Structural Distortions in *mer*-M(H)₃(NO)L₂ (M = Ru, Os) and Their Influence on Intramolecular Fluxionality and Quantum Exchange Coupling

Dmitry V. Yandulov, Dejian Huang, John C. Huffman, and Kenneth G. Caulton*,[†]

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405-4001

Received December 20, 1999

Molecules of the type *mer*-M(H)₃(NO)L₂ [M = Ru (1), Os (2); L = PR₃] are characterized on the basis of ¹H NMR T_{1min} values and IR spectra as pseudo-octahedral trihydrides significantly distorted by compression of the cis H–M–H angles to ~75°. The distortion, uncharacteristic of six-coordinate d⁶ complexes, is rationalized with DFT (B3LYP) calculations as being driven by increased H-to-M σ donation and by the exceptional π -accepting ability of linear NO⁺. In both 1 and 2, hydrides undergo intramolecular site exchange with $\Delta H_{HH}^{\dagger}(1) = 10-11$ kcal/mol and $\Delta H_{HH}^{\dagger}(2) = 16-20$ kcal/mol, depending on L, whereas for *mer*-Ru(H)₃(NO)(P^IBu₂Me)₂ (1b), moderate exchange couplings (up to 77 Hz) are featured in the low-temperature ¹H NMR spectra, in addition to chemical exchange. On the basis of experimental and theoretical results, a dihydrogen intermediate is suggested to mediate hydride site exchange in 1. The cis H–M–H distortion shortens the tunneling path for the exchanging hydrides in 1, thereby increasing the tunneling rate; diminishes the "conflict" between trans hydrides in the mer geometry; and decreases the nucleophilicity of the hydrides. The generality of the observed structural distortion and its dependence on the ligand environment in late transition metal tri- and dihydrides are discussed. A less reducing metal center is generally characterized by greater distortion.

Introduction

Structural distortions from octahedral geometry in dⁿ sixcoordinate transition metal complexes are abundant for n < 6. Specifically considering complexes with strong σ donors, the numerous examples include complexes such as $[MMe_6]^q$ with d^{0} (M = W, Nb⁻, Ta⁻), d^{1} (M = Tc, Re), and d^{2} (M = Ru, Os) metal centers1-3 and d4 OsH2Cl2L2,4 which prefer trigonal prismderived geometries, whereas in d⁰ trans,trans-Ta(H)₂(L)X- $(OR)_{2}$, 5,6 d² Cp*Os(H)₅, 7 d⁴ mer, trans-Os(H)₃XL₂, 8 and d⁴ mer,trans-OsHCl₃L₂⁹ transoid hydrides (or phosphines in the latter case) strongly distort away from the trans geometry. The distortion in mer, trans-Os(H)3ClL2, in which two transoid hydrides symmetrically approach the third hydride to cis H-M-H angles of 60°, enables this six-coordinate complex to exhibit associative reactivity, such as coordination of Lewis bases¹⁰ and hydrogenation of terminal acetylenes.¹¹ Additionally, the phenomenon of quantum mechanical exchange coupling in transition metal polyhydrides¹² has, to date, invariably been found to involve cisoid hydrides distorted toward each other such that $\angle H - M - H$ is significantly less than 90°.

- (1) Kleinhenz, S.; Pfennig, V.; Seppelt, K. Chem. Eur. J. 1998, 4, 1687.
- (2) Pfennig, V.; Seppelt, K. Science 1996, 271, 626.
- (3) Kaupp, M. Chem. Eur. J. 1998, 4, 1678.
- (4) Aracama, M.; Esteruelas, M. A.; Lahoz, F. J.; Lopez, J. A.; Meyer, U.; Oro, L. A.; Werner, H. *Inorg. Chem.* **1991**, *30*, 288.
- (5) Parkin, B. C.; Clark, J. C.; Visciglio, V. M.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1995, 14, 3002.
- (6) Clark, J. R.; Pulvirenti, A. L.; Fanwick, P. E.; Sigalas, M.; Eisenstein, O.; Rothwell, I. P. Inorg. Chem. 1997, 36, 3623.
- (7) Bayse, C. A.; Hall, M. B. Inorg. Chim. Acta 1997, 259, 179.
- (8) Gusev, D. G.; Kuhlman, R.; Sini, G.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1994, 116, 2685.
- (9) Kuhlman, R.; Gusev, D. G.; Eremenko, I. L.; Berke, H.; Huffman, J. C.; Caulton, K. G. J. Organomet. Chem. 1997, 536, 139.
- (10) Kuhlman, R.; Clot, E.; Leforestier, C.; Streib, W. E.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119, 10153.

For ML₆ with a d⁶ (low-spin) metal configuration, the octahedral geometry is the most stable, and significant distortions from it are very rarely found. Unless steric factors are involved, as in the case of Fe(H)₂L₄,¹³ the known distortions are modest: in both [CrH(CO)₅]⁻ and MnH(CO)₅, four equatorial carbonyls bend toward the apical hydride,¹⁴ decreasing the \angle OC-M-H from 90° by 5.4° (Cr)¹⁵ and by 7.2° (Mn).¹⁶ Recently, however, Werner et al. structurally characterized OsX(=CHR)Cl(CO)L₂ complexes,¹⁷ in which transoid phosphines L strongly distort¹⁸ away from the carbene ligand toward ligand X, leading to L-Os-L angles of 167.5° (X = Cl) and 141.4° (X = H). The stability of the octahedral d⁶ ML₆ structure makes nondissociative hydride fluxionality an infrequent occurrence, ^{13,19-22} and no d⁶ ML₆ classical polyhydride is known to exhibit exchange coupling.¹²

Because of the strong hydride trans influence, the trans dihydride geometry is strongly destabilizing,^{23,24} and stable trans dihydrides are relatively uncommon^{13,25–32} compared to cis dihy-

- (11) Oliván, M.; Eisenstein, O.; Caulton, K. G. Organometallics 1997, 16, 2227.
- (12) Sabo-Etienne, S.; Chaudret, B. Chem. Rev. 1998, 98, 2077.
- (13) Meakin, P.; Guggenberger, L. J.; Jesson, J. P.; Gerlach, D. H.; Tebbe,
 F. N.; Peet, W. G.; Muetterties, E. L. J. Am. Chem. Soc. 1970, 92, 3482.
- (14) Jackson, S. A.; Eisenstein, O.; Martin, J. D.; Albeniz, A. C.; Crabtree, R. H. Organometallics 1991, 10, 3062.
- (15) Darensbourg, M.; Slater, S. J. Am. Chem. Soc. 1981, 103, 5914.
- (16) La Placa, S. J.; Hamilton, W. C.; Ibers, J. A.; Davison, A. Inorg. Chem. 1969, 8, 1928.
- (17) Werner, H.; Stüer, W.; Laubender, M.; Lehmann, C.; Herbst-Irmer, R. Organometallics **1997**, *16*, 2236.
- (18) Gérard, H.; Clot, E.; Eisenstein, O. New J. Chem. 1999, 23, 495.
- (19) Ball, G. E.; Mann, B. E. J. Chem. Soc., Chem. Commun. 1992, 561.
- (20) Bakhmutov, V.; Bürgi, T.; Burger, P.; Ruppli, U.; Berke, H. Organometallics 1994, 13, 4203.
- (21) Bianchini, C.; Meali, C.; Peruzzini, M.; Zanobini, F. J. Am. Chem. Soc. 1987, 109, 5548.
- (22) Heinekey, D. M.; van Roon, M. J. Am. Chem. Soc. 1996, 118, 12134.

10.1021/ic991452j CCC: \$19.00 © 2000 American Chemical Society Published on Web 04/01/2000

[†]E-mail: caulton@indiana.edu.

dride complexes. Although steric factors typically dictate the preference for the electronically unstable trans dihydride structure over the cis analogue,³³ both trans and cis isomers are often observed simultaneously in a detectable equilibrium.^{13,27–29,31,32} An understanding of the factors stabilizing the trans dihydride geometry is desirable for rational control of hydride reactivity. For example, dihydrogen ligands in *trans*-[M(X)(H₂)(P~P)₂]⁺ (M = Ru, Os) were computed³⁴ to be the least acidic with X = H out of an extensive series of ligands X, consistent with experimental results,³⁵ which implies a somewhat increased hydride nucleophilicity in the trans dihydride geometry.

Complexes of strongly reducing metal centers with strong π acids, in particular NO⁺, are beginning to attract some attention, as very strong back-bonding interactions are anticipated to lead to unusual reactivity.³⁶ Such features of the electronic structure are primarily responsible for the "saw-horse" geometry adopted by d⁸ Ru(CO)₂L₂^{37,38} and [Ru(CO)(NO)L₂]^{+ 39} with trans L, unusual for d⁸ four-coordinate complexes. This work presents

- (23) Lin, Z.; Hall, M. B. J. Am. Chem. Soc. 1992, 114, 6102.
- (24) Lin, Z.; Hall, M. B. Coord. Chem. Rev. 1994, 135/136, 845.
- (25) Immirzi, A.; Musco, A.; Carturan, G.; Belluco, U. Inorg. Chim. Acta 1975, 12, L23.
- (26) Shaw, B. L.; Uttley, M. F. J. Chem. Soc., Chem. Commun. 1974, 918.
- (27) Paonessa, R. S.; Trogler, W. C. J. Am. Chem. Soc. 1982, 104, 1138.
- (28) Jessop, P. G.; Rastar, G.; James, B. R. Inorg. Chim. Acta 1996, 250, 351.
- (29) Brown, J. M.; Dayrit, F. M.; Lightowler, D. J. Chem. Soc., Chem. Commun. 1983, 414.
- (30) Fryzuk, M. D.; MacNeil, P. Organometallics 1983, 2, 682.
- (31) Harrod, J. F.; Jorke, W. J. Inorg. Chem. 1981, 20, 1156.
- (32) Gusev, D. G.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 1998, 120, 13138.
- (33) For a notable exception, see: Rybtchinski, B.; Ben-David, Y.; Milstein, D. Organometallics 1997, 16, 3786.
- (34) Xu, Z.; Bytheway, I.; Jia, G.; Lin, Z. Organometallics 1999, 18, 1761.
- Maltby, P. A.; Schlaf, M.; Steinbeck, M.; Lough, A. J.; Morris, R. H.; Klooster, W. T. J. Am. Chem. Soc. 1996, 118, 5396.
- (36) Daff, J. P.; Legzdins, P.; Rettig, J. J. J. Am. Chem. Soc. 1998, 120, 2688.

additional unusual consequences of strong back-bonding interactions with NO⁺ on structure and reactivity. Despite having a formal d⁶ metal configuration, *mer*,*trans*-M(H)₃NOL₂ (M = Ru, Os) compounds are significantly distorted from octahedral geometry by bending of the trans hydrides away from NO. The distortion stabilizes the transoid dihydride geometry and leads to observation of quantum mechanical exchange coupling in *mer*-Ru(H)₃(NO)(P^tBu₂Me)₂, the first d⁶ pseudo-octahedral polyhydride to exhibit such a phenomenon.

Results

Synthesis. Ruthenium trihydrides $Ru(H)_3(NO)L_2$ [L = PⁱPr₃ (1a), PⁱBu₂Me (1b)] were prepared by hydrogenolysis of the corresponding *trans*-Ru(Me)(NO)L₂ complexes.⁴⁰ Because of their instability toward the H₂ loss, 1a,b were generated in situ and studied under 1 atm of H₂.

Osmium trihydrides $Os(H)_3(NO)L_2$ [L = PⁱPr₃ (**2a**), PⁱBu₂Me (**2b**)] were synthesized via NaBH₄/MeOH reduction of the corresponding *cis,trans*-OsH₂Cl(NO)L₂ compounds^{41,42} and isolated in high yield. The chloro precursors were prepared by a new one-pot synthesis, involving in situ generation of OsH₂Cl₂L₂⁴ (Scheme 1). The latter instantaneously reacts with NEt₃, RNO (isoamyl nitrite or *N*-methyl-*N*-nitroso-*p*-toluenesulfonamide), and H₂ to quantitatively (NMR) yield OsH₂Cl-(NO)L₂, isolated in high yield. The PPh₃ analogue **2c** has

- (37) Ogasawara, M.; Macgregor, S. A.; Streib, W. E.; Folting, K.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1995, 117, 8869.
- (38) Ogasawara, M.; Macgregor, S. A.; Streib, W. E.; Folting, K.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. **1996**, 118, 10189.
- (39) Ogasawara, M.; Huang, D.; Streib, W. E.; Huffman, J. C.; Gallego-Planas, N.; Maseras, F.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119, 8642.
- (40) Huang, D.; Streib, W. E.; Caulton, K. G. Manuscript in preparation.
- (41) Werner, H.; Flügel, R.; Windmüller, B.; Michenfelder, A.; Wolf, J. Organometallics **1995**, *14*, 612.
- (42) Yandulov, D. V.; Streib, W. E.; Caulton, K. G. Inorg. Chim. Acta 1998, 280, 125.

Table 1. Values for 300-MHz T_{1min} and Derived Structural Data^{*a*} of *cis,trans*-MH₂X(NO)L₂ Compounds

			$[\mathbf{H}]_n^c$				$H[D]_{n-1}^{d}$				
			$T_{1\min}$, ms (T , °C)				$T_{1\min}$, ms (T , °C)				
	$[M]X^b$	L	$\mathrm{H}_{\mathrm{M}}{}^{h}$	$H_A{}^i$	$r_{\rm HH},{\rm \AA}^e$	$\alpha_{\rm HH},deg^{f}$	$H_M{}^h$	$\mathrm{H}_{\mathrm{A}}{}^{i}$	$r_{\rm HH},{\rm \AA}^{e,j}$	$\alpha_{\rm HH},deg^{f,j}$	avg.g
1a	$[Ru]H^k$	P^iPr_3	140 (-105)	229 (-105)	1.9(1)	70(4)	304 (-105)	382 (-110)	1.99(7) 2.0(1)	74(4) 76(5)	2.01(6) 75(3)
1b 2a	[Ru]H ^k [Os]H ^m	P ^t Bu ₂ Me P ⁱ Pr ₃	141.9 ^{<i>l</i>} (-100) 170.3 (-75)	211.1 ^{<i>l</i>} (-110) 281 (-75)	2.0(1) 1.96(5)	73(5) 71(3)	369 (-75)	458 (-75)	2.06(4) 2.11(7)	76(3) 78(4)	2.09(4) 77(3)
2b	$[Os]H^m$	P^tBu_2Me	181.3 (-80)	257 (-85)	2.1(1)	76(7)	412 ⁿ	405 ⁿ	2.07(7) 2.1(1)	76(4) 77(6)	2.08(8) 77(4)
2c	[Os]H ^o [Os]Cl ^m	PPh_3 P^iPr_3	219 (-85) 201 (-60)	381 (-85) 234 (-60)	2.01(5)	74(3)	311 (-60)	401 (-60)	2.02(8) 2.02(6)	76(4) 75(3)	2.02(5) 76(3)

^{*a*} Values in bold are the best estimates for each case (see Experimental Section for detailed discussion). ^{*b*} [M] = [*cis,trans*-M(H)₂(NO)L₂]. ^{*c*} Allprotio isotopomers. ^{*d*} Partially deuterated isotopomers. ^{*e*} Distance between cis hydrides (errors) calculated from eq 1. ^{*f*} Angle between cis M–H bonds (errors). ^{*g*} Average H•••H distances (errors) and angles (errors) from the two previous columns. ^{*h*} Hydride trans to NO. ^{*i*} Hydride(s) cis to NO. ^{*j*} Values calculated from H_M (first row) and H_A (second row) T_{1min} data according to eq 2. ^{*k*} In d_{10} -Et₂O. ^{*l*} Corrected for intramolecular H_A \leftrightarrow H_M exchange. ^{*m*} In d_8 -PhMe. ^{*n*} T_1 at $T^{\circ}C(T_{1min})$ in the (H)₃ isotopomer. ^{*o*} In CD₂Cl₂.

recently been reported.⁴³ We employed an alternative two-step synthesis, as shown in Scheme 1.

Structure. (a) NMR. Solution NMR data unambiguously identify the C_{2v} mer, trans-M(H)₃(NO)L₂ geometries for 1 and 2. In agreement with the data published⁴³ for 2c, ¹H NMR spectra of 2a and 2b exhibit two high-field hydride signals as the A₂M part of the A₂MX₂ spin system (X = 31 P), that is, a triplet of doublets (2HA) and a triplet of triplets (HM) due to coupling with two 31 P nuclei and to coupling between H_A and H_M hydrides (Scheme 1). Phosphine alkyl signals show virtual coupling and do not exhibit diastereotopic inequivalence, as expected for a $C_{2\nu}$ -symmetric structure with trans phosphines. The ${}^{31}P{}^{1}H$ signal is a singlet, which splits into a doublet of triplets upon selective decoupling of the alkyl resonances [J(P- H_M) > $J(P-H_A)$]. Ruthenium analogues **1a,b** show analogous spectra (in the absence of exchange, vide infra), except that the scalar $J(H_A - H_M)$ is not resolved at any observation temperature. All complexes exhibit strong ν (N–O) absorptions in solution IR spectra.

In contrast to **2a,b**, but in striking similarity to the isoelectronic Ir(H)₃(CO)(PPh₃)₂,^{31,44} we find that Os(H)₃(NO)(PPh₃)₂ (**2c**) exists as a mixture of mer⁴⁵ and fac isomers, the latter persisting in solution at ~5 mol %. Recent studies of a series of anionic transition metal polyhydrides^{46,32} have shown how electrostatic and "dihydrogen" bonding interactions can serve to stabilize the *fac*-[ML'](H)₃L₂^{*q*} (L' = CO, NO, H; M = Re, Ru, Os, Ir) isomer over the mer analogue, forcing ligands as bulky as PiPr₃ into cis positions. Although computationally we find a moderate electronic preference for *fac*-M(H)₃(NO)(PH₃)₂ over the mer isomer (vide infra), the former is only observed with our smallest ligand, PPh₃.

Originally, a DFT calculation showed that the pseudooctahedral structure of the model *mer*-Os(H)₃(NO)(PH₃)₂ is significantly distorted by compression of the angles between the cis hydrides, $\angle H_A$ -Os- H_M (α_{HH}), to 72°. We sought to experimentally assess the extent of such "hydride bending" in compounds **1** and **2**, which is unusual for d⁶ pseudo-octahedral complexes. The H_A -··· H_M distances (r_{HH}) were determined from the hydride T_{1min} values,⁴⁷ according to eqs^{10,48} 1a and 1b.

- (44) Hasnip, S.; Duckett, S. B.; Taylor, D. R.; Taylor, M. J. J. Chem. Soc., Chem. Commun. 1998, 923.
- (45) The mer, trans isomer, unless otherwise stated.
- (46) Abdur-Rashid, K.; Gusev, D. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 1998, 120, 11826.

$$\begin{cases} \frac{1}{T_{1\min}(H_M)} = R_{1\max}(H_M) = 2R_{1\max}(H_A \cdots H_M) + R^*(H_M) \\ \frac{1}{T_{1\min}(H_A)} = R_{1\max}(H_A) = R_{1\max}(H_A \cdots H_M) + R^*(H_A) \end{cases}$$
(1a)

$$\frac{1}{T_{1\min}(H_M)} - \frac{1}{T_{1\min}(H_A)} = R_{1\max}(H_A \cdots H_M) = \frac{K_H}{r_{HH}^6}$$
(1b)

The dipolar relaxation contribution $R_{1\text{max}}(H_A\cdots H_M)$ is responsible for faster relaxation at the unique H_M site than that at H_A (Table 1), and it can be evaluated from eq 1a, assuming other relaxation mechanisms R^* are equal for both the H_A and the H_M sites, to yield the distance r_{HH} (Table 1) according to eq 1b (at 300 MHz, $K_{\text{H}} = 129.21 \text{ Å}^6 \text{ s}^{-1}$). Using $T_{1\text{min}}$ values measured for the two hydride signals in M(H_M)(H_A)₂(NO)L₂ (1a, 2a, and 2b) and the corresponding M(H)(D)₂(NO)L₂ isotopomers, i.e., M(H_M)(D_A)₂(NO)L₂ and M(D_M)(H_AD_A)(NO)L₂, avoids the assumption $R^*(H_A) \approx R^*(H_M)$,⁴⁷ both of which are dominated by dipolar interactions with phosphine alkyl hydrogens, and gives two independent evaluations of r_{HH} (eqs 2a and 2b).

$$\begin{cases} \frac{1}{T_{1\min}^{H_{3}}(H)_{M}} = 2R_{1\max}(H_{A}\cdots H_{M}) + R^{*}(H_{M}) \\ \frac{1}{T_{1\min}^{HD_{2}}(H)_{M}} = 2R_{1\max}(D_{A}\cdots H_{M}) + R^{*}(H_{M}) \\ \end{cases}$$
(2a)
$$\begin{cases} \frac{1}{T_{1\min}^{H_{3}}(H)_{A}} = R_{1\max}(H_{A}\cdots H_{M}) + R^{*}(H_{A}) \\ \frac{1}{T_{1\min}^{HD_{2}}(H)_{A}} = R_{1\max}(D_{A}\cdots H_{M}) + R^{*}(H_{A}) \\ \end{cases} \\\begin{cases} \frac{1}{T_{1\min}^{H_{3}}(H)_{M}} - \frac{1}{T_{1\min}^{HD_{2}}(H)_{M}} = 2\frac{K_{H} - K_{D}}{r_{HH}^{6}} \\ \frac{1}{T_{1\min}^{H_{3}}(H)_{A}} - \frac{1}{T_{1\min}^{HD_{2}}(H)_{A}} = \frac{K_{H} - K_{D}}{r_{HH}^{6}} \end{cases} \end{cases}$$
(2b)

The $R_{1\text{max}}(D_A \cdots H_M)$ term is the proton-deuteron dipolar relaxation contribution, evaluated under conditions of maximum ${}^{1}\text{H}-{}^{1}\text{H}$ relaxation $(R^*)^{47}$ and $K_{\text{H}}/K_{\text{D}} \approx 16$. The latter approach

⁽⁴³⁾ Clark, A. M.; Rickard, C. E. F.; Roper, W.; Wright, L. J. J. Organomet. Chem. 1997, 543, 111.

⁽⁴⁷⁾ See Supporting Information for a detailed discussion.

is more consistent and yields slightly greater $r_{\rm HH}$ distances, which correspond to upper estimates on the true values in the case of significantly anisotropic tumbling, as shown in the Supporting Information. Considering the corresponding experimental errors, the values derived using either approach (Table 1) are indistinguishable.

The metal-hydride distances, $Os-H_M = 1.691$ Å, $Os-H_A$ = 1.670 Å, Ru $-H_{M} = 1.650$ Å, and Ru $-H_{A} = 1.645$ Å, were obtained from DFT calculations on the model mer-M(H)₃(NO)- $(PH_3)_2$ (vide infra). These values fall between the neutron diffraction ranges⁴⁹ for molecular and ternary terminal M-H bonds of 1.62-1.681 and 1.682-1.77 for Os and 1.599-1.630 and 1.665-1.792 for Ru. Of the characterized two ruthenium and three osmium molecular hydride complexes with terminal hydrides, none has a pseudo-octahedral geometry with strong trans-influencing ligands trans to the hydrides, for example, H and NO. Hence, the distances in ternary metal hydrides (such as octahedral $[MH_6]^{2-}$) should be considered as the upper limits on the true values in mer-M(H)₃(NO)L₂. Thus, the calculated M-H distances are quite reasonable estimates and were used with 0.05 Å errors in the derivation of $\alpha_{\rm HH}$ from the $r_{\rm HH}$ values (Table 1).

All of the α_{HH} values shown in Table 1 are well below 90°, and for all of M(H)(D)₂(NO)L₂ complexes studied, the lower values derived from eq 2, not affected by variations in R^* between the H_A and H_M sites, are significantly different from 90° (in the 3 σ sense) and are shown⁴⁷ to be the upper limits on the true values in the case of anisotropic tumbling. Thus, complexes **1** and **2** are subject to significant distortions from the pseudo-octahedral geometry by compression of the cis \angle H_A-M-H_M angles. Within the experimental errors, all α_{HH} values are indistinguishable and cluster around 75°.

(b) **DFT.** DFT calculations (vide infra) largely support the experimental findings on the distorted structures of *mer*-M(H)₃-(NO)L₂ (M = Ru, Os). Using a moderate basis set (BS I) and PH₃ as the model phosphines, the values of α_{HH} in *mer*-M(H)₃-(NO)L₂ are 70.4° (Ru) and 72.3° (Os). Increasing the basis set to supplement the metal-bound atoms with polarization functions (BS II) or improving the model phosphines to PMe₃⁵⁰ increases the α_{HH} values by $1-2^{\circ}$, improving the agreement with experiment (Table 1), although the BS I/PH₃ values are qualitatively acceptable considering the experimental errors. The small magnitude of the calculated variations in α_{HH} on going from Ru to Os or on increasing the donor power of the phosphines (PMe₃ vs PH₃) makes it unlikely that such differences could be detected experimentally (Table 1).

(c) IR. Although our X-ray structure determination of Os-(H)₃(NO)(PⁱPr₃)₂ (**2a**, Supporting Information) was plagued by disorder and the hydrides were not located, additional evidence for hydride bending was obtained from solution IR spectra. The IR spectrum of **2a** in heptane (Figure 1) exhibits two weak bands in the region of M–H and N–O stretching frequencies, in addition to the very strong ν (N–O). The broad band at ~2000 cm⁻¹ has a shoulder on the high-frequency side and can be deconvoluted into two Gaussian lines (inset of Figure 1). Because deuteration of the hydride sites shifts all three highfrequency bands to lower frequencies (Figure 1), they correspond to Os–H stretching vibrations. All four bands can then be assigned to the specific Os–H and N–O stretching modes (Table 2) on the basis of qualitative agreement between observed and DFT-calculated [*mer*-Os(H)₃(NO)(PH₃)₂, BS I] frequencies

Figure 1. IR spectra [ν (Os-H) and ν (N-O) regions, *n*-heptane, 20 °C] of Os(H)₃(NO)(PⁱPr₃)₂ (**2a**, solid lines) and Os(D)₃(NO)(PⁱPr₃)₂ (>97 mol % D, dashed lines) with the solvent spectrum subtracted and bands assigned. The inset shows deconvolution of the broad asymmetric band at 2000 cm⁻¹.

Table 2. Observed and DFT-Calculated ν (Os-H) and ν (N-O) Frequencies and Intensities in *mer*-Os(H)₃(NO)(PⁱPr₃)₂ (**2a**)

	observed ^a		calculated ^b			
mode	ν , cm ⁻¹	I^{c} , cm ⁻¹	ν , cm ⁻¹	$I^{\rm d}$, km mol ⁻¹		
N-O ^e	1688	60.8	1673	539		
(Os-H _A) _{asym}	1849	17.6	1940	110		
Os-H _M ^e	1995	9.2	2001	92		
(Os-H _A) _{symm}	2032	3.4	2059	27		

^{*a*} Measured in *n*-heptane at 20 °C. ^{*b*} *mer*-Os(H)₃(NO)(PH₃)₂, BS I, harmonic frequencies. ^{*c*} Integrated absorbance. ^{*d*} Integrated absorption intensity. ^{*e*} N–O and Os–H_M modes are mixed.

and intensities. According to the textbook treatment of ν (C–O) intensities,⁵¹ analogously applied to ν (M–H) intensities,⁵ the ratio I(Os–H_A)_{asym}/I(Os–H_A)_{symm} is tan² α _{HH}, from which an α _{HH} value of 66° can be derived. This result qualitatively supports the hydride bending phenomenon. The DFT-calculated intensities yield α _{HH} = 64°, in marked contrast to the actual value α _{HH} = 72.3°, which shows the qualitative nature of the treatment of IR intensities in our case,⁵² even if very accurate experimental intensities are available.

Reactivity. (a) $\mathbf{M} = \mathbf{Os.}$ The new Os(H)₃(NO)L₂ [L = PⁱPr₃ (2a), PⁱBu₂Me (2b)] complexes are quite robust. Both withstand harsh synthetic conditions (90 °C in MeOH for 14 h under H₂) and are moderately to not at all air- and moisture-sensitive. In contrast, 2c (L = PPh₃) decomposes within minutes at 100 °C in toluene, producing observable quantities of OsH(NO)-(PPh₃)₃,⁵³ and has been proposed⁴³ to lose H₂ at elevated temperatures. Under ambient conditions, 2a is inert to D₂ or CO (1 atm), and 2c to D₂ (1 atm) or PⁱPr₃ (7 equiv), in benzene for 24 h. However, slight deuterium incorporation into hydride positions of 2a occurs on prolonged heating at 90 °C in C₆D₆ or

(53) Osborn, J. A.; Wilson, S. T. J. Am. Chem. Soc. 1971, 93, 3068.

⁽⁵⁰⁾ Clot, E.; Eisenstein, O. J. Phys. Chem. A 1998, 102, 3592.

⁽⁵¹⁾ Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; John Wiley & Sons: New York, 1988; p 1035.

⁽⁵²⁾ At the B3LYP/BS I level, there is a slight coupling of the ν (Os-H_M) and ν (Os-H_A)_{symm} modes, such that the intensity of the latter band in *mer*-Os(H)₃(NO)(PH₃)₂ is nearly twice as great as that of the corresponding band in *mer*-OsD_M(H_A)₂(NO)(PH₃)₂. Using the intensities calculated for the latter isotopomer gives $\alpha_{\rm HH} = 70^{\circ}$, much closer to the actual value of $\alpha_{\rm HH} = 72.3^{\circ}$.

 d_8 -PhMe, accompanied by trace decomposition. These observations confirm that compounds **2** are saturated, although isotope exchange with arene solvents is consistent with phosphine loss as the energetically easiest access to an unsaturated intermediate, at least for **2a**,**b**.

Both 2a and 2b are inert to NpLi in benzene or THF for at least several hours, which characterizes the hydride ligands in these species at least as not acidic. Hydrides of **2a**,**b** show only negligible deuterium incorporation after 3 h at 90 °C in d₄-MeOH, comparable to that observed in C_6D_6 , and the deuterated analogues of 2a can be successfully recrystallized from h_4 -MeOH without significant loss of D. The strong acids [Ph₃C]- $[BAr^{F_4}]$ and HOTf react with **2a,b** instantaneously, producing the known⁴² $[Os(H)_2(NO)L_2]^+$ and $Os(H)_2(OTf)(NO)L_2$ species and the corresponding $P^t Bu_2 Me$ analogues, although $\mathbf{2b}$ is inert to Et₃N·3HF at room temperature (RT) in benzene. Thus, hydrides in 2a,b can be further characterized as moderately basic to neutral. Clean reactions between 2a and solvents CD_2Cl_2 ($t_{1/2}$ \approx 24 h) and CDCl₃ ($t_{1/2} \approx$ 20 min), producing Os(H)₂Cl(NO)-L₂, and CHD₂Cl, CHDCl₂, respectively, conceivably mediated by electron transfer, speak for some reducing character of the hydrides, consistent with their moderate basicity.

(b) $\mathbf{M} = \mathbf{Ru}$. Ruthenium trihydrides $\operatorname{Ru}(H)_3(\operatorname{NO})L_2$ [L = PⁱPr₃ (1a), PⁱBu₂Me (1b)] easily lose H₂ (for example, under vacuum), producing the recently prepared⁴⁰ four-coordinate *trans*-RuH(NO)L₂. Under ambient conditions in solution under 1 atm of H₂, fast dynamic equilibrium (eq 3) is evident in the ¹H NMR spectra of 1.

$$\operatorname{Ru}(\mathrm{H})_{3}(\mathrm{NO})\mathrm{L}_{2} \underset{k_{-1}}{\overset{k_{1}}{\longleftrightarrow}} \operatorname{Ru}\mathrm{H}(\mathrm{NO})\mathrm{L}_{2} + \mathrm{H}_{2}$$
(3)

For **1b**, the free H₂ signal is not observed at 20 °C, but appears as an extremely broad peak at 0 °C, which progressively sharpens on further cooling. For **1a**, the rate of H₂ loss is significantly slower. With the similar [H₂]/[**1a**] and [H₂]/[**1b**] ratios, the free H₂ signal has a line width in the presence of **1a** at +20 °C in d_{10} -Et₂O similar to that of the signal with **1b** at -20 °C in d_8 -PhMe. Quantitative H₂ line-width evaluations allow the rate constants for H₂ loss (k_1) to be determined,⁵⁴ which yield the corresponding ΔG^{\ddagger}_1 values. Because of (possible) significant systematic errors in underestimating the relative H₂ concentration, these are reported as $\Delta G^{\ddagger}_1(\mathbf{1b}, -20^{\circ}C) \ge 12$ kcal/mol and $\Delta G^{\ddagger}_1(\mathbf{1a}, +20^{\circ}C) \ge 14$ kcal/mol.

The hydride signal of RuH(NO)(PⁱPr₃)₂ in d_{10} -Et₂O (-9.98 ppm at 20 °C) shows no shift or broadening on cooling to -70 °C and is very close to that measured for RuH(NO)(PⁱBu₂Me)₂ at 20 °C in C₆D₆ (9.28 ppm) or d_{14} -MeCy (9.30 ppm), suggesting that solvent coordination does not occur. X-ray structure determination of RuMe(NO)(PⁱPr₃)₂ showed no sign of agostic interactions with phosphine alkyl groups.⁴⁰ Thus, to a good approximation, (a) the dynamic processes (eq 3) operating in d_{10} -Et₂O and d_8 -PhMe are identical and (b) the forward reaction of eq 3 is a dissociative process [that is, the unsaturated RuH(NO)L₂ is not stabilized by either solvent coordination or agostic interaction], for which $\Delta S^{\ddagger}_1 \ge 0$ is expected.⁵⁵ The systematic errors in ΔG^{\ddagger}_1 evaluations should largely cancel for the difference $\Delta G^{\ddagger}_1(1a, +20^{\circ}C) - \Delta G^{\ddagger}_1(1b, -20^{\circ}C)$, and therefore, with $\Delta S^{\ddagger}_1(1) \ge 0$, the difference

Figure 2. Superimposed calculated and observed (d_{10} -Et₂O, under 1 atm of H₂) variable-temperature 300-MHz ¹H{³¹P} spectra of Ru(H)₃-(NO)(P^tBu₂Me)₂ (**1b**).

 $\Delta H^{\dagger}_{1}(1\mathbf{a}) - \Delta H^{\dagger}_{1}(1\mathbf{b})$ for H₂ loss can be estimated as ≥ 2 kcal/mol. Very similar results were obtained for the kinetics of H₂ loss⁵⁴ from Os(H)₂(H₂)(CO)L₂ [$\Delta G^{\dagger}_{1}(P^{i}Pr_{3}) - \Delta G^{\dagger}_{1}(P^{i}Bu_{2}Me) \approx 2$ kcal/mol], which, consistent with other thermochemical measurements,⁵⁶ indicate that RuH(NO)(P^{i}Pr_{3})_{2} is more reducing toward H₂ than is the RuH(NO)(P^{i}Bu_{2}Me)_{2} analogue.

Because the $T_{1\min}$ values are measured for the hydride signals of **1** at very low temperatures (Table 1), the loss of H₂ does not influence the measurements or the reliability of the trihydride formulation Ru(H)₃(NO)L₂ as opposed to RuH(H₂)(NO)L₂. Furthermore, T_1 measurements for **1b** from 20 °C through T°C-($T_{1\min}$) show no additional minimum or maximum at higher temperatures, providing no direct evidence for the existence of a second isomer. Such a temperature dependence would be expected if a nonclassical RuH(H₂)(NO)L₂ isomer was sufficiently *populated* and had a sufficiently *long lifetime* to cause partial T_1 averaging.⁵⁷

Fluxionality. (a) $\mathbf{M} = \mathbf{Ru}$. In addition to exchange with free H₂, the six-coordinate $Ru(H)_3(NO)L_2$ complexes are subject to facile intramolecular hydride site exchange. At -30 °C in d_{10} -Et₂O, the ¹H NMR spectrum of **1b** exhibits a single broad hydride peak (site exchange with free H₂ has been essentially stopped), which broadens and decoalesces at -45 °C into two signals with a 2:1 intensity ratio (2H_A:1H_M) that progressively sharpen down to $T^{\circ}C(T_{1\min})$ (Figure 2). Oxidative addition of D₂ to RuH(NO)L₂ (L = PⁱPr₃) in d_{10} -Et₂O at -100 °C shows (within 10 min) production of RuH(D)2(NO)L2 with H statistically scrambled among the H_A and H_M sites,⁵⁸ which persists for hours at low temperatures, rather than showing Ru(D)₃(NO)- L_2 production, which supports the presence of intramolecular hydride site exchange. Additional evidence for the chemical exchange between HA and HM sites comes from averaging of the H_A and H_M hydride T_1 times, which, separately measured for **1b** at $T^{\circ}C \leq -70$, are partially exchange-averaged from -95 through -110 °C in d_{10} -Et₂O⁵⁹ (Figure 3). Assuming that

(58) The kinetic product was observed in the case of Os (vide infra).

(59) At $T^{\circ}C \leq -95$, $J(H_A - H_M) \leq 4.4$ Hz.

⁽⁵⁴⁾ Gusev, D. G.; Kuhlman, R. L.; Renkema, K. B.; Eisenstein, O.; Caulton, K. G. Inorg. Chem. 1996, 35, 6775.

⁽⁵⁶⁾ Li, C.; Ogasawara, M.; Nolan, S. P.; Caulton, K. G. Organometallics 1996, 15, 4900.

⁽⁵⁷⁾ Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155.

Figure 3. Observed (d_{10} -Et₂O, under 1 atm of H₂, dotted lines) and site-exchange-corrected (solid lines) T_1 times of the hydrides in Ru- $(H)_3(NO)(P^tBu_2Me)_2$ (1b). Curves were fit to the ${}^1H^{-1}H$ dipolar relaxation mechanism (see Experimental Section).

Scheme 2

$$H_{H*}^{H} = \frac{k_2}{k_2 = 2k_2} H^{*} - Ru_{H}^{H} = NO$$

Table 3. Rate Constants for the Pairwise Hydride Site Exchange $(k_{\rm HH})$ and $H_{\rm A}-H_{\rm M}$ Coupling Constants $(J_{\rm HH})^a$ for Ru(H)₃(NO)(P^tBu₂Me)₂ (1b) Obtained from Line-shape Analysis of the ¹H{³¹P} Spectra in d_{10} -Et₂O under 1 atm of H₂

<i>T</i> , °C	$J_{\rm HH},{ m Hz}$	$k_{\rm HH}$, s ⁻¹	<i>T</i> , °C	$J_{\rm HH},{ m Hz}$	$k_{\rm HH}$, s ⁻¹
-30	400	7400	-65	47.8	160
-35	310	5300	-70	35.9	110
-40	237	3000	-75	24.0	56
-45	179	1700	-80	17.6	30
-50	134	800	-85	11.7	17
-55	99	490	-90	7.9	<10
-60	76.9	290	-95	4.4	<10

^a Values from -95 through -60 °C were obtained by simultaneous fitting of $k_{\rm HH}$ and $J_{\rm HH}$, extrapolated to higher temperatures according to an exponential law (see Experimental Section), and kept constant during simulations.

the observed intramolecular chemical exchange process is effected by pairwise hydride site exchange (Scheme 2), the spectra in Figure 2 were analyzed for kinetic parameters. The rate constants k_{HH} (= k_2), obtained from iterative line-shape fitting (Table 3, Figure 2), yield $\Delta H^{\dagger}_{HH}(\mathbf{1b}) = 9.8(2)$ kcal/mol and $\Delta S^{\dagger}_{\text{HH}}(\mathbf{1b}) = -0.4(11)$ cal mol⁻¹ K⁻¹ for the pairwise hydride site exchange from the Eyring plot (Figure 4). The essentially zero value of ΔS^{\dagger}_{HH} is consistent with an intramolecular process, whereas the extrapolated value of ΔG^{\dagger}_{HH} $(1b, -20^{\circ}C) = 9.9(4)$ kcal/mol is distinctly lower than that for H₂ loss, namely, $\Delta G^{\ddagger}_{1}(\mathbf{1b}, -20^{\circ}\text{C}) \geq 12 \text{ kcal/mol.}$

Most notably, ¹H{³¹P} NMR spectra of **1b** exhibit large and temperature-dependent HA-HM coupling, decreasing from 77 to 4.4 Hz as the temperature is lowered from -60 to -95 °C (Table 3, Figure 2).⁶⁰ Such a phenomenon is rather welldocumented and understood in terms of quantum mechanical exchange.¹² Because, to the best of our knowledge,¹² no strictly

Yandulov et al.

Figure 4. Eyring plot of the rate constants for the hydride site exchange in Ru(H)₃(NO)(P^tBu₂Me)₂ (1b).

octahedral transition metal cis polyhydride (with $\alpha_{HH} \approx 90^{\circ}$) is known to exhibit exchange coupling, its existence for 1b is consistent with the distorted structure of the complex, given a modest barrier for the hydride site exchange.

Compared to that in 1b, the hydride site exchange in 1a (L $= P^{i}Pr_{3}$) is significantly slower, and moreover, ¹H NMR spectra (in d_{10} -Et₂O) exhibit no H_A-H_M coupling in the intermediate through stopped exchange regions (from -70 through -115 °C), with lines being ≥ 5 Hz ($W_{1/2}$) in width. Line-shape analysis yields $k_{\rm HH}(1a) = 130 (-55 \, ^{\circ}{\rm C})$ and 10 (-70 $^{\circ}{\rm C}) \, {\rm s}^{-1}$, significantly lower than the corresponding values for 1b (Table 3, 10% relative errors), which, with $\Delta S^{\dagger}_{HH}(\mathbf{1a}) = \Delta S^{\dagger}_{HH}(\mathbf{1b}) \approx$ 0, yield $\Delta H^{\ddagger}_{HH}(1a) = 11$ kcal/mol.⁶¹ The higher barrier for chemical exchange, therefore, lowers the exchange coupling magnitude, as expected.¹² Furthermore, the fact that the parallel behavior of ΔH^{\dagger}_{HH} for hydride site exchange with ΔH^{\dagger}_{1} for H₂ loss can be experimentally detected provides strong support for the dihydrogen [RuH(NO)L₂](H₂) transition state mediating the hydride site exchange. If the differences in ΔH^{\ddagger}_{HH} for **1a** and 1b were to be due to the different steric requirements of PⁱPr₃ and P^tBu₂Me, the latter was shown⁵⁶ to be slightly bulkier, so an exchange mechanism with a classical $[RuH(NO)L_2](H)_2$ transition state would only be easier for the smaller PⁱPr₃, if a reduction in the P-Os-P angle were involved. It is also notable that ${}^{1}H{}^{31}P{}$ NMR spectra of **1b** exhibit no $H_{A}-H_{M}$ coupling from -100 through -115 °C, with hydride signals broadening by < 2 Hz. Together with analogous observations made for 1a, the scalar $|J_{\rm HH}|$ in **1** appears to be ≤ 3 Hz. This contrasts to $|J_{\rm HH}|$ values of 5–6 Hz observed for all 2 and, among other factors, may be due to smaller α_{HH} in the case of ruthenium (vide supra).

(b) $\mathbf{M} = \mathbf{Os.}$ All osmium derivatives, $Os(H)_3(NO)L_2(2)$, also undergo hydride site exchange in solution under ambient conditions, but with rates much slower than those measured for the ruthenium analogues **1a.b.** For $L = P^{i}Pr_{3}$ (**2a**) and $P^{t}Bu_{2}Me$ (2b), no line-shape effects are evident by ¹H NMR at 20 °C, and only slight broadening of the hydride signals in 2a is effected by raising the temperature to 80 °C in d_8 -PhMe; the resonances retain all couplings. However, reactions between D2 and independently prepared⁶² transient {OsH(NO)L₂} (L =

⁽⁶¹⁾ The ¹H NMR spectra of **1a** reveal no fine structure at $T^{\circ}C > -70$ and may contain unresolved exchange couplings, which would result in an overestimation of $k_{\rm HH}(1a, -55^{\circ}{\rm C})$.

PⁱPr₃, P^tBu₂Me) after 15 min at RT cleanly produce OsH(D)₂- $(NO)L_2$, with H statistically scrambled among the two H_A and H_M sites. Following this D_2 reaction for $L = P^i Pr_3$ by ¹H NMR beginning at -40 °C in d_8 -PhMe shows that, under the kinetic conditions, $Os(D_M)(H_A D_A)(NO)L_2$ is predominantly formed and that this species readily scrambles H as the temperature is raised to 20 °C. For $L = PPh_3$, the exchange is significantly faster, and ¹H NMR hydride signals of the major mer isomer are observably exchange-broadened already at 20 °C. Raising the temperature to 120 °C in d_8 -PhMe leads to further broadening and a coalescence of the *mer*-2c hydride signals into a single broad peak, similar to the behavior observed for 1. The signals of the minor fac-2c isomer, located within 0.5 ppm of the mer-2c H_A signal, also broaden and disappear at the mer-2c coalescence temperature, possibly because fac-2c is involved in the *mer-2c* hydride site exchange. The dynamic processes at elevated temperatures are complicated by partial decomposition into OsH(NO)(PPh₃)₃. The hydride signal (but not the ³¹P signal) of this species is unobservable at 120 °C, suggesting its involvement in the overall exchange process and preventing a reliable line-shape analysis.

Because neither 2a nor 2c exchanges hydrides with D_2 under ambient conditions, the hydride site exchange is intramolecular with respect to the hydrides. Furthermore, if the exchange is mediated by phosphine loss and is much faster for 2c because of the weaker coordination ability of PPh₃ compared to PⁱPr₃, 2c should be readily converted to 2a in the presence of excess PⁱPr₃ at 20 °C. Because **2c** is inert to PⁱPr₃ under these conditions, we conclude that the hydride site exchange in all of the trihydrides 2a-c is nondissociative. Assuming that pairwise hydride site exchange, analogous to that in 1 (Scheme 2), operates in 2, line-shape analysis of the ¹H NMR spectra of 2c at 20 °C in CD₂Cl₂, in the absence of decomposition products, and of **2a** at 80 °C in d_8 -PhMe gives $k_{\text{HH}}(mer-2c, 20^{\circ}\text{C}) = 5$ s⁻¹ and $k_{\text{HH}}(2\mathbf{a}, 80^{\circ}\text{C}) = 3 \text{ s}^{-1}$, leading to $\Delta G^{\dagger}_{\text{HH}}(mer-2\mathbf{c}, 20^{\circ}\text{C})$ = 16 kcal/mol and $\Delta G^{\dagger}_{HH}(2a,80^{\circ}C) = 20$ kcal/mol. Therefore, with $\Delta S^{\dagger}_{\text{HH}}(\mathbf{2}) \approx 0$, the values $\Delta H^{\dagger}_{\text{HH}}(mer-\mathbf{2c}) = 16$ kcal/mol and $\Delta H^{\dagger}_{\rm HH}(2\mathbf{a}) = 20$ kcal/mol can be estimated.⁶³ The much faster exchange with the smaller and less electron-donating ligand PPh₃ is consistent with a transition state involving a small P-Os-P angle (\ll 180°), a dihydrogen [OsH(NO)L₂](H₂) structure, or both.

DFT Calculations and Mechanisms of Hydride Site Exchange. (a) M = Ru. The lowest-energy mechanism of intramolecular hydride site exchange in the model *mer*-Ru(H)₃-(NO)(PH₃)₂ found at the B3LYP/BS I level (Figure 5) consists of reductive coupling of two cis hydrides and H₂ ligand rotation in the resulting dihydrogen complex C-[RuNO] as the rate-determining step. This mechanism satisfies the following experimental results:

(a) The presence of a dihydrogen ligand in the ratedetermining **TS**(**C**)-[RuNO] explains the inequality $\Delta H^{\ddagger}_{HH}(1a) > \Delta H^{\ddagger}_{HH}(1b)$ as being caused by the (independently established) greater reducing ability of RuH(NO)L₂ toward H₂ with L = PⁱPr₃ than with L = PⁱBu₂Me. That is, the classical **B**-[RuNO] isomer is more stable than the nonclassical **TS**(**C**)-[RuNO] for the more reducing Ru with L = PⁱPr₃.⁵⁷

(b) The absence of significant heavy-ligand motion throughout the hydride site exchange (the phosphines remain mutually trans)

Figure 5. Selected geometrical parameters (Å, deg) and relative electronic energies (kcal/mol; those in parentheses are corrected with ZPE) of the structures involved in inter- and intramolecular hydride site exchange of *mer*,*trans*-Ru(H)₃(NO)(PH₃)₂, optimized at the B3LYP/ BS I level and having essentially C_s or higher symmetry. Trans PH₃ groups were omitted for clarity. Labels in bold indicate the structural types, followed by -[RuNO] in the text, for example, **B**-[RuNO].

is consistent with the observation of exchange coupling in **1b**, a phenomenon that generally involves little to no rearrangement of the heavy ligand during the chemical exchange.¹²

(c) The computed $\Delta E^{\dagger}_{\rm HH} = 8.2$ kcal/mol at this level compares well with the experimental value of $\Delta H^{\dagger}_{\rm HH} = 9.8(2)$ kcal/mol measured for **1b**.

However, the chosen level of theory fails to adequately describe the relative energetics of intra- and intermolecular hydride exchange. Experimentally, $\Delta H^{\dagger}_{l}(\mathbf{1b}) \geq 12$ kcal/mol was estimated, whereas computationally, there is essentially no electronic energy barrier for H₂ coordination to **D**-[RuNO], and ΔE^{\dagger}_{1} = ΔE_1 = 7.5 kcal/mol. Not only is the value of ΔE_1^{\dagger} considerably lower than that of $\Delta H^{\ddagger}_{1}(\mathbf{1b})$, but also $\Delta E^{\ddagger}_{1} <$ ΔE^{\dagger}_{HH} , such that intermolecular exchange with H₂ in **1** is predicted to be easier than intramolecular hydride site exchange, in sharp contrast to the experimental observations. This inconsistency can be attributed to a tendency of the B3LYP method to underestimate the binding of the H₂ ligand by an unsaturated metal center, as recently demonstrated in an Ir d⁶ system.⁵⁰ Accordingly, increasing the donating ability of Ru in D-[RuNO] by using PMe₃ instead of PH₃ as the model phosphines lowers $\Delta E^{\dagger}_{\text{HH}}$ from 0.7 kcal/mol above to 0.5 kcal/mol below ΔE^{\dagger}_{1} . In view of this methodological drawback, it should be noted that (a) the extent of H_2 ligand formation in TS(C)-[RuNO] may be overestimated and (b) the very shallow minimum C-[RuNO] may be a computational artifact, as we were unable to locate analogous nonclassical isomers C of B-[RuCO]⁻ or **B**-[OsNO] (see below), with the much more reducing monohydrides **D** having very early and energetically low transition states for H₂ oxidative addition (Figure 6).

An alternative for the above site exchange mechanism involves the trigonal-bipyramidal E-[RuNO] isomer, which is nearly isoenergetic with B-[RuNO] (Figure 6), and cannot be strictly excluded as an intermediate for the hydride site exchange in 1. However, compared to TS(C)-[RuNO], formation of E-[RuNO] from B-[RuNO] would similarly involve reductive

⁽⁶²⁾ Yandulov, D. V.; Caulton, K. G. Manuscript in preparation.

⁽⁶³⁾ Line-shape analysis under similarly slow exchange conditions in the case of **1b** gives $k_{\text{HH}}(\mathbf{1b}, -95^{\circ}\text{C}) = 3.4 \text{ s}^{-1}$, which yields $\Delta G^{\dagger}_{\text{HH}}(\mathbf{1b}, -95^{\circ}\text{C}) = 9.8 \text{ kcal/mol}$, in excellent agreement with the value of $\Delta H^{\dagger}_{\text{HH}}(\mathbf{1b})$ obtained from the Eyring plot.

Figure 6. Selected geometrical parameters (Å, deg) and relative electronic energies (kcal/mol; those in parentheses are corrected with ZPE) of several $[ML']^{q}H_{3}(PH_{3})_{2}$ isomers and structures involved in H₂ oxidative addition to *trans*- $[ML']^{q}H(PH_{3})_{2}$, optimized at the B3LYP/BS I level and having essentially *C_s* or higher symmetry. PH₃ hydrogens and trans PH₃ groups were omitted for clarity. Labels in bold indicate the common structural types, followed by - $[ML']^{q}$ in the text when referring to specific structures, for example, **B**- $[RuCO]^{-}$. Cartesian coordinates of all optimized structures are provided in the Supporting Information.

coupling of cis hydrides and H₂ ligand rotation but would also require significant heavy-ligand motion, bending of the $\angle P-$ Ru-P, and would thus be anticipated to have a higher activation energy than formation of **TS**(**C**)-[RuNO]. Additionally, the heavy-ligand motion required for the formation of the **E**-[RuNO] intermediate is an unlikely mechanistic feature in light of the observation of exchange coupling in **1b** (vide supra). Thus, considering both experimental and theoretical data, we conclude that intramolecular hydride site exchange in **1a** and **1b** proceeds via the dihydrogen **TS**(**C**)-[RuNO] transition state and possibly involves the nonclassical intermediate **C**-[RuNO].

(b) $\mathbf{M} = \mathbf{Os.}$ Intramolecular hydride site exchange in d⁶ pseudo-octahedral complexes is relatively uncommon and is known to occur via a limited number of mechanisms. These include (a) the "tetrahedral jump" of a single hydride in pseudo-octahedral structures distorted toward bicapped tetrahedra,⁶⁴ which has been extensively investigated^{13,65} for *cis*-M(H)₂L₄ ($\mathbf{M} = \text{Fe}, \text{Ru}; \mathbf{L} = \text{PR}_3$) compounds; (b) the trigonal twist^{66,67} of an octahedral face, which was established¹⁹ for *cis,mer*-Ru(H)₂(CO)(PPh₃)₃; and (c) the reversible reductive coupling of two hydrides to form a trigonal-bipyramidal dihydrogen intermediate or a transition state, as detailed for *cis,trans*-Re(H)₂(CO)(NO)L₂²⁰ and *cis*-M(H)₂(PP₃)^{21,22} ($\mathbf{M} = \text{Co}, \text{Rh}, \text{Ir}$), which is formally analogous to the mechanism operating in **1**, but with unclear metal oxidation state assignments, that is, Ru(0) or Ru(II) in **C**-[RuNO] and **TS(C)**-[RuNO].

In the case of **2**, the two former exchange mechanisms, preserving the metal oxidation state, would proceed via *fac*- or *mer,cis*-Os(H)₃(NO)L₂ intermediates. At the B3LYP/BS I level,

- (65) Tebbe, F. N.; Meakin, P.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. **1970**, *92*, 1068. Meakin, P.; Muetterties, E. L.; Tebbe, F. N.; Jesson, J. P. J. Am. Chem. Soc. **1971**, *93*, 4701. Gerlach, D. H.; Peet, W. G.; Muetterties, E. L. J. Am. Chem. Soc. **1972**, *94*, 4545. Meakin, P.; Muetterties, E. L.; Jesson, J. P. J. Am. Chem. Soc. **1973**, *95*, 75. Jesson, J. P.; Meakin, P. Acc. Chem. Res. **1973**, *6*, 269.
- (66) Bailar, J. C., Jr. J. Inorg. Nucl. Chem. 1958, 8, 165.
- (67) Muetterties, E. L. J. Am. Chem. Soc. 1968, 90, 5097.

A-[ML']^q is the global minimum geometry for $[ML']^q =$ [RuNO], [RuCO]⁻, and [OsNO] (Figure 6), whereas mer, cis- $Os(H)_3(NO)(PH_3)_2$ is located only 4.6 kcal/mol (ΔE) above the mer, trans structure B-[OsNO]. Although steric bulk of the phosphines in the actual systems 2 makes the mer, trans- $Os(H)_3(NO)L_2$ isomer the global minimum, the local fac and mer, cis minima may remain energetically accessible from the mer, trans structure, within the range of the experimental value of $\Delta H^{\dagger}_{HH} = 16-20$ kcal/mol measured for **2a** and **2c**. For L = PPh₃, the fac isomer is found experimentally at only 2 kcal/ mol ($\Delta G^{\circ}_{20^{\circ}C}$) above the mer structure, whereas for the bulkier $L = P^{i}Pr_{3}$, fac-[Os(H)₃(CO)L₂]⁻ can be stabilized over the mer isomer by ion pairing in solution.32 The cis coordination of two L in the above hydride site exchange intermediates would then provide for the observed dependence of ΔH^{\dagger}_{HH} on the steric bulk of L. Although we have not performed a thorough potential energy surface scan for isomerization of B-[OsNO], we note that in the case of the slowly exchanging³¹ mixture of mer- and fac-Ir(H)₃(CO)(PPh₃)₂, the former isomer was shown⁴⁴ to undergo more rapid intramolecular hydride site exchange than that with free H_2 or with the fac isomer.

Alternatively, the hydride site exchange in **2** may involve the **E**-[OsNO] isomer (Figure 6), with a mechanism similar to that inferred for the closely related *cis,trans*-Re(H)₂(CO)(NO)-L₂.²⁰ At the B3LYP/BS I level, **E**-[OsNO] is 16.8 kcal/mol [Δ -(*E* + ZPE)] above the mer isomer, comparable to the experimental range of $\Delta H^{\ddagger}_{HH} = 16-20$ kcal/mol, and both steric and electronic factors would favor the dihydrogen structure more for L = PPh₃ than for L = PⁱPr₃.

Discussion

Origin of Structural Distortions in *mer***-M(H)**₃(**NO)L**₂**.** A Walsh diagram (Figure 7) for relaxation of the representative *mer*-Os(H)₃(NO)(PH₃)₂ optimized with angles within the *yz* plane constrained to 90° shows that three frontier orbitals of by symmetry, Os d_{*yz*}, the H_A bonding combination, and NO π_z^* , are primarily affected by the hydride bending. The distortion allows greater participation of the d_{*yz*} orbital in σ bonding with

⁽⁶⁴⁾ Hoffman, R.; Howell, J. M.; Rossi, A. R. J. Am. Chem. Soc. 1976, 98, 2484.

Figure 7. Walsh diagram showing the orbital origin of the hydride bending in *mer*,*trans*-Os(H)₃(NO)(PH₃)₂, which relates the fully optimized (B3LYP/BS I) structure (right) to the structure optimized with angles within the *yz* plane constrained to 90° (left), and selected geometrical parameters. The MO labels (C_{2v} symmetry) and nominal orbital characters are shown, along with graphical representation of the b₂-symmetry orbitals.

the H_A hydrides, which stabilizes 2b₂, the bonding combination of H_A and Os p_y + d_{yz}, and destabilizes 1b₂, the corresponding antibonding combination. Additional mixing-in of the vacant 3b₂ (NO π_z^*) orbital to both 1b₂ and 2b₂ is critical to the stability of the distorted structure and enhances back-bonding to NO. Without the π -accepting ability of NO, hydride bending would lead to a four-electron repulsion between the filled H_A b₂ combination and the Os d_{yz} orbital and would be much less pronounced. Thus, the resulting mixing of the b₂ orbitals in the distorted structure is essentially a "push–pull" interaction,⁶⁸ with the H_A b₂ σ -bonding combination acting as a filled π orbital and with $\alpha_{\rm HH}$ being a structural manifestation of the extent of this interaction.

Pronounced changes in bond distances accompany the compression of $\alpha_{\rm HH}$ (Figure 7). Substantial shortening of the Os-H_A bonds correlate with the stabilization of 2b₂ on distortion and permits one to ascribe the major driving force for the hydride bending to stabilization of the Os-H_A σ bonds. By avoiding a mutually strong trans influence in the bent geometry, the H_A hydrides are able to better donate to the metal, as judged from the 0.05*e* increase in their Mulliken charges, forming shorter and stronger $Os-H_A$ bonds. Because the $Os d_{yz}$ orbital that becomes involved in Os-H_A σ bonding is filled, energetic stabilization on distortion is only possible with a concomitant increase in back-bonding to NO π_z^* , which leads to a longer N–O bond and which raises the $3b_2$ in energy. In essence, bending of the H_A hydrides, driven by increased H_A-to-Os σ donation, "squeezes" the filled metal d_{yz} orbital into the vacant NO π_z^* . A shortening of the Os-H_M bond by nearly as much as that of Os-HA is unexpected and appears to occur mainly in response to the lengthening of the Os-N bond and, additionally, to the mixing of 2a1 and 1a1 in the distorted structure. The mixing of 1b₂ and 2b₂ rehybridizes Os d_{vz} toward NO in the $Os-H_A$ antibonding 1b₂, primarily involved in backbonding to NO π^* in the yz plane, which lengthens the Os–N bond to allow for better overlap of π_z^* with the resulting d_{yz} orbital.

Analogous three-orbital four-electron interactions are involved in the bending of the equatorial carbonyls away from the apical CO in $[MH(CO)_5]^q$ (M = Cr⁻, Mn)¹⁴ and in the distortions of the phosphines away from the carbene in OsX(=CHR)Cl(CO)-L₂¹⁸ and from the CO in d⁸ square-planar *trans*-RhX(CO)L₂.⁶⁹

Distortions in mer-[ML']^q(H)₃L₂. Because hydride bending involves the strong mixing of three orbitals (Figure 7), the degree of distortion in a general mer- $[ML']^{q}(H)_{3}L_{2}$ complex will be difficult to predict, because varying M^q , L', or L will generally affect the energies of all three participating orbitals. Nevertheless, an examination of trends within series of isoelectronic optimized structures (Table 4) reveals some features of ligand environment prerequisite for greater distortion. For constant $M^q = Os^-$, decreasing the π acidity of L' along the series $L' = NO^+$, CO, and PH₃ nearly eliminates the distortion, with $\alpha_{\rm HH}$ increasing from 72.3° to 84.1°, whereas for both M^{*q*} = Ru⁻ and M^q = Ir, a similar increase in α_{HH} is found on going from $L' = NO^+$ to L' = CO. At the same time, a slight decrease in $\alpha_{\rm HH}$ is effected by varying M^q along the series M^q = Re²⁻, Os^{-} , and Ir with constant $L' = NO^{+}$. In each case, varying L' or varying M^q, the less reducing ML' is characterized by the smaller value of α_{HH} . Accordingly, the calculated value of α_{HH} is smaller for $M^q = Ru^-$ than for Os^- ($L' = NO^+$) and for [OsNO] with the less-donating $L = PH_3$ than with PMe₃, consistent with experimental trends (1a,b vs 2a,b and 2c vs **2a.b**; Table 1): Ru is generally less reducing than Os, and the metal center is less electron-rich with weaker-donating phosphines. For a less-reducing M, there will be less back-bonding to the L' π^* orbital in the absence of the distortion, in a way, leaving more room for extra back-bonding that results from increased hydride bending. It is notable that varying L' and its π acidity has the most pronounced consequences on $\alpha_{\rm HH}$, with the distortion reaching its maximum extent with the strongest π acid considered, NO⁺, whereas changes in the intrinsic M–H bond lengths or the metal oxidation state, however dramatic, exert only a fine-tuning influence on α_{HH} . The opposite trends in α_{HH} calculated for the pairs [OsCO]⁻ and [RuCO]⁻ and [OsCO]⁻ and [IrCO], that is, the more reducing M has the smaller value of $\alpha_{\rm HH}$, signify the complexity of factors that control modest distortions.

Distorting Ligands Other Than Hydrides. Because mer- $[ML']^{q}(H)_{3}L_{2}$ complexes are distorted in large part because of the H_A hydrides avoiding a mutually strong trans influence, the extent of distortion involving ligands other than H is expected to depend on their trans influences compared to that of H. In all of the optimized mer trihydrides (Table 4), trans PH₃ ligands are bent away from NO in the xz plane (Figure 7) with H₃P-M-H_M angles (α_{PH}) within the range of 81.2-84.6°. The distortion of the phosphines in the xz plane is analogous to that of the H_A hydrides in the yz plane and involves mixing of three corresponding b_1 orbitals. Although α_{PH} correlates with the π -accepting ability of L' in a manner analogous to that of $\alpha_{\rm HH}$, both the absolute magnitude of the phosphine distortion and the relative changes in α_{PH} with L' are considerably less pronounced than those resulting from hydride bending, consistent with PH₃ having a weaker trans influence than H. Although steric factors do not impede the distortion of the phosphines, as judged from [OsNO](PMe₃) having a value of α_{PH} 0.3° smaller than that of [OsNO](PH₃), "phosphine bending" must compete electronically with hydride bending for the limited

⁽⁶⁸⁾ Caulton, K. G. New J. Chem. 1994, 18, 25.

⁽⁶⁹⁾ Wierzbicki, A.; Salter, E. A.; Hoffman, N. W.; Stevens, E. D.; Van Do, L.; VanLoock, M. S.; Madura, J. D. J. Phys. Chem. **1996**, 100, 11250.

Table 4. Selected Theoretical Values^a for mer-[ML']^q(H)₃(L)₂

$[ML']^q$	$\alpha_{\rm HH}$	$M - H_M^b$	$M-H_A^c$	$\Delta E(-H_2)$	$\Delta E(O_h)$
[RuNO]	$70.4(72.5)^d$	1.650 (1.641)	1.645 (1.647)	7.5 (6.1)	10.7
[RuCO]-	82.8	1.703	1.703	21.0	е
[OsNO]	72.3 (73.9)	1.691 (1.682)	1.670 (1.668)	28.7	10.4
[OsNO](PMe ₃) ₂	73.0	1.697	1.673	е	е
[OsCO]-	81.3 (82.1)	1.732 (1.724)	1.710 (1.706)	40.6	2.6
[OsPH ₃] ⁻	84.1	1.671	1.718	49.3	0.7
[ReNO] ⁻	74.6	1.774	1.720	е	е
[IrNO] ⁺	71.5	1.625	1.642	е	е
[IrCO]	84.0	1.649	1.675	12.8	е

^{*a*} Angles (deg), distances (Å), and electronic energies for H₂ loss, $\Delta E(-H_2)$, and stabilization relative to the geometry optimized with α_{HH} constrained to 90°, $\Delta E(O_h)$, in kcal/mol at B3LYP/BS I with L = PH₃, unless otherwise indicated. ^{*b*} Hydride trans to NO. ^{*c*} Hydrides cis to NO. ^{*d*} BS II values are given in parentheses. ^{*e*} Not calculated.

overall π -accepting ability of L'. Optimization of *mer*-M(H)₃-(NO)(PH₃)₂ with angles in the *yz* plane constrained to 90° leads to values of $\alpha_{PH} = 76.5^{\circ}$ (Ru) and 78.6° (Os), 4.8° and 3.1° smaller, respectively, than in the fully optimized structures. Thus, (a) the distortion is inherently less pronounced with the weaker trans influencing PH₃, than with H; (b) the distortion of the H_A hydrides dominates the back-bonding to NO, because the N–O bond lengthens with decreasing α_{HH} (Figure 7) despite increasing α_{PH} ; and (c) the stabilization energy relative to the structure optimized with α_{HH} constrained to 90° (Table 4) is somewhat underestimated, because structures with $\alpha_{HH} = 90^{\circ}$ are stabilized by greater phosphine bending.

Diminishing the trans influence of the ligands involved in the distortion even further effectively turns off the distortion, even with L' being as strong a π acceptor as NO⁺. Thus, X-ray structure determinations of *mer*-RuCl₃(NO)L₂ (L = PPh₂Me,⁷⁰ PPh₃⁷¹) and *mer*-[OsCl₃(NO)(SnCl₃)₂][PPh₄]₂⁷² reveal essentially no distortions from octahedral geometry with cis Cl-M-Cl angles within the 88.15(6)-92.16(6)° range for Ru and 86.8-(1)° for Os, reproduced well at the B3LYP/BS I level with *mer*-MCl₃(NO)(PH₃)₂ as 88.5° (Ru) and 87.3° (Os). In addition to the weak trans influence of the chloride ligands, the distortion is absent in *mer*-MCl₃(NO)L₂ because of steric repulsion between the Cl ligands⁷³ and push-pull interactions⁶⁸ involving all three π -donating Cl and NO ligands, which benefit from the linearity of Cl_A-M-Cl_A and Cl_M-M-NO.

Summary of the Factors Dictating the Distortion. Overall, geometrical distortions in a pseudo-octahedral d⁶ ML₆ complex of the type exemplified by *mer*-M(H)₃(NO)L₂ (M = Ru, Os) require (a) two trans ligands with strong trans influence (b) that are located cis to a strong π acceptor (c) in the absence of impeding steric or electronic factors. Complexes 1 and 2 investigated here fit the profile rather well, and even greater distortion can probably be achieved with a π acid stronger than NO⁺, perhaps a single-face π -acceptor singlet alkylidene.

Comparison to d^{*n*<6} **ML**₆. Structural distortions from octahedral geometry in ML₆ complexes involving strong σ donors and driven primarily by electronic factors are well documented. Studied both experimentally and theoretically, d⁰ [MMe₆]^{*q*} (M = W, Nb⁻, Ta⁻)^{1,2} complexes adopt structures derived from a trigonal prism, as predicted for a number of other metal hexamethyls and hexahydrides,^{3,74–76} whereas \angle H–M–H in d⁰ *trans,trans*-Ta(H)₂(L)X(OR)₂^{5,6,77} is substantially less than 180°. The d¹ ReMe₆^{1,2} is nonoctahedral, similar to the d⁰

- (70) Schultz, A. J.; Henry, R. L.; Reed, J.; Eisenberg, R. Inorg. Chem. 1974, 13, 732.
- (71) Haymore, B. L.; Ibers, J. A. Inorg. Chem. 1975, 14, 3060.
- (72) Czeska, B.; Weller, F.; Dehnicke, K. Z. Anorg. Allg. Chem. 1983, 498, 121.
- (73) Ujaque, G.; Maseras, F.; Eisenstein, O. Theor. Chim. Acta 1997, 96, 146.

analogues, as are the calculated $d^1 MMe_6$ (M = Tc, Re) and d^2 MMe_6 (M = Ru, Os)³, whereas in d² Cp*Os(H)₅ four equatorial hydrides are strongly bent away from the Cp* ligand.^{78,7} Finally, the $d^4 Os(H)_2 Cl_2 L_2^4$ has a trigonal-prismatic structure distorted from the electronically preferred bicapped-octahedral arrangement⁷⁹ by steric factors,⁸⁰ whereas d⁴ mer-Os(H)₃XL₂^{8,10} and mer-OsHCl₃L₂⁹ have transoid H-Os-H and L-Os-L units, respectively, strongly deviating from linearity. Whereas for d² and d⁴ ML₆ complexes octahedral structure is incompatible with a diamagnetic state, in all of the above examples the distortion is in large part driven by a strengthening of the M–L σ bonds via involvement of vacant metal d orbitals and additionally reinforced by increased π donation from halides in unsaturated cases. In this regard, the distortion in 1 and 2 is unusual, because it occurs with a d⁶ metal configuration and it is a combination of a filled metal d orbital and a vacant NO π^* orbital that acts as a vacant metal d orbital to participate in σ bonding with the bending hydrides. Hence, the extent of distortion and the energetic stabilization that results from it are both less pronounced than those involving truly vacant d orbitals, and they are highly sensitive to the π acidity of L' (Table 4). The electronic structure of mer-Os(H)₃(NO)L₂ is qualitatively analogous to those of d⁴ mer-Os(H)₃XL₂¹⁰ and d⁰ trans,trans-Ta-(H)₂(L)X(OR)₂,⁶ in which the transoid hydrides are similarly bent away from the π donor X, except that hydride bending reinforces the M \leftarrow X π donation rather than the M \rightarrow NO π back-bonding. These can be considered hole/electron equivalents, or^{81,82} alternatively, the difference is only one of whether the electrons "originate" from the metal (Os-NO) or the ligand (Os-Cl, Ta-Cl). However, the distortion in $d^{n<6}$ species is greater ($\alpha_{HH} = 60^{\circ}$ for Os¹⁰ and $\alpha_{HL} = 63-69^{\circ}$ for Ta⁷⁷) and provides >25 kcal/mol stabilization relative to the pseudooctahedral structures, as calculated for Ta, and the α_{HL} values calculated for Ta differ by only 3° between $X = \text{strong } \pi \text{ donor}$; NH_2^- ; and pure σ donor, hydride.

Energetic Stabilization of *mer*-[**ML**']^{*q*}(**H**)₃**L**₂. The energies of the fully optimized mer trihydrides relative to those optimized

- (74) Demolliens, A.; Jean, Y.; Eisenstein, O. Organometallics 1986, 5, 1457.
- (75) Kang, S. K.; Albright, T. A.; Eisenstein, O. Inorg. Chem. 1989, 28, 1611.
- (76) Kang, S. K.; Tang, H.; Albright, T. A. J. Am. Chem. Soc. 1993, 115, 1971.
- (77) Bayse, C. A.; Hall, M. B. Organometallics 1998, 17, 4861.
- (78) Bayse, C. A.; Couty, M.; Hall, M. B. J. Am. Chem. Soc. 1996, 118, 8916.
- (79) Gusev, D. G.; Kuhlman, R.; Rambo, J. R.; Berke, H.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1995, 117, 281.
- (80) Maseras, F.; Eisenstein, O. New J. Chem. 1998, 22, 5.
- (81) Cayton, R. H.; Chisholm, M. H.; Clark, D. L.; Hammond, C. E. J. Am. Chem. Soc. 1989, 111, 2751.
- (82) Chisholm, M. H.; Clark, D. L.; Hampden-Smith, M. J.; Hoffman, D. H. Angew. Chem. **1989**, 101, 446.

with $\alpha_{\rm HH} = 90^{\circ} [\Delta E(O_h), \text{ Table 4}]$ provide an estimate of the energetic importance of hydride bending. The $\Delta E(O_h)$ values reach a maximum of 10 kcal/mol with the strongest π acid, NO⁺, for [RuNO] and [OsNO], indicating a relatively pronounced energetic preference for the distorted structure, and drop sharply with increasing $\alpha_{\rm HH}$ (Table 4). For a given metal, there is a clear correlation between $\alpha_{\rm HH}$ and $\Delta E(-H_2)$ for H₂ loss (Table 4), not surprisingly, as both are strongly dependent on the π acidity of L'.

The energetic stabilization of *mer*- $[ML']^{q}(H)_{3}L_{2}$ that results from hydride bending also affects the relative stability of the mer and fac isomers. Although the distortion in the mer geometry (**B**) alleviates the mutual trans influence of the H_A hydrides, in all of the systems considered (Figure 6) the fac isomer (A), in which two hydrides are transoid to ligands with a weaker trans influence (phosphines), is more stable, in the absence of actual steric effects. The fac geometry is additionally stabilized by the bending of transoid H-M-P units, analogous to that of H_A -M-H_A and P-M-P units in the mer geometry, with the optimized $\angle H-M-P = 155.3^{\circ}$, 163.0°, and 157.0°, respectively, in the A-[RuNO], -[RuCO]⁻, and -[OsNO] series (Figure 6). However, because the H-M-P bending involves ligands with weaker trans influence than does H_A-M-H_A distortion, the latter is expected to be more pronounced (vide supra) for a given $[ML']^q$ and thus to stabilize the mer isomer more than the fac isomer for a stronger π acid L', assuming that the relative energies of strictly octahedral mer- and fac- $[ML']^{q}(H)_{3}L_{2}$ complexes are only weakly dependent on the nature of $[ML']^q$. Indeed, the mer isomer is stabilized relative to the fac by 1.6 kcal/mol (ΔE) on going from [RuCO]⁻ to [RuNO] (Figure 6), the experimental fac \leftrightarrow mer equilibrium constant is at least an order of magnitude greater for Os(H)3- $(NO)(PPh_3)_2$ (2c) than for Ir(H)₃(CO)(PPh_3)₂³¹ and for [Re(H)₃- $(NO)(P^{i}Pr_{3})_{2}^{-}$ than for $[M(H)_{3}(CO)(P^{i}Pr_{3})_{2}]^{-}$ $(M = Ru, Os).^{32}$ Additionally, [Ru(H)₃(PPh₃)₃]⁻, for which essentially no stabilization is possible (compare [OsPH₃]⁻, Table 4), exists exclusively as the fac isomer.^{83,84} These experimental results are consistent with energetic stabilization of the transoid dihydride configuration (the mer isomer) via hydride bending.

Effects on the Intramolecular Hydride Site Exchange in 1. Perhaps the most important outcome of the structural distortion present in 1 and 2 is the observation of quantum mechanical exchange coupling in the case of mer-Ru(H)₃(NO)- $(P^{t}Bu_{2}Me)_{2}$ (1b), as well as its disappearance in the closely related (only slightly perturbed) analogue 1a. Because the transition state for the chemical hydride site exchange in 1 is a dihydrogen complex TS(C)-[RuNO], the distortion of the ground-state geometry, which decreases the H_A···H_M distance, shortens the tunneling path (narrows the barrier) and, thus, increases the tunneling rate, leading to observable exchange coupling for 1b. The transition state for the chemical site exchange in transition metal polyhydrides that exhibit exchange coupling generally¹² involves some shortening of the distance between the exchanging hydrides; a dihydrogen structure suffices, but is not necessary, since the potential energy surface for H-H stretching can be very flat.¹⁰ Thus, the case of **1b** is no exception, as both experimental and computational results strongly support the nonclassical structure of the transition state for the exchange in 1. However, because none of the numerous polyhydrides¹² exhibiting exchange coupling between hydride ligands has a strictly octahedral structure, or at least one with

 $\alpha_{HH} \approx 90^{\circ}$, the case of **1b** signifies the importance of bringing the exchanging hydrides closer together in the ground-state structure to the observation of exchange coupling. It also demonstrates the existence of exchange coupling with H···H distances as long as 2 Å (Table 1), albeit considerably less pronounced for the given value of $\Delta H^{\dagger}_{\rm HH}$.¹²

The combination of the strong π acidity of NO⁺ and the moderate reducing ability of Ru(II) keeps the dihydrogen **TS**(**C**)-[RuNO] structure close in energy to the trihydride **B**-[RuNO] structure (Figure 5) and is responsible for the facile chemical hydride site exchange observed in 1. In this regard, the hydride bending in *mer*-M(H)₃(NO)L₂ (M = Ru, Os) makes the trihydride structure "prepared" to reductively couple cis hydrides: the distortion not only brings the H_A and H_M hydrides closer and diminishes the nucleophilicity of H_A but also increases back-bonding to NO, both of which are developed further in TS(B)-[MNO] and TS(C)-[RuNO] as the formation of the H₂ ligand and as partial NO bending (Figures 5 and 6). In a way, the distorted structures of mer trihydrides of Ru and Os can be viewed as "arrested" on the H₂ oxidative addition pathway. Thus, given the moderate reducing ability of Ru, the hydride bending in **B**-[RuNO] helps lower the barrier for the hydride site exchange to within the range commonly measured¹² for complexes that exhibit exchange coupling. Given the very high sensitivity of the exchange coupling magnitude to the barrier height and width¹² and the relatively small $J_{\rm HH}$ values observed in 1b, it is not surprising to find that even a slight increase in the donating ability of L on going from L = $P^{t}Bu_{2}Me$ (1b) to $L = P^{i}Pr_{3}$ (1a) effectively shuts down the exchange coupling, because of both raising and widening the barrier for the chemical exchange (vide supra).

Generalization to Dihydrides. The phenomenon of hydride bending is not limited to d⁶ mer trihydrides, in which trans H-M-H units are distorted from linearity. An analogous (eq 2) $T_{1\min}$ approach in the case of *cis,trans*-Os(H)₂Cl(NO)(PⁱPr₃)₂ yields⁸⁵ $\alpha_{\rm HH} = 76(3)^{\circ}$ (Table 1), reproduced as 72.7° at the B3LYP/BS I level with cis, trans-Os(H)₂Cl(NO)(PH₃)₂. The optimized structure shows that the compression of α_{HH} from 90° is largely compensated by the expansion of \angle Cl–Os–N, such that the cis H-Os-N and H-Os-Cl angles remain approximately 90°. The distortion is reminiscent of the one investigated computationally⁷⁴ for $d^0 [Ti(H)_6]^{2-}$ and results in a feature common to the distortion in 1 and 2: the transoid H-Os-L angles, \angle H-Os-Cl = 158.3° and \angle H-Os-N = 161.7°, are well below 180°. The essential rationale behind this distortion is similar to that discussed for mer trihydrides and consists of strengthening the Os-H σ bonds by moving the hydrides away from the trans ligands and increasing the π backbonding to NO, which, because of the asymmetry of the structure, leads to a bending of ∠Os-N-O in the direction of the cis hydride to a value of 164.7°.

A thorough T_1 relaxation study⁸⁶ of the isoelectronic *cis*, *trans*-Re(H)₂(CO)(NO)(PR₃)₂ revealed an analogous distortion, $\alpha_{\rm HH} = 80^{\circ}$, later reproduced computationally⁸⁷ (DFT) as $\alpha_{\rm HH} = 77-79^{\circ}$, that was compensated by expansion of $\angle C$ -Re-N similar to that in *cis*,*trans*-Os(H)₂Cl(NO)(PⁱPr₃)₂. Therefore, at least in the presence of the very strong π acceptor NO⁺, significant distortions are possible in cis dihydrides with d⁶ metal configuration as well, driven by increased H-to-M σ donation

(84) Pez, G. P.; Grey, R. A.; Corsi, J. J. Am. Chem. Soc. 1981, 103, 7528.

(83) Chan, A. S. C.; Shieh, H.-S. J. Chem. Soc., Chem. Commun. 1985,

1379.

⁽⁸⁵⁾ Os-H distances of 1.626 and 1.674 Å were taken from a B3LYP/BS I calculation on the model *cis,trans*-Os(H)₂Cl(NO)(PH₃)₂.

⁽⁸⁶⁾ Gusev, D. G.; Nietlispach, D.; Vymenits, A. B.; Bakhmutov, V. I.; Berke, H. Inorg. Chem. 1993, 32, 3270.

⁽⁸⁷⁾ Jacobsen, H.; Jonas, V.; Werner, D.; Messmer, A.; Panitz, J.-C.; Berke, H.; Thiel, W. *Helv. Chim. Acta* **1999**, *82*, 297.

and π back-bonding to NO⁺. However, this d⁶ species, which shows no hydride site exchange, shows no exchange coupling. Notably, facile hydride site exchange was reported⁸⁸ to occur in the closely related species *cis,trans*-[Os(H)₂(CO)(NO)-(PR₃)₂]⁺, with $\Delta G^{+}_{HH} = 12.7$ (R = Cy) and 11.6 (R = Ph) kcal/mol. In anticipation of a trigonal-bipyramidal dihydrogen intermediate that mediates the exchange, by analogy to the isoelectronic neutral rhenium system,²⁰ and a structure similarly distorted by compression of α_{HH} , ¹H NMR spectra of the cationic osmium complexes may exhibit small exchange couplings.

Conclusions

mer-M(H)₃(NO)L₂ (M = Ru, Os) complexes adopt pseudooctahedral structures significantly distorted by compression of the cis H–M–H angles to ~75°, as inferred from ¹H NMR T_{1min} and IR data and from DFT calculations. Calculations additionally suggest that this structural feature is common to other nitrosyl polyhydrides. Strong back-bonding interactions with linear NO are responsible for the distortion, allowing the H_A hydrides to avoid a mutually strong trans influence. The stabilizing influence of the distortion is evident in the slight stabilization of the mer relative to the fac isomers.

Although strong back-donation to the NO π^* orbital increases the chance of achieving reversible NO bending via full transfer of two electrons (an intramolecular redox process), the osmium complexes 2 do not exhibit associative reactivity under moderate conditions. The ruthenium analogues 1 undergo facile intramolecular hydride site exchange, for which both experimental and theoretical results strongly suggest a dihydrogen transition state. In this regard, the distortion makes the trihydride structure "prepared" to reductively couple two cis hydrides and facilitates the hydride site exchange in 1. Additionally, the distortion shortens the hydride tunneling path, which makes moderate exchange coupling observable in 1b, the first d^6 pseudooctahedral polyhydride to exhibit such a phenomenon. Whereas ruthenium trihydrides easily lose H₂, osmium complexes, being inherently more reducing, are much more stable toward H_2 reductive elimination and also undergo intramolecular hydride site exchange, albeit with a considerably higher activation energy.

Finally, the distortion identified for mer trihydrides 1 and 2 is not limited to d^6 structures with transoid hydrides, but also exists in cis dihydrides Os(H)₂Cl(NO)L₂ and Re(H)₂(CO)(NO)-L₂ in which the cis H-M-H angles are similarly compressed to $\leq 80^\circ$.

Experimental Section

General. All manipulations were carried out using standard Schlenk and glovebox techniques under argon. Bulk solvents were purified by appropriate methods, as follows: 2-methoxyethanol was deoxygenated; pentane, heptane, benzene, THF, and Et₂O were dried over sodium benzophenone ketyl; and methanol and ethanol were dried over magnesium methoxide and calcium ethoxide, respectively. All were then distilled under Ar, and stored over 3- or 4-Å molecular sieves in gastight solvent bulbs with Teflon closures. d_6 -Benzene, d_8 -toluene, and d_{10} -Et₂O were dried over Na metal, CD₂Cl₂ was dried over calcium hydride, and CDCl₃ was dried over calcium chloride; all were then vacuum transferred, degassed, and stored in Teflon-stoppered bulbs in an argon-filled glovebox. *N*-Methyl-*N*-nitroso-*p*-toluenesulfonamide, isoamyl nitrite (97%), silver trifluoromethanesulfonate, sodium borohydride, triethylamine trihydrofluoride (98%), trifluoromethanesulfonic acid (Aldrich Chemical Co.), H₂ (UHP/zero grade, Air Products), D₂

(99.8% D, Cambridge Isotope Laboratories), PiPr3 (>90%, Strem Chemicals), and OsCl₃•nH₂O (52-56% Os, Pressure Chemicals) were used as received. The complexes trans-RuMe(NO)L₂ (L = $P^{i}Pr_{3}$, P^tBu₂Me) were prepared as reported.⁴⁰ ¹H, ³¹P, and ¹⁹F NMR spectra were recorded on a Varian Gemini 2000 (1H, 300 MHz; 31P, 122 MHz; ¹⁹F, 282 MHz) or a Varian Inova 400 (¹H, 400 MHz; ³¹P, 162 MHz; ¹⁹F, 376 MHz) spectrometer and referenced to the residual protio solvent peaks (1H) or to an external 85% H₃PO₄ (31P) and C₆D₆ solution of CF₃COOH (¹⁹F, -78.9 ppm relative to CFCl₃). Chemical shifts are reported in parts per million relative to tetramethylsilane (¹H), 85% H₃PO₄ (³¹P), and CFCl₃ (¹⁹F). Temperatures from ambient to -100 °C were calibrated with a methanol standard and extrapolated to lower temperatures. During VT measurements, samples were allowed at least 10 min to equilibrate at each temperature, which was maintained to ±0.5 °C. Infrared spectra were recorded on a Nicolet 510P FT-IR spectrometer. Numerical data analyses were performed with Matlab 5.3.89 All error analyses used standard error propagation formulas,90 that is, for $f = f(x_1, x_2, ...), \sigma(f)^2 = (\partial f/\partial x_1)^2 \sigma(x_1)^2 + (\partial f/\partial x_2)^2 \sigma(x_2)^2 +$..., neglecting the covariance terms.

cis,trans-Os(H)2Cl(NO)(PiPr3)2. A 500-mL Fisher-Porter bottle was charged with OsCl₃•nH₂O (1.000 g, 2.84 mmol), THF (50 mL), and $P^{i}Pr_{3}$ (2.530 g, 14.2 mmol). The mixture was pressurized with H₂ (25 psi, ~31.24 mmol) and vigorously stirred at 90 °C for 16 h, yielding a dark-red solution of OsH2Cl2(PiPr3)2. After the mixture had cooled to RT, the excess pressure was released against Ar flow, and Et₃N (1.724 g, 17.04 mmol) and isoamyl nitrite (0.377 g, 3.12 mmol) were added rapidly and successively in an Ar-filled glovebox, producing a yellow, heterogeneous mixture. The mixture was pressurized with H₂ (25 psi), stirred at RT for an additional 30 min, transferred in a Schlenk flask, and brought to dryness. The solid residue was extracted with pentane (7 \times 10 mL), and the combined extracts were filtered through Celite and concentrated to ~15 mL to yield a golden-brown, analytically pure crystalline material after several days at -40 °C. This material was washed with cold pentane $(3 \times 10 \text{ mL})$ and dried in vacuo. Yield: 1.330 g (2.30 mmol, 81%). Spectroscopic data have been reported previously.41

cis,trans-Os(H)₂Cl(NO)(P'Bu₂Me)₂. A procedure analogous to that employed for the P'Pr₃ analogue, starting from OsCl₃•*n*H₂O (0.500 g, 1.42 mmol), THF (25 mL), and P'Bu₂Me (95%, 1.200 g, 7.11 mmol) in an 85-mL Fisher–Porter bottle under H₂ (60 psi, ~9.94 mmol) at 90 °C for 16 h and using Et₃N (0.862 g, 8.52 mmol) and isoamyl nitrite (0.189 g, 1.56 mmol), yielded 0.630 g (1.09 mmol, 77%) of a goldenbrown, crystalline material. ¹H NMR (C₆D₆, 20 °C): δ 1.53 [vt, *N* = 7.0 Hz, 6H, PCH₃('Bu)₂], 1.27 [vt, *N* = 13.2 Hz, 18H, PMe(C(CH₃)₃)₂], 1.26 [vt, *N* = 13.2 Hz, 18H, PMe(C(CH₃)₃)₂], -1.64 (td, J_{PH} = 21.9 Hz, J_{HH} = 7.3 Hz, 1H, Os*H*), -10.55 (td, J_{PH} = 14.6 Hz, J_{HH} = 7.3 Hz, 1H, Os*H*). ³¹P{¹H} NMR (C₆D₆, 20 °C): δ 28.3 (s). IR (C₆H₆): 1697 cm⁻¹ (ν_{NO}).

OsCl₃(NO)(PPh₃)₂. A modification of the reported procedure⁹¹ was used. Solutions of OsCl₃·*n*H₂O (0.350 g, 0.99 mmol) and *N*-methyl-*N*-nitroso-*p*-toluenesulfonamide (0.426 g, 1.99 mmol), both in 15 mL of 2-methoxyethanol, were simultaneously added via cannulas to a refluxing solution of PPh₃ (1.564 g, 5.96 mmol) in 40 mL of 2-methoxyethanol, leading to the formation of a fine brown precipitate within 5–10 min. The mixture was refluxed for a total of 20 min and cooled to RT. The brown solution was decanted off, and the brown solid was washed with 2-methoxyethanol (3 × 10 mL) and Et₂O (3 × 10 mL) and dried in vacuo. Yield: 0.600 g (0.70 mmol, 71%). The product is very poorly soluble in C₆D₆ or CD₂Cl₂. ¹H NMR (CD₂Cl₂, 20 °C): δ 7.83 [m, 12H, P(*o*-C₆H₅)₃], 7.45 [m, 18H, P(*p*,*m*-C₆H₅)₃]. ³¹P{¹H} NMR (CD₂Cl₂, 20 °C): δ –15.3 (s). IR (Nujol mull): 1850 cm⁻¹ (*v*_{NO}).⁹¹

mer,trans- $Os(H)_3(NO)(P^iPr_3)_2$ (2a). *cis,trans*- $Os(H)_2Cl(NO)(P^iPr_3)_2$ (0.300 g, 0.52 mmol) and NaBH₄ (98.2 mg, 2.6 mmol) were placed in

(91) Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F. Inorg. Synth. 1974, 15, 45.

⁽⁸⁸⁾ Johnson, B. F. G.; Segal, J. A. J. Chem. Soc., Dalton Trans. 1974, 981.

⁽⁸⁹⁾ MATLAB, version 5.3.0.10183 (R11); The MathWorks, Inc.: Natick, MA, copyright 1984–1999.

⁽⁹⁰⁾ Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences; McGraw-Hill Book Company: New York, 1969; Chapter 4.

an 85-mL Fisher–Porter bottle. Methanol (12 mL) was rapidly added, and the bottle was promptly capped. The solution, becoming lighter in color, was stirred under the resulting H₂ pressure of 40 psi (~8 mmol) at 90 °C for 14 h, transferred in a Schlenk flask, and brought to dryness. The solid residue was extracted with pentane (4 × 5 mL), and the combined extracts were filtered through Celite and brought to dryness again. The resulting yellow solid was recrystallized from methanol at -40 °C to give a bright yellow, crystalline material, which was washed with cold methanol and dried in vacuo. Yield: 0.210 g (0.39 mmol, 74%). X-ray-quality crystals were obtained from the reaction mixture after it was allowed to stand for several hours at RT. ¹H NMR (C₆D₆, 20 °C): δ 2.01 [m, 6H, P(CH(CH₃)₂)₃], 1.19 [dvt, J_{HH} = 6.9 Hz, N = 13.8 Hz, 36H, P(CH(CH₃)₂)₃], -7.26 (td, J_{PH} = 15.8 Hz, J_{HH} = 6.3 Hz, 2H, OsH_A), -9.67 (tt, J_{PH} = 25.2 Hz, J_{HH} = 6.3 Hz, 1H, OsH_M). ³¹P{¹H} NMR (C₆D₆, 20 °C): δ 45.3 (s). IR (C₆D₆): 1673 cm⁻¹ (ν_{NO}).

mer,trans-Os(H)₃(NO)(P'Bu₂Me)₂ (2b). A procedure identical to that used for 2a gave 0.220 g (0.40 mmol, 78%) of the product as a bright yellow, crystalline solid. ¹H NMR (C₆D₆, 20 °C): δ 1.56 [vt, *N* = 6.0 Hz, 6H, PCH₃('Bu)₂], 1.29 [vt, *N* = 13.2 Hz, 18H, PMe-(C(CH₃)₃)₂], -6.78 (td, *J*_{PH} = 15.4 Hz, *J*_{HH} = 6.2 Hz, 2H, Os*H*_A), -8.49 (tt, *J*_{PH} = 24.5 Hz, *J*_{HH} = 6.2 Hz, 1H, Os*H*_M). ³¹P{¹H} NMR (C₆D₆, 20 °C): δ 37.5 (s). IR (C₆D₆): 1670 cm⁻¹ (ν _{NO}).

Os(H)₃(NO)(PPh₃)₂ (2c). A 50-mL Schlenk flask fitted with a Teflon valve was charged with OsCl₃(NO)(PPh₃)₂ (0.170 g, 0.20 mmol), NaBH₄ (0.134 g, 3.0 mmol), and EtOH (15 mL). The mixture was vigorously stirred at 90 °C for 22 h and cooled to RT. The brown solution was decanted off, and the brown solid was washed with EtOH $(2 \times 10 \text{ mL})$ and Et₂O $(3 \times 10 \text{ mL})$, until the washes were colorless). The resulting yellow solid was extracted with C_6H_6 (3 × 5 mL), and the combined extracts were filtered through Celite, concentrated to ${\sim}2$ mL, and layered with Et₂O (20 mL) for several hours, producing yellow crystals, which were rinsed with Et₂O and dried in vacuo. Yield: 35 mg (0.05 mmol, 23%). The mer-2c and fac-2c isomers were observed in a constant ~95:5 ratio throughout several days at 20 °C in C₆D₆ and after heating the solution to ~ 100 °C, which leads to complete averaging of the hydride resonances, although slow establishment of the equilibrium cannot be ruled out because of the very weak intensity of the *fac*-2c hydride signals. *mer*-2c. ¹H NMR (C₆D₆, 20 °C): δ 7.86 [m, 12H, $P(o-C_6H_5)_3$], 6.99 [m, 18H, $P(p,m-C_6H_5)_3$], -4.94 (td, $J_{PH} =$ 17.2 Hz, $J_{\rm HH} = 5.3$ Hz, 2H, Os $H_{\rm A}$), -6.11 (tt, $J_{\rm PH} = 26.1$ Hz, $J_{\rm HH} =$ 5.3 Hz, 1H, Os H_M). ³¹P{¹H} NMR (C₆D₆, 20 °C): δ 18.7 (s). IR (C₆D₆): 1703 cm⁻¹ (v_{NO}). fac-2c. ¹H NMR (C₆D₆, 20 °C, hydride region, AA'M part of the AA'MXX' spin system): δ -4.10 [m, J(P- $H_{cis} = \pm 18.8 \text{ Hz}, J(P-H)_{trans} = \mp 71.6 \text{ Hz}, J(H_A-H_M) = 4.7 \text{ Hz}, 2H,$ AA'], -5.44 [tt, $J_{PH} = 27.0$ Hz, $J(H_A - H_M) = 4.7$ Hz, 1H, M]. ³¹P-{¹H} NMR (C₆D₆, 20 °C): δ 11.6 (s).

cis,trans-**Os**(**H**)₂(**O**₃**SCF**₃)(**NO**)(**P**ⁱ**Pr**₃)₂. A modification of an earlier procedure⁴² was used. A Schlenk flask was charged with *cis,trans*-Os(H)₂Cl(NO)(PⁱPr₃)₂ (1.000 g, 1.73 mmol) and AgOTf (0.441 g, 1.70 mmol). Ether (15 mL) was added, and the resulting mixture was stirred in the dark for 1 h, filtered through Celite, concentrated to ~1 mL, and layered with pentane (30 mL) overnight to yield dark orange crystals, which were rinsed with pentane and dried in vacuo. Yield: 1.040 g (1.50 mmol, 89%). Spectroscopic data have been reported previously.⁴²

cis,trans-Os(H)₂(O₃SCF₃)(NO)(P^tBu₂Me)₂. The product is sensitive to AgCl at RT. A Schlenk flask was charged with cis,trans-Os(H)2Cl-(NO)(P^tBu₂Me)₂ (0.200 g, 0.35 mmol) and AgOTf (88.0 mg, 0.34 mmol) and cooled to -13 °C. Ether (10 mL) was slowly added, and the resulting mixture was stirred in the dark at -13 °C for 40 min and filtered through Celite. The volatiles were removed in vacuo, the resulting orange oil was extracted with pentane (4 \times 5 mL), and the combined extracts were filtered and concentrated to \sim 5 mL to yield an orange, microcrystalline solid after standing at -40 °C overnight; the solid was washed with cold pentane and dried in vacuo. Yield: 0.200 g (0.29 mmol, 84%). ¹H NMR (C₆D₆, 20 °C): δ 1.69 [vt, N = 6.7 Hz, 6H, $PCH_3(^{t}Bu)_2$], 1.09 [vt, N = 13.8 Hz, 18H, $PMe(C(CH_3)_3)_2$], 1.06 [vt, N = 13.8 Hz, 18H, PMe(C(CH₃)₃)₂], 0.76 (td, $J_{PH} = 26.0$ Hz, $J_{\rm HH} = 7.2$ Hz, 1H, OsH), -12.77 (td, $J_{\rm PH} = 15.4$ Hz, $J_{\rm HH} = 7.2$ Hz, 1H, OsH). ³¹P{¹H} NMR (C₆D₆, 20 °C): δ 39.3 (s). ¹⁹F NMR (C₆D₆, 20 °C): δ -79.1 (s). IR (C₆H₆): 1754 cm⁻¹ (ν _{NO}).

 $OsH(D)_2(NO)L_2$ (L = PⁱPr₃, P^tBu₂Me). These isotopomers were generated by oxidative addition of D_2 to transient {OsH(NO)L₂}.⁶² In a typical procedure, cis,trans-OsH2(OTf)(NO)L2 and at least 1.5 equiv of NpLi were placed in an NMR tube fitted with a Teflon stopcock (Young tube), C₆D₆ (0.6 mL) was vacuum transferred onto the solids, and the solid mixture was pressurized to 1 atm with D_2 at $T \approx -20$ °C. The mixture was vigorously shaken as it was thawing. ¹H NMR data recorded within 10 min showed a statistical 2:1 mixture of Os-(D_M)(H_AD_A)(NO)L₂ and Os(H_M)(D_A)₂(NO)L₂, contaminated with variable amounts of Os(H)2D(NO)L2 and Os(H)3(NO)L2 (<10 mol %), as the only Os-containing products. The solutions were either redissolved in d_8 -PhMe for NMR measurements or recrystallized from h_4 -MeOH without any significant loss of D, if acidic impurities were rigorously excluded. Representative hydride signal shifts in 2b on deuteration, relative to those in the all-protio case (HAHAHM), recorded on a mixture of all possible isotopomers in C₆D₆ at 20 °C are as follows: $\Delta\delta(H_M)$ (ppb) $-45.5 (H_A D_A H_M)$, $-93.0 (D_A D_A H_M)$; $\Delta \delta(H_A)$ (ppb) -34.0 $(H_AH_AD_M)$, +71.0 $(H_AD_AH_M)$, +37.0 $(H_AD_AD_M)$.

Low-Temperature Reaction of {**OsH**(**NO**)(**P**ⁱ**Pr**₃)₂} **with D**₂. *cis,trans*-OsH₂(OTf)(NO)(PⁱPr₃)₂ and ~4 equiv of NpLi, both ground into fine powders, were placed in a 5-mm NMR tube annealed to a short manifold, which was capped with a Teflon valve, leading directly to the outlet of a 5-mL flask, which was also capped with a Teflon valve and from which *d*₈-PhMe was vacuum transferred onto the solids at -198 °C. The mixture was thawed at -40 °C, pressurized to 500 Torr with D₂, and frozen, and the NMR tube was sealed. The mixture was shaken in a -40 °C bath until the Os reagent had completely dissolved/reacted, cooled to -78 °C, and promptly transferred into the NMR probe, which was pre-cooled to -40 °C. ¹H NMR at this temperature revealed a H_A:H_M signal-intensity ratio of >4.2:1, which gradually decreased to 2:1 as the temperature was raised to 20 °C.

OsHDCl(NO)(**PiPr**₃)₂. OsH(D)₂(NO)(PⁱPr₃)₂, generated as above, was dissolved in CDCl₃ in a Young tube for 2 h at RT, quantitatively yielding a 1:1:1 mixture of the HD, DH, and DD isotopomers, which was subsequently redissolved in d_8 -PhMe for NMR measurements.

 $Os(D)_3(NO)(P^iPr_3)_2$. A solution of 2a and 1 equiv of $[Et_3NH][BF_4]$ was stirred in d_4 -MeOH at RT for 30 h in a Young tube, after which time ¹H NMR showed >97 mol % deuteration of the hydride sites, and then brought to dryness. The solids were extracted with pentane, the solution was decanted off, and the pentane solubles were redissolved in heptane for IR measurements.

Ru(**H**)₃(**NO**)**L**₂ [**L** = **P**ⁱ**Pr**₃ (1a), **P**⁴**Bu**₂**Me** (1b)]⁴⁰ and **Ru**(**D**)₃(**NO**)-(**P**⁴**Bu**₂**Me**)₂ (**1b**-d₃). A solution of *trans*-RuMe(NO)L₂ in d_{10} -Et₂O (for NMR measurements) or heptane (for IR measurements) in a Young tube was freeze-pump-thaw degassed three times and pressurized to 1 atm with H₂ (NMR) or D₂ (IR), quantitatively forming the corresponding trihydrides and methane within minutes.

RuH(D)₂(**NO**)(**P**ⁱ**Pr**₃)₂. A solution of *trans*-RuMe(NO)(PⁱP**r**₃)₂ in d_{10} -Et₂O in a Young tube was freeze-pump-thaw degassed three times and subjected to <1 equiv of H₂. The mixture was allowed to equilibrate at RT for several hours, until the **1a** hydride signals were barely visible by ¹H NMR at -70 °C. The solution was cooled to -100 °C, pressurized to 1 atm with D₂, and transferred in the NMR probe precooled to -95 °C. As with the Os analogues, ¹H NMR showed ~5 mol % contamination with the (H)₂D and (H)₃ isotopomers.

RuH(NO)(**P'Bu₂Me**)⁴⁰ and **RuD(NO)**(**P'Bu₂Me**)₂. Solutions of **1b** and **1b**-*d*₃, generated as above in heptane, were brought to dryness, redissolved in heptane, and brought to dryness again several times to ensure maximum loss of H₂ or D₂. IR spectra of the complexes generated in this way, recorded within an hour, showed residual 15–20 mol % of **1b** and **1b**-*d*₃ along with trace decomposition. Addition of substoichiometric H₂ to RuMe(NO)(PⁱP₁)₂ as above was used to generate the complexes for NMR measurements.

Studies of Reactivity of 2a-c. All reactions were carried out on the NMR scale in Young tubes and monitored by ¹H and ³¹P NMR. In the case of attempted exchange with D₂, the hydride signals of 2cshowed constant integration against the phosphine aryl resonances for 24 h at RT in C₆D₆, whereas partly deuterated analogues of 2a,b generated otherwise can be observed separately (not exchange averaged) and were absent in the D₂ reactions.

 T_1 Measurements and Derivation of $r_{\rm HH}$. All T_1 measurements were performed at 300 MHz (1H) using standard inversion-recovery Varian software. Full details are provided in the Supporting Information. In brief, $T_{1\min}$ values were located with multiple points around $T^{\circ}C(T_{1\min})$, were corrected for intramolecular hydride site exchange in 1b, and were treated with appropriate error limits $(\geq 5\%)$ that were assumed by consideration of several factors. The dominance of an intramolecular ¹H⁻¹H dipolar relaxation mechanism was demonstrated for 2a by comparison of experimental R^* values to those evaluated from the crystal structure. The effects of significantly anisotropic tumbling were considered, and upper estimates on $r_{\rm HH}$ values were derived.

¹H NMR Spectral Simulation. Experimental exchange-broadened line shapes were iteratively fit using the gNMR⁹² program, with line widths in the absence of exchange fixed at the lowest measured values. For intramolecular exchange in **1b**, $J_{\rm HH}$ values obtained at temperatures from -95 to -60 °C were extrapolated to higher temperatures according to an exponential law⁹³ (Figure S1, Supporting Information) and kept constant during simulations. The activation parameters assumed 10% errors in $k_{\rm HH}$ and 1 °C errors in T°C. Variations in the line width with temperature, as measured for Os analogue 2b, gave negligible variations in $k_{\rm HH}$.

Computational Details. All calculations were performed with the Gaussian 9494 and Gaussian 9895 suites of programs, using hybrid density functional method B3LYP,96 with LANL2DZ97-99, called BS I, a valence double- ζ basis set with relativistic effective core potentials for the Os⁹⁸ and P⁹⁹ centers, and BS II, an extension of BS I in which

- (92) Budzelaar, P. H. M. gNMR, version 3.6.5; IvorySoft: Englewood, CO, 1995. (Published by Cherwell Scientific Publishing Limited, Oxford, U.K.)
- (93) Limbach, H.-H.; Ulrich, S.; Gründemann, S.; Buntkowsky, G.; Sabo-Etienne, S.; Chaudret, B.; Kubas, G. J.; Eckert, J. J. Am. Chem. Soc. **1998**, *120*, 7929.
- (94) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, revision D.1; Gaussian, Inc.: Pittsburgh, PA, 1995.
- (95) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.

all H, N, and O atoms are described with a 6-31G100 basis set, supplemented with polarization functions¹⁰¹ for (Os)H, N, and O, and polarization functions are used for P.102 All PH₃ structures were fully optimized with standard convergence criteria without symmetry constraints and converged to essentially C_s or C_{2v} symmetry. All PMe₃ structures were thus optimized with C_s symmetry. All structures presented in Figures 5 and 6 were confirmed to be true minima or transition states via frequency analysis,95 which was also used to calculate zero-point energies (ZPE) without scaling. For TS(B)-[RuNO], C_s symmetry was imposed for frequency calculations, because C_1 optimized geometry, although marginally different, invariably had a second imaginary frequency of $\sim 11 \text{ cm}^{-1}$ that corresponded to the breaking of the effective C_s symmetry by the asymmetric rotation of the $\ensuremath{\text{PH}_3}$ groups. For all transition states, motion corresponding to the imaginary frequency was visually checked, and most structures were additionally optimized to the minima they connected after correspondingly perturbing the TS geometry. For H_2 loss from the TS(B)-[RuCO]⁻, TS(B)-[OsNO], and C-[RuNO] structures, such optimizations led to end-on bonded η^1 -H₂ complexes with marginal binding energies that were unbound (or nearly so with ZPE) and had no physical significance. MOs in Figure 7 were plotted with Molden.¹⁰³ Cartesian coordinates of all structures discussed in the text are provided in the Supporting Information.

Acknowledgment. This work was supported by the NSF and by a graduate fellowship to D.V.Y. D.V.Y. gratefully acknowledges stimulating discussions with Professors Odile Eisenstein and Ernest R. Davidson.

Supporting Information Available: A plot showing an exponential temperature dependence of $J_{\rm HH}$ in **1b**, full details of T_1 measurements and the derivation of $r_{\rm HH}$, full X-ray structural information on 2a, and Cartesian coordinates of all optimized structures. This material is available free of charge via the Internet at http://pubs.acs.org.

IC991452J

- (96) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gorden, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92/DFT; Gaussian, Inc.: Pittsburgh, PA, 1993.
- (98) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
 (99) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
- (100) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
- (101) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
- (102) Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237.
- (103)Schaftenaar, G. Molden, version 3.2.; CMBI: Nijmegen, The Netherlands, 1991.