.
The relevant electron configurations and their diagonal energies
are given in Figure 4. There are only three possible electron
configurations. In particular, it is not possible to generate a
double LMCT configuration. The configuration interaction
matrices for the singlet and triplet states are given in eqs 49
and 50, respectively, of Appendix A3. After applying fourth-
order perturbation theory we find the following energy differ-
ence between the lowest triplet and singlet:

This result is specific for A and B each having one unpaired
electron, i.e.,nA ) nB ) 1. The general expression for the
contribution of this type of interaction toJ is

(39) The quality of the assumptionInk+1 , U (k ) A or B) was discussed
in ref 12. Referring to eq 5 of the present paper we see thatInk+1
increases withnk. The quality of this assumption hence gets worse
with increasingnk.12 The same is true for the assumptionsInk+1 ,
∆A andInk+1 , ∆B.

Ji ) 4
nAnB

VA
2

∆
VB

2

∆ [ 1
U

+ 1
∆] (18)

{(a1
1)SA X [(l1)SL X (b1

1 b2
1)SB]SLB}S (19)

E(1) - E(0) ) -VA
2 VB

2[ 1

∆B
2U

- 1

(∆B + 2IB)2(U + 2IB)
+

2
∆B∆AB∆A

- 2
(∆B + 2IB)(∆AB + 2IB)∆A

+ 1

∆B
2∆AB

-

1

(∆B + 2IB)2(∆AB + 2IB)
+ 1

∆A
2 ∆AB

- 1

∆A
2(∆AB + 2IB)] (20)

Jii )

- 2
nA(nB + 1)

VA
2 VB

2[ 1

∆B
2U

- 1

(∆B + InB+1)
2(U + InB+1)

+

2
(∆B∆AB∆A

- 2
(∆B + InB+1)(∆AB + InB+1)∆A

+ 1

∆B
2∆AB

-

1

(∆B + InB+1)
2(∆AB + InB+1)

+ 1

∆A
2 ∆AB

-

1

∆A
2(∆AB + InB+1)] (21)

Jii ) - 2
nA(nB + 1)

VA
2 VB

2[2U + ∆B

∆B
3U2

+
4∆B + 2∆A

∆B
2∆A(∆B + ∆A)2

+

3∆B + 2∆A

∆B
3(∆B + ∆A)2

+ 1

∆A
2(∆B + ∆A)2]InB+1 (22)

Jii ) - 2
nA(nB + 1)

VA
2

∆
VB

2

∆ [2U + ∆
∆U2

+ 3

∆2] InB+1 (23)

E(1) - E(0) ) -
VA

2

∆
VB

2

∆ [1
U

- 1
U + 2IA] (24)

Jiii ) - 2
(nA + 1)nB

VA
2

∆
VB

2

∆ [1
U

- 1
U + InA+1] (25)
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SinceU andInA+1 are both positive, the content of the square
brackets is positive.Jiii is therefore negative. AssumingInA+1

, U, eq 25 simplifies to

4.4. Jiv: ai Full and b j Empty. Now the ligand orbitall′
interacts with the full orbital a1 and the empty orbital b2. The
relevant electron configurations and their diagonal energies are
given in Figure 5. Notice that it is not possible to generate a
double LMCT configuration which involves both paramagnetic
centers. The configuration interaction matrices for the singlet
and triplet states are given in eqs 52 and 53, respectively, of
Appendix A4. After applying fourth-order perturbation theory
we find the following energy difference between the lowest
triplet and singlet states:

This result is specific for A and B each having one unpaired
electron, i.e.,nA ) nB ) 1. The general expression for the
contribution of this type of interaction toJ is

An analysis of the content of the square brackets of eq 28 reveals
that it is positive resulting in a positiveJiv. The double LMCT

configuration III in Figure 5 involves only one paramagnetic
center and therefore does not contribute toJiv to this order of
perturbation theory, cf. section 4.2. In the limitInA+1,InB+1 ,
∆B, U, eq 28 reduces to

where we have written∆B ) ∆.

5. Discussion

Equations 18, 23, 26, and 29 are the main results of this paper
and form the basis of the following discussion.

It is important to realize that in all four cases it is possible to
express the contribution toJ in terms of the number of unpaired
electronsn (nA, nB), the hybridization matrix elementsV (VA,
VB), the LMCT energy∆ (∆A, ∆B), and the MMCT energyU
(UA, UB). While J is a property of the whole system, the
parametersn, V, ∆, andU represent properties of elements of
the dimer.n is obviously a single-center property.V and∆ are
properties of a specified metal-ligand combination. The
magnitude of∆ can be obtained by studying LMCT transitions
in absorption spectra of mononuclear complexes, andV2/∆ can
be obtained from the study of d-d transitions in the case of
transition metal complexes. When A and B are identical,U is
a single-ion property.U then corresponds to the difference
between two ionization potentials. When A and B are different,
U corresponds to the difference between an ionization potential
of one center and an electron affinity of the other.U can be
experimentally obtained from photoelectron spectra.33,40-42

(40) Fujimori, A.; Saeki, M.; Kimizuka, N.; Taniguchi, M.; Suga, S.Phys.
ReV. B. 1986, 34, 7318.

Figure 4. All the possible electron configurations for case iii where
the ligand orbital interacts with a full orbital on A and a half-filled
orbital on B. Configurational I is the ground electron configuration; II
and III are LMCT and MMCT configurations, respectively. Non-zero
hybridization matrix elementsVA and VB are indicated with double
arrows. Possible spin valuesS and diagonal energiesE are given to
the right of each configuration. The numbers in parentheses refer to
the basis functions used in Appendix A3.

Jiii ) - 2
(nA + 1)nB

VA
2

∆
VB

2

∆

InA+1

U2
(26)

E(1) - E(0) )
1/2VA

2 VB
2[+ 1

VB
2U

+ 1

(∆B + 2IB)2(U + 2IA + 2IB)
-

1

∆B
2(U + 2IA)

- 1

(∆B + 2IB)2(U + 2IB)] (27)

Jiv ) 2
(nA + 1)(nB + 1)

VA
2 VB

2[+ 1

∆B
2U

+

1

(∆B + InB+1)
2(U + InA+1 + InB+1)

- 1

∆B
2(U + InA+1)

-

1

(∆B + InB+1)
2(U + InB+1)] (28)

Figure 5. The relevant electron configurations for case iv where the
ligand orbital interacts with a full orbital on A and an empty orbital on
B. Configuration I represents the ground electron configuration. The
configurations II, III, and IV represent single LMCT, double LMCT
and MMCT electron configurations, respectively. Non-zero hybridiza-
tion matrix elementsVA and VB are indicated with double arrows.
Possible spin valuesS and diagonal energies are given to the right of
each configuration. The numbers in parentheses refer to the basis
function numbers used in Appendix A4.

Jiv ) 2
(nA + 1)(nB + 1)

VA
2

∆
VB

2

∆ [ 2

U3
+ 4

∆U2]InA+1InB+1 (29)
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The equations 18, 23, 26, and 29 are all composed as a
product of four factors as follows:

with a ) i, ii, iii, or iv. Table 1 summarizes the equations in
terms of these factors.

5.1. The Principal Factors in the Expressions ofJ. The
influence of the number of unpaired electrons on A and B is
given in the factorsFa (a ) i, ii, iii, and iv) of Table 1. ThenA,
nB dependence ofJi, Jii , Jiii , andJiv found here agrees with what
has been found earlier.12 For A and B both being transition
metals, the factorFi can vary by as much as a factor of 25,
from 4 to 4/25 for nA ) nB ) 1 andnA ) nB ) 5, respectively.
ThenA, nB dependency ofJi is experimentally very well verified
for several series of dimers in which there is only one dominant
interaction pathway.12,20,24The agreement is not as good when
there are several important interaction pathways.25,43

As a result of the approximations made in the previous four
sections, the factorsGa(VA,VB,∆) are identical for alla ) i, ii,
iii, and iv. Ga(VA,VB,∆) equals a product of the two factors
VA

2 /∆ and VB
2/∆ which are related to ligand field parameters,

see section 4.1 and Figure 2. The form ofGa also explains why
ligand field models formulated in terms of the angular overlap
model have been successful in interpreting magnetic properties
of structurally related complexes, e.g., dihydroxo bridged
copper(II) dimers and hydroxo bridged chromium(III) dimers.23,44

The factorGa immediately tells us which ligand and metal
orbitals significantly contribute to theJ value and which ones
do not. ForVA

2 /∆ to have an appreciable value, both metal and
ligand orbitals must be valence orbitals, corresponding to the
lowest value of∆. Usage of this principle to vary the magnetic
ordering temperature of Cs2MnII[V II(CN)6]‚H2O, CsMnII[CrIII -
(CN)6], and MnII[MnIV(CN)6]‚xH2O was discussed in ref 45.
Core orbitals on the ligand and higher-than-valence orbitals on
the metal can usually be neglected, since for these combinations
∆ becomes very large andVA

2 /∆ vanishes. Ligand field pa-
rameters are roughly constant for isostructural series of ho-
movalent transition metal complexes.21 This means that the
ligand field parameterVA

2 /∆, if known for a given metal-
ligand combination, can be transferred to another homovalent

metal with the same ligand.20 Ligand field parameters increase
strongly on increasing the oxidation number21 due to a lowering
of the metal orbitals and thus a decrease of∆. Similarly, they
increase dramatically on moving down a group in the periodic
table. This is so because 4d and 5d orbitals are more diffuse
than 3d orbitals, giving rise to higher hybridization matrix
elementsVA and/orVB, see eq 13. In the simple case ofVA )
VB andSa ) Sb, J will be proportional to the fourth power of
the metal-ligand overlapSa, sinceVA is proportional toSa. This
has been found to be valid using ab initio calculations.46,47

The factorsHa(U,∆) correspond to the factors 1/Ueff, 1/Ueff
2 ,

1/Ueff
2 , and 1/Ueff

3 in the old model, see last column in Table 1.
From Table 1 we see that in the Anderson limit, i.e.,∆ . U,
Ueff equalsU for all cases. In the Introduction it was shown
that 1/2U < ∆ < U is a physically typical range of relative∆
andU values. We obtain the following ranges of theHa factors
which are compared with the corresponding values in the old
model:

We note that the ratioUeff/U is different for the four cases,
ranging from a minimum of approximately1/4 in case ii to1/1
in case iii. For case i the reduction ofUeff vs U is solely due to
the inclusion of the double LMCT configuration in the model,
see section 4.1. For case ii there is already a reduction (first
term of Hii in Table 1) without including double LMCT
configurations in the model. The second term ofHii expresses
the effect of double LMCT configurations and leads to further
reduction. For case iiiUeff ) U, since it is not possible to
generate double LMCT configurations. The slight reduction for
case iv simply results from the perturbational treatment.

TheKa factors in Table 1 express the intra-atomic exchange
interactions on the centers A and B. TheKa factor is different
from unity when it is possible to add an electron into the relevant
empty orbital or remove an electron from the relevant full orbital
on either of the two paramagnetic centers. Therefore,Ji is
independent ofIA and IB. Jii and Jiii depend onIB and IA,
respectively, andJiv depends on the product ofIA and IB.

(41) van der Laan, G.; Westra, C.; Haas, C.; Sawatzky, G. A.Phys. ReV.
B 1981, 23, 4369.

(42) Sangaletti, L.; Parmigiani, F.; Ratner, E.Phys. ReV. B 1998, 57, 10175.
(43) Kahn, O.Struct. Bonding1987, 68, 89.
(44) Bencini, A.; Gatteschi, D.Inorg. Chim. Acta1978, 31, 11.
(45) Entley, W. R.; Girolami, G. S.Science1995, 268, 397. The metal

orbitals havingπ symmetry with respect to the MnII-CN-Mn+ (Mn+)
V2+, Cr3+, Mn4+) axis interact via an emptyπ* orbital on the cyanide
ion. These systems hence have the ground electron configuration
[t2g

3 eg
2][(π*)0][t 2g

3 ]. This is a hole-particle equivalent of case i and
can therefore be treated as such.

(46) Hart, J. R.; Rappe´, A. K.; Gorun, S. M.; Upton, T. H.Inorg. Chem.
1992, 31, 5254. See also: Hart, J. R.; Rappe´, A. K.; Gorun, S. M.;
Upton, T. H.J. Phys. Chem.1992, 96, 6255.

(47) Schrivastava, K. N.; Jaccarino, V.Phys. ReV. B 1976, 13, 299.

Table 1. Summary of theFa, Ga, Ha, andKa Factors as Found in Section 4 and Discussed in Section 5a

Ja Fa(nA,nB) Ga(VA,VB,∆) Ha(U,∆) Ka(IA,IB) Ja,old

Ji 4
nAnB

VA
2

∆
VB

2

∆

1
U

+ 1
∆

1 4
nAnB

h2 1
Ueff

Jii 2
nB

VA
2

∆
VB

2

∆

2U + ∆
∆U2

+ 3

∆2
IB 2

nB
h2 1

Ueff
2

IB

Jiii 2
nA

VA
2

∆
VB

2

∆

1

U2
IA 2

nA
h2 1

Ueff
2

IA

Jiv 2 VA
2

∆
VB

2

∆

2

U3
+ 4

∆U2
IAIB h2 2

Ueff
3

IAIB

a The last column gives the old formulas as summarized in section 2. We used the approximationInj+1 ) (nj + 1)Ij (j ) A or B) eq 5 to obtain
the columns withFa, Ka, andJa,old.

Ja ) Fa(nA,nB)Ga(VA,VB,∆)Ha(U,∆)Ka(IA,IB) (30)

new model old model
2
U

< Hi < 3
U

Hi ) 1
Ueff

(31)

6

U2
< Hii < 17

U2
Hii ) 1

Ueff
2 (32)

Hiii ) 1

U2
Hiii ) 1

Ueff
2 (33)

6

U3
< Hiv < 10

U3
Hiv ) 1

Ueff
3 (34)
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The magnitude of theHa andKa factors in Table 1 cannot be
directly compared since they have different units for the different
cases. However, we can compare the relative magnitudes of the
productsHa(U,∆) × Ka(IA,IB). We chooseU between 50000
and 100000 cm-1 (roughly 6-10 eV) and let∆ take values
within 1/2U < ∆ < U. IA and IB are in the interval from 4000
to 5000 cm-1, which is a reasonable estimate for 3d transition
metal ions.12 Using these values we find the productsHaKa in
the following intervals:

The left and right numbers are the values for (U, ∆, I) )
(100000 cm-1, 100000 cm-1, 4000 cm-1) and (U,∆,I) ) (50000
cm-1, 25000 cm-1, 5000 cm-1), respectively. This allows us to
determine the relative importance of the different contributions
Ji, Jii , Jiii , andJiv to J:

This is at variance with the discussion of these terms in the
earlier literature11 using the Ueff formalism. There it was
concluded that the termsJii andJiii were equal and both of minor
importance compared withJi. Jiv appears to be ferromagnetic
in the older literature,5 but we find it to be antiferromagnetic.
We find that|Jii| is smaller but of the same order of magnitude
asJi. |Jii| is an order of magnitude bigger than|Jiii |, which again
is bigger than but of the same order of magnitude asJiv.

5.2. Comparison with Experiments. Now we relate our
findings to experimentalJ values and their interpretations in
the literature. We comment on the four types of contributions
Jiv, Jiii , Jii , andJi to J in order of increasing importance.

Jiv. It is indeed justified to check the order of magnitude of
the contributionJiv to netJ, since this term is always present.
The constituting metals in a dimer always possess filled and
empty orbitals. The filled orbitals can be either valence or core
orbitals, and the empty orbitals can be either valence or higher-
than-valence orbitals. However, the contribution ofJiv to J is
vanishing due to theHiv factor. This term has therefore never
been recognized as important in analyses of experimentalJ
values.

Jiii . It has been argued48 that the ferromagnetic nearest-
neighbor (90°) interaction in NiO results from covalency effects,
i.e., the one-electron interactions discussed in the present paper.
This is in contrast to the traditional approach where this effect
is ascribed to potential exchange.11 Ni2+ is a d8 electron system
which in octahedral symmetry has the ground electron config-
uration t2g

6 eg
2. Hence, a ferromagnetic interaction of typeJiii

between the Ni2+ ions can arise, if there exist ligand orbitals
which are simultaneously overlapping with the filled t2g orbitals
on one metal and the half-filled eg orbitals on the other metal.

This is the case for the 90° interaction,30 and using eq 26 we
find that the ferromagnetic contribution toJ(90°) is

Vσp and Vπp are the one-electron parameters relevant for the
pσ-dσ and pπ-dπ interactions, respectively. Using parameter
values from ref 16, 1.6 eV< Vσp < 1.9 eV,Vπp ) 1/2Vσp, ∆ )
6 eV, U ) 9.5 eV, andI ) 0.5 eV,12 we find that-4 cm-1 >
Jiii > -8 cm-1. This compares well withJ(90°) ) -10 cm-1

as found in ref 49. There are also antiferromagnetic contributions
(Ji) to netJ in this system.30 These involve the s orbitals on the
oxide ions and are therefore expected to be small, since the 2s
orbital is lower in energy by 16 eV50 than the 2p orbitals. Ab
initio calculations51 on di-oxo bridged nickel complexes have
indicated that the relevant two-center exchange integrals in this
system vary from 1 cm-1 for unperturbed localized d orbitals
to 10 cm-1 for orbitals which are allowed to delocalize onto
the bridging ligand. We conclude thatJiii substantially contrib-
utes to the ferromagnetic interaction between nearest neighbors
in NiO. This is in agreement with ref 48.

Jii . Our theoretical finding from eqs 35-38 that |Jii| is an
order of magnitude bigger than|Jiii | eqs 36 and 37, and
comparable in magnitude withJi for low U and ∆ values is
new and important. It can be shown that this theoretical result
is also experimentally verified. Recently20 we analyzed experi-
mentalJ values of a series of bent oxo bridged dimers with the
electron configurations d1d1, d2d2, d2d3, d3d3, d3d4(hs), d3d5(hs),
d4(hs)d4(hs), d4(hs)d5(hs), and d5(hs)d5(hs) in terms of the old
Ueff formalism. Since thesed electron configurations represent
empty and half-filled d orbitals only, eqs 2 and 4 were used in
the analysis withhij

2/Ueff and I/Ueff as independent parameters.
We argue in section 2 of the present paper thatUeff, as calculated
from the experimentally determinedhij

2/Ueff and I/Ueff, is
significantly smaller than any reasonable estimate ofU. We now
show that this is indeed expected. From the ratioshij

2/Ueff and
I/Ueff we estimated that 2/U < 1/Ueff < 3/U and 4/U < 1/Ueff

< 5/U, respectively. Combining these estimates we find 8/U2

< 1/Ueff
2 < 15/U2, which is in perfect agreement with 6/U2 <

1/Ueff
2 < 17/U2 obtained independently, eq 32. This clearly

tells us that the parameter values of ref 20 are reasonable.
Ji. We finally return toJi and apply it to the basic rhodo

problem mentioned in section 2. We saw in the Introduction
that the old formalism based onUeff only provides a qualitative
picture of the situation.16 Equation 18 applied to the ground
state of the basic rhodo has the form

Foreπ andU we use the values 4000 cm-1 29 and 74500 cm-1,30

respectively, see also section 2. We estimate the oxide-to-
chromium LMCT energy∆ from single crystal spectra of
corundum doped with Cr3+.52,53 Oxide to chromium electron
transfer transitions start at 42000 cm-1,52 and an intense band
was found at 56000 cm-1.53 Usingeπ ) 4000 cm-1, U ) 74500
cm-1, and 42000 cm-1 < ∆ < 56000 cm-1, we find that 445
cm-1 < J < 530 cm-1 for the basic rhodo ion. This is in
excellent agreement with the experimentally determined value
of J ) 450 cm-1.27-29 We note in passing that an intense band

(48) Oguchi, T.; Terakura, K.; Williams, A. R.Phys. ReV. B 1983, 28,
6443.

(49) Hutchings, M. T.; Samuelson, E. J.Solid State Commun.1971, 9,
1011.

(50) Fujimori, A.; Minami, F.Phys. ReV. B 1984, 30, 957.
(51) Wang, C.; Fink, K.; Staemmler, V.Chem. Phys.1995, 192, 25.
(52) McClure, D. S.Solid State Phys.1959, 9, 399. McClure, D. S.J.

Chem. Phys.1963, 36, 2757.
(53) Tippins, H. H.Phys. ReV. B 1970, 1, 126.

200< HiKi × 107 cm-1 < 600 (35)

24 < HiiKii × 107 cm-1 < 340 (36)

4 < HiiiKiii × 107 cm-1 < 20 (37)

1 < HivKiv × 107 cm-1 < 20 (38)

Ji > |Jii| . |Jiii | > Jiv (39)

Jiii ) -2(22 Vσp
2

∆
Vπp

2

∆ ) 1

U2
I (40)

Ji ) 2 × 4
3‚3

Vpπ
2

∆
Vpπ

2

∆ (1
U

+ 1
∆) (41)

) 8
9
eπ

2(1
U

+ 1
∆) (42)
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is found at 36000 cm-1 in the absorption spectrum of the basic
rhodo ion.28,29 It was nominally assigned as a MMCT band in
ref 29, but it is probably a LMCT band as suggested in ref 54
with some MMCT character mixed in. The energy of this band
is lower than the values of∆ used above. This is consistent
with the fact that LMCT transitions are known to occur at lower
energies upon dimer formation compared to the corresponding
energy for the mononuclear fragments.13,14,55

5.3. The Ferromagnetic Contributions toJ. Terms of type
Ji are absent when no ligand orbitall′ or linear combination of
ligand orbitals simultaneously has overlaps with half-filled
orbitals on the paramagnetic centers A and B. Similarly the
terms Ji are absent when half-filled orbitals on the two
paramagnetic centers are orthogonal by symmetry.56,57In these
situations the termsJii andJiii or true potential exchange, which
we have neglected here, become important.

The fact that|Jii| is an order of magnitude bigger than|Jiii |
immediately tells us which transition metal electron configura-
tions can possibly show strong net ferromagnetic interaction.
We designate the d electron configuration of the metals A and
B as dNA and dNB, respectively, withNA andNB being the total
number of d electrons. IfNA g 5 andNB > 5 (or vice versa)
and both centers have the high-spin electron configuration, then
Jiii is the only ferromagnetic term that can occur. This will,
according to our model, lead to small ferromagneticJiii

contributions toJ as exemplified above with the nearest-
neighbor interaction in NiO, see also eq 32. If, on the other
hand,NA e 5 andNB < 5 (or vice versa) and both centers have
the high-spin electron configuration, thenJii are the only
ferromagnetic terms present. This was exemplified with the high
I/Ueff ratio occurring whenJii is the ferromagnetic contribution
to J.

For dimers in which either or both of the constituting metals
have the low-spin electron configuration, both types of ferro-
magnetic termsJii and Jiii can be present. We conclude that
dimers containing transition metals from the first half of the
transition series will exhibit ferromagnetic interaction more
frequently than dimers with metals from the second half of the
transition series. A similar conclusion, based on other principles,
however, was reached in ref 45, see section 5.1 of the present
paper.

In summary, we have derived expressions for the contribu-
tions to the HDvVJ value using a valence bond configuration
interaction model. Insight into the superexchange mechanisms
is obtained using perturbation theory to fourth order. An
important point is the inclusion of the double LMCT configura-
tions in the valence bond configuration interaction model. In
cases i and ii it is possible to perform a double electron transfer
from the ligand orbital toboth paramagnetic centers without
violating the Pauli principle. As a result, the parameterUeff

appearing in the old formalism for cases i and ii is strongly
reduced fromU due to mixing between ground and double
LMCT configurations. In cases iii and iv this mixing is not
possible due to the absence of double LMCT configurations
involving both paramagnetic centers.

It is now possible to express the magnitude of all four
contributionsJi, Jii , Jiii , andJiv to J in terms of the number of

unpaired electrons, LMCT and MMCT energies, and intra-
atomic exchange integrals.

Using realistic model parameters the observed trends in the
exchange coupling of known transition metal ion systems can
be rationalized. Reliable predictions of the magnetic properties
can be made for new compounds.
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Appendix

In this appendix we present the configuration interaction
matrixes which are used in sections 4.1, 4.2, 4.3, and 4.4. We
also give the differenceE(1) - E(0) between the energy of
lowest triplet E(1) and singletE(0) state of the dimer after
application of fourth-order perturbation theory.36

A1. ai Half-Filled and b j Half-Filled. The basis functions
|n〉 wheren refers to the numbers in parentheses in Figure 1
were generated by using the following coupling schemes, see
eq 15:

The S ) 0 configuration interaction matrix has the following
form:

The S ) 1 configuration matrix has the following form:

To fourth order in perturbation theory we have

(54) Kahn, O.; Briat, B.J. Chem. Soc., Faraday Trans. 21976, 72, 268.
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Chem. Soc.1969, 90, 71. Reem, R. C.; McCormick, J. M.; Richardson,
D. E.; Devlin, F. J.; Stephens, P. J.; Musselman, R. L.; Solomon, E.
I. J. Am. Chem. Soc.1989, 111, 4688.

(56) Kahn, O.; Galy, J.; Journaux, Y.; Jaud, J.; Morgenstern-Badarau, I.J.
Am. Chem. Soc.1982, 104, 2165.

(57) Mallah, T.; Auberger, C.; Verdaguer, M.; Veillet, P.J. Chem. Soc.,
Chem. Commun.1995, 61.

|1〉: {(a1)
1
2

X [(l2)0 X (b1)
1
2]12}0

|2〉: {(a1)
1
2

X [(l2)0 X (b1)
1
2]12}1

|3〉: {(a2)0 X [(l1)12 X (b1)
1
2]0}0

|4〉: {(a2)0 X [(l1)12 X (b1)
1
2]1}1

|5〉: {(a1)
1
2

X [(l1)12 X (b2)0]12}0

|6〉: {(a1)
1
2

X [(l1)12 X (b2)0]12}1

|7〉: {(a2)0 X (l2)0}0

|8〉: {(l2)0 X (b2)0}0

|9〉: {(a2)0 X (b2)0}0
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A2. ai Half-Filled and b j Empty. The basis functions|n〉
wheren refers to the numbers in parentheses in Figure 3 were
generated by use of the following coupling schemes, see eq
15:

The S ) 0 matrix has the following form:

The S ) 1 matrix has the following form:

To fourth order in perturbation theory we have

A3. ai Full and b j Half-Filled. The basis functions|n〉 where
n refers to the numbers in parentheses in Figure 4 were generated
by use of the following coupling schemes, see eq 15.

The S ) 0 matrix has the following form:

The S ) 1 matrix has the following form:

To fourth order in perturbation theory we have

A4. ai Full and b j Empty. The basis functions|n〉 wheren
refers to the numbers in parentheses in Figure 5 were generated

E(1) - E(0) )

VA
2 VB

2[ 2

∆B
2UB

+ 2

∆A
2UA

+ 2

∆B
2∆AB

+ 2

∆A
2 ∆AB

+ 4
∆A∆B∆AB]

(45)

|1〉: {(a1
1)

1
2

X [(l2)0 X (b1
1)

1
2]12}1

|2〉: {(a1
1)

1
2

X [(l2)0 X (b1
1)

1
2]12}0

|3〉: {(a1
1)

1
2

X [(l1)12 X (b1
1 b2

1)1]32}2

|4〉: {(a1
1)

1
2

X [(l1)12 X (b1
1 b2

1)1]32}1

|5〉: {(a1
1)

1
2

X [(l1)12 X (b1
1 b2

1)1]12}1

|6〉: {(a1
1)

1
2

X [(l11)12 X (b1
1 b2

1)1]12}0

|7〉: {(a1
1)

1
2

X [(l1)12 X (b1
1 b2

1)1]12}1

|8〉: {(a1
1)

1
2

X [(l1)12 X (b1
1 b2

1)1]12}0

|9〉: {(a1
1)

1
2

X (b1
1 b2

2)
1
2}1

|10〉: {(a1
1)

1
2

X (b1
1 b2

2)
1
2}0

|11〉: {(a1
2)0 X [(l1)12 X (b1

1)
1
2]1}1

|12〉: {(a1
2)0 X [(l1)12 X (b1

1)
1
2]1}0

|13〉: {(a1
2)0 X (b1

1 b2
1)1}1

|14〉: {(a1
2)0 X (b1

1 b2
1)0}0

|15〉: {(l2)0 X (b1
1 b2

1)1}1

|16〉: {[(l 2)0 X (b1
1 b2

1)0}0

E(1) - E(0) ) -VA
2 VB

2[ 1

∆B
2U

- 1

(∆B + 2IB)2(U + 2IB)
+

2
∆B∆AB∆A

- 2
(∆B + 2IB)(∆AB + 2IB)∆A

+ 1

∆B
2∆AB

-

1

(∆B + 2IB)2(∆AB + 2IB)
+ 1

∆A
2 ∆AB

- 1

∆A
2(∆AB + 2IB)] (48)

|1〉: {(a1
2 a2

1)
1
2

X [(l2)0 X (b1
1)

1
2]12}0

|2〉: {(a1
2 a2

1)
1
2

X [(l2)0 X (b1
1)

1
2]12}1

|3〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
2)0]12}0

|4〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
2)0]12}1

|5〉: {(a1
1 a2

1)0 X [(l 2)0 X (b1
2)0]0}0

|6〉: {(a1
1 a2

1)1 X [(l 2)0 X (b1
2)0]1}1

E(1) - E(0) ) -
VA

2

∆
VB

2

∆ [1
U

- 1
U + 2IA] (51)
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by use of the following coupling schemes, see eq 15. TheS ) 0 matrix has the following form:

The S ) 1 matrix has the following form:

To fourth order in perturbation theory we have

IC990779H

|1〉: {(a1
2 a2

1)
1
2

X [(l2)0 X (b1
1)

1
2]12}0

|2〉: {(a1
2 a2

1)
1
2

X [(l2)0 X (b1
1)

1
2]12}1

|3〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
1 b2

1)0]12}0

|4〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
1 b2

1)0]12}0

|5〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
1 b2

1)1]12}0

|6〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
1 b2

1)1]12}1

|7〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
1 b2

1)1]32}1

|8〉: {(a1
2 a2

1)
1
2

X [(l1)12 X (b1
1 b2

1)1]32}2

|9〉: {(a1
2 a2

1)
1
2

X (b1
1 b2

2)
1
2}0

|10〉: {(a1
2 a2

1)
1
2

X (b1
1 b2

2)
1
2}1

|11〉: {(a1
1 a2

1)0 X [(l 2)0 X (b1
1 b2

1)0]0}0

|12〉: {(a1
1 a1

2)0 X [(l 2)0 X (b1
1 b2

1)1]1}1

|13〉: {(a1
1 a2

1)1 X [(l 2)0 X (b1
1 b2

1)0]0}1

|14〉: {(a1
1 a2

1)1 X [(l 2)0 X (b1
1 b2

1)1]1}0

|15〉: {(a1
1 a2

1)1 X [(l 2)0 X (b1
1 b2

1)1]1}1

|16〉: {(a1
1 a2

1)1 X [(l 2)0 X (b1
1 b2

1)1]1}2

E(1) - E(0) ) 1/2VA
2 VB

2[+ 1

∆B
2U

+

1

(∆B + 2IB)2(U + 2IA + 2IB)
- 1

∆B
2(U + 2IA)

-

1

(∆B + 2IB)2(U + 2IB)] (54)
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