compounds, and lattice sizes. Vaughan,⁹ however, has described a new, denser hexagonal U₂N₃ (La₂O₃ type), which occurred in a mixture of nitrides obtained on heating massive U in N_2 between 500 and 915°. Evans¹⁰ has suggested that this is a coherency structure, but Trzebiatowski, et al.,11 have found that annealing the cubic Mn_2O_3 -type U_2N_3 at temperatures $>1000^{\circ}$ led to a new denser U₂N₃ phase. Recently Bugh and Bauer¹² have stated that only the three compounds found by Rundle occur and that the solubility of N_2 in solid U is <1 p.p.m. They believe the solubility range of UN to be "fairly limited," which would correlate with Cater's13 observations on US and the general belief for UC,¹⁴ also that UN₂ needs high pressures to form although oxygen contamination may improve the stability of the higher U_2N_3 -UN₂ regions.

In their note¹ D and G's observations included (a) that UN₂ could be readily prepared by passing NH₃ over UH₃ while raising the temperature to 1000°; (b) that heating UN₂ in a tantalum crucible in argon for 4 hr. at 1200 and 1900° gave UN_{1.33} and UN_{1.22}, respectively, while heating *in vacuo* for 3 hr. at 1950° gave UN_{1.04}—these three latter phases had identical NaCl lattices; (c) that studies on sintered powders of UN (up to 83% density¹⁵) gave electrical resistivities of 0.9–1.4 × 10⁻⁴ ohm cm. between 300 and 1300°K. and a thermoelectric power of +50 μ v./°K. at room temperature rising to +100 μ v./°K. at 700°K. and falling back to +50 μ v./°K. at 1300°K.

The present writers, having failed to obtain such high electrical conductivities with UN compacts prepared from N_{2} ,¹⁶ have attempted to reproduce the results of D and G and to examine the occurrence and stability of hexagonal U_2N_3 .

Experimental Method and Results

D and G¹⁵ prepared their UN₂ by converting a weighed amount of the metal to the hydride and passing NH₃ gas (purified through BaO and a hot UN column) over it at 800–850° for 24 hr. followed by a short heating at 1000° and cooling in NH₃ to room temperature. The composition was determined by chemical analysis for U. Oxygen contents were 0.38-0.42%.

On repeating this procedure, except for the substitution of CaH₂ and UH₃ as drier and oxygen purifier, respectively, of the initial gas, the writers have obtained UN_{1.80} consistently. Duplicate analyses were completed on three different batches. The use of N₂ instead of NH₃ also gave UN_{1.80}. At lower temperatures smaller ratios were obtained. The lattice constant of UN_{1.80} was 10.568 ± 0.002 Å. The U content was determined by oxidation to U₃O₈ before exposure to the atmosphere, although other samples remained

- (13) E. D. Cater, P. W. Gilles, and R. J. Thorn, J. Chem. Phys., 35, 608 (1961).
- (14) B. R. T. Frost, J. Nucl. Mater., 10, 265 (1963).
- (15) R. Didchenko, private communication.
 (16) I. H. Warren and C. E. Price, Can. Met. Quart., 3, 183 (1964).

unchanged in weight on standing for 50 hr. in air. Oxygen contents were <0.2%. The only visible difference between the powders was size, batches prepared from NH₃ being much finer.

Heating either powder for 1 hr. at 1100° at a pressure of $\sim 10^{-2}$ mm. led to the formation of the hexagonal La₂O₃-type U₂N₃, the ratio being confirmed by analysis. The lattice size agreed with Vaughan's figures of a = 3.69 ± 0.01 and $c = 5.83 \pm 0.01$ Å. This compound was stable in air at room temperature. Between 1150 and 1200° it broke down *in vacuo* to give UN. On heating in an argon or helium atmosphere the conversion was about 50° higher. It appeared that the UN_{2-x} on losing N₂ assumed the hexagonal U₂N₃ structure directly and despite frequent attempts the writers failed to obtain a Mn₂O₃-type X-ray pattern.

For powders heated above 1200° in argon or *in vacuo*, the only product was UN. Up to 1700° the product was stoichiometric $(UN_{1.0 \pm 0.02})$ but above this temperature the analyses were inconsistent, some experiments giving results as low as $UN_{0.8}$ at 1850° . This latter material may, however, be $UN_{1.0} + U$ since the chemical analysis made no distinction. The UN lattice spacings were all 4.888 ± 0.002 Å. When hot pressing, at 5000 p.s.i. in molybdenum-lined graphite dies, the powders prepared via NH₃ gave much denser compacts than those prepared via N_2 , 90% of the theoretical density being easily achieved at 1650°. With these compacts, the room temperature thermoelectric powers of $+52 \ \mu v./^{\circ}C.$ and electrical resistivities of 1.1-1.4 \times 10⁻⁴ ohm cm. closely approached those reported by D and G.

Conclusions

(1) The room temperature thermoelectric data of D and G can be reproduced. (2) $UN_{2.0}$ is not readily prepared at normal pressures. (3) Hexagonal U_2N_3 exists as a stable phase. (4) The existence of a UN phase with an appreciable excess of nitrogen is very doubtful.

Contribution from the Baker Laboratory, Cornell University, Ithaca, New York

Silicon Imidazolidines

By C. H. Yoder and J. J. Zuckerman

Received July 20, 1964

We have recently reported the preparation of spiro silaimidazolidines by the reaction of silicon tetrachloride with N,N'-disubstituted ethylenediamines.¹ We now report the synthesis of a series of monocyclic silaimidazolidines.

⁽⁹⁾ D. A. Vaughan, Trans. AIME, 206, 78 (1956).

⁽¹⁰⁾ P. E. Evans, J. Am. Ceram. Soc., 45, 305 (1962).

⁽¹¹⁾ W. Trzebiatowski, R. Troe, and J. Leciejewicz, Bull. acad. polon. sci., Sér. sci. chim., 10, 395 (1962).

⁽¹²⁾ J. Bugh and A. A. Bauer, Nucleonics, 22, 64 (1964).

			6111																					
RN NR R' Si R"	R'	R″	R	B.p. or m.p. (uncor.)	Ref. index n ³⁰ D	——C, Calcd.	%— Found	——H, Calcd.	%—— Found	—_N, Calcd.	% Found	Si,	%—— Found	—-Mol. Calcd.	wt Found									
I	CH8	CH₃	CH3	131° (740 mm.)		49.94	49.9 0	11.18	10.91	19.41	19,50	19.47	19.67											
II	CH3	CH3	C₂H₅	162–163° (740 mm.)	1.4408	55.76	55.96	11.70	11.75	16.26	16.36	16.30	16.00	172	171 ^b									
III	CH	CH3	n-C3H7	81° (8 mm.)	1.4447	59.93	59.92	12.07	12.20	13.98	14.15	14.02	14.05	200	221^{b}									
IV	CH₃	CH₃	C ₆ H ₅	124–126° (m.p.)		71.61	71.55	7.51	7.58	10.39	10.63	10.47	10.21	268	281^{d}									
v	CH3	CH3	p-CH ₈ C ₆ H ₄	104–106° (m.p.)		72.92	73,00	8.16	8.17	9.45	9.17	9.47	9.31	297	298 ^{<i>d</i>}									
VI	CH3	CH3	p-CH₃OC₅H₅	169–172° (m.p.)		65. 8 1	66.00	7.36	7.58	8.52	8.54	8.55	8.57	328	311 <i>^d</i>									
VII	CH3	C ₆ H ₅	CH3	110° (11 mm.)	1.5155	64.00	63.90	8.79	8.82	13.57	13.55	13.61	13.65	206	184^{b}									
VIII	CH	C6H5	C ₂ H ₅	140–141° (14 mm.)	1.5075	66.60	66.40	9.46	9.61	11.95	11.92	11.98	11.85	234	240 ^e									
IX	C6H5	C ₆ H ₅	CH3	175° (10 mm.)	1.5683	71.61	71.42	7.51	7.75	10.39	10.31	10.47	10.49	268	267 ^b									
R' R'' Si																								
RN NR R R																								
x	$C_{\theta}H_{\delta}$	CHa	C ₂ H ₅	152° (14 mm.)	1.4935	68.09	68,22	10.67	10.69	10.59	10.42	10.65	10.16	264	280°									
XI	$C_{\theta}H_{\delta}$	C_6H_5	CH3	168° (10 mm.)	1.5568	71.08	70,90	8.20	8.00	10.36	10.60	10.39	10.50	270	281¢									

TABLE I^a Silicon Imidazolidines and Other New Silylamines

^a Melting points were measured on a Townson and Mercer Type 5 melting point block and are uncorrected. Analyses were done by Schwarzkopf Microanalytical Laboratory. ^b Determined ebullioscopically in benzene. ^c Determined cryoscopically in benzene. ^d Determined by vapor phase osmometry in benzene. ^e Determined by the Rast method.

The general applicability of the amine chloride type reaction (1) was questioned by Lienhard, who reported that the reaction of dimethyldichlorosilane with N,N'-dimethylethylenediamine yielded a "complicated reaction mixture" and that the five-membered cyclic com-

$$3RNCH_{2}CH_{2}NR + R'R''SiCl_{2} \rightarrow R''SiCl_{2} \rightarrow R''SiCl_{2} \rightarrow R''$$

$$+ (1)$$

$$2NCH_{2}CH_{2}NR \cdot HCl$$

$$H$$

pound (R = R' = R'' = CH₃) could be obtained only by the amine exchange reaction.² Kummer and Rochow found that the presence of the trimethylsilyl group (R = Si(CH₃)₃) greatly facilitated formation of the five-membered rings, and by allowing silicon tetrachloride and organohalosilanes to react with N,N'bis(trimethylsilyl)ethylenediamine or its lithium salt, these workers prepared various trimethylsilyl silaimidazolidine derivatives.³ The preparation of the spiro compounds by the general amine chloride reaction reopened the possibility of forming these compounds by simple reaction of diorganoethylenediamines with diorganodihalosilanes.

Indeed, we have found that the reaction of dimethyldichlorosilane with N,N'-dimethylethylenediamine does give the silaimidazolidine in fair yield (10-20%). Silaimidazolidine was formed under the following conditions: (a) dimethyldichlorosilane in benzene was

(2) F. A. Henglein and K. Lienhard, Makromol. Chem., 32, 218 (1959);
 K. Lienhard, Dissertation, Technische Hochschule Karlsruhe, 1959.

added to a mixture of the diamine and triethylamine in benzene at $60-70^{\circ}$ (mole ratio of 1:1:3, respectively); (b) dimethyldichlorosilane in benzene was added to a mixture of the diamine and triethylamine in benzene at -10° (same ratio); (c) dimethyldichlorosilane in benzene was added to the diamine in benzene at 80° (mole ratio 1:4, respectively).

Additional cyclic compounds (whose physical properties and analyses are given in Table I) were prepared by the amine exchange reaction (2). This method,

$$\underset{H}{\operatorname{RNCH}_{2}\operatorname{CH}_{2}\operatorname{HR}} + \operatorname{R'R''Si}(\operatorname{NR'''}_{2})_{2}$$

$$\underbrace{(\operatorname{NH}_{4})_{2}\operatorname{SO}_{4}}_{\operatorname{100-180}^{\circ}} \qquad \underset{R'}{\operatorname{R''}} \operatorname{R''} + 2\operatorname{HNR'''}_{2}$$

$$(2)$$

although requiring preparation of the starting silanediamine, produces an essentially quantitative yield of pure silaimidazolidine under the proper conditions (removal of the displaced $HNR^{\prime\prime\prime}_{2}$). Ammonium sulfate serves as a catalyst.

The N-alkyl compounds were purified by fractional distillation, and the N-aryl derivatives were recrystallized from benzene-hexane. Structure assignments were based on infrared and nuclear magnetic resonance spectra, molecular weight, and C, H, N, and Si analytical data. N.m.r. spectra of the 2,2-dimethyl and 2,2diphenyl derivatives show a single peak for the bridge methylene protons, indicating either planarity of the ring or rapid inversion of tetrahedral nitrogen.⁴

(4) D. Kummer and J. D. Baldeschwieler, J. Phys. Chem., 67, 98 (1963).

⁽³⁾ D. Kummer and E. G. Rochow, Z. anorg. allgem. Chem., **321**, 21 (1963).

Compounds I-VIII were prepared by exchange of the appropriate diamine with dimethylbis(diethylamino)silane or methylphenylbis(diethylamino)silane. N,N'-di-o-tolylethylenediamine gave no reaction with dimethylbis(diethylamino)silane at a temperature of 180° and neither could the N,N'-di-o-tolyl derivative be obtained by reaction with dimethylbis(dimethylamino)silane. The reluctance of this diamine to react was also observed in the preparation of the spiro compounds¹ and is probably associated with the steric hindrance of the *o*-methyl group or the strain which it imposes on the product ring. N,N'-Di-p-nitrophenylethylenediamine also failed to react with dimethylbis-(diethylamino)silane at 200°. This can be attributed to the low basicity of the diamine or the high temperature (and consequent possible decomposition of the silvlamine) necessary to melt the diamine. The 2,2diphenyl derivative was prepared by reaction of diphenylbis(dimethylamino)silane with N,N'-dimethylethylenediamine. It is curious that the isomeric compounds IV and IX which differ only by the placement of the phenyl and methyl substituents have such strikingly different physical properties: the N-phenyl compound melts at 124–126°, while the N-methyl isomer is a liquid at room temperature, b.p. 175° (10 mm.), freezing point ca. 23°.

Acknowledgments .--- This investigation was supported by Public Health Service Research Grant CA-07064-01 from the National Cancer Institute. We are indebted to the National Science Foundation for a Predoctoral Fellowship to C. H. Y.

CONTRIBUTION FROM THE CHEMISTRY RESEARCH SECTION ROCKETDYNE, A DIVISION OF NORTH AMERICAN AVIATION, INC., CANOGA PARK, CALIFORNIA

Difluoramine: Preparation of **Difluorodiazine and Addition Compounds** with Alkali Metal Fluorides

BY EMIL A. LAWTON, DONALD PILIPOVICH, AND R. D. WILSON

Received July 20, 1964

Difluoramine is amphoteric, as witnessed by its formation of a complex with boron trichloride¹ and the formation of 1:1 complexes with weak bases such as alkyl ethers.² We have found that difluoramine also forms complex compounds with the more basic alkali metal fluorides. At higher temperatures, difluoramine is converted smoothly and in excellent yield to difluorodiazine as in eq. 1.³ With the ready availability of di-

$$2MF + 2HNF_2 \longrightarrow 2MF \cdot HF + N_2F_2 \tag{1}$$

fluoramine from urea,⁴ this method constitutes the most convenient laboratory synthesis of difluorodiazine. Of the other methods which have been recently reviewed by Colburn,⁵ the most convenient preparation mentioned involved the electrolysis of ammonium bifluoride to form N_2F_2 in 5–10% yields as a by-product in the synthesis of NF₃.

The alkali metal fluorides effective in the dehydrofluorination of difluoramine to difluorodiazine at ambient temperatures are potassium fluoride, rubidium fluoride, and cesium fluoride. Two isomeric forms of N_2F_2 are formed and are the *cis* and *trans* isomers reported previously.6 No evidence for a third form has been observed.

In connection with our investigation of the conversion of HNF_2 to N_2F_2 , evidence was obtained that clearly showed the formation of molecular complexes of alkali metal fluorides and HNF₂. Elucidation of the structure of these complexes by low-temperature infrared techniques has been completed in this laboratory and will be reported separately.⁷

Reproducible dissociation pressures for $KF \cdot HNF_2$ and $RbF \cdot HNF_2$ were measured and, as predicted from the relative basicities of the alkali fluorides, the stability of the complexes formed varied as follows: CsF >RbF > KF > NaF. In fact, no evidence was found for any interaction of difluoramine with NaF, CaF_2 , or NiF_2 down to -80° .

A complete study of the CsF-HNF₂ system was not carried out because of the explosive properties of the complex. Condensing difluoramine over CsF and allowing some difluoramine to escape from the system resulted in a dissociation pressure of about 1.5 mm. at -65.8° , a higher pressure than the 0.8 mm. observed with RbF at this temperature. However, removal of about 50% of the complexed difluoramine caused an abrupt drop in the dissociation pressure to less than 0.05 mm. On warming, this complex invariably exploded before it reached 0°.

In addition to the gas-solid reaction shown in (1) it was found that aqueous KF (pH 8.6) effected the smooth dehydrofluorination of HNF_2 . A nominally 25% solution of KF in water consumed HNF₂ rapidly with the formation of both isomers of N_2F_2 in approximately 75% yield, as in the equation

$$2F^- + 2HNF_2 \longrightarrow 2HF_2^- + N_2F_2$$

It is interesting to note, however, that experiments carried out with HNF₂ and standard buffer solutions $(Na_2B_4O_7-K_3PO_4)$ at pH 8.0 and 9.0, respectively, resulted in only 20% yields.

These results indicate that F⁻ may be particularly effective in the dehydrofluorination reaction, but ex-

(7) H. Dubb, C. Greenough, and E. C. Curtis, to be submitted.

⁽¹⁾ R. C. Petry, J. Am. Chem. Soc., 82, 2400 (1960).

⁽²⁾ E. A. Lawton and J. Q. Weber, *ibid.*, **85**, 3595 (1963). (3) E. A. Lawton and D. Pilipovich, U. S. Patent 3,109,711 (1963).

⁽⁴⁾ Difluoramine is released in high yield by adding sulfuric acid drop-bydrop to the fluorinated urea liquids, described by Lawton and Weber,2 or to difluorourea: E. A. Lawton, E. F. C. Cain, D. F. Sheehan, and M. Warner, J. Inorg. Nucl. Chem., 17, 188 (1961).

⁽⁵⁾ C. B. Colburn, "Nitrogen Fluorides and Their Inorganic Derivatives," chapter in "Advances in Fluorine Chemistry," Vol. 3, Butterworths, Washington, D. C., 1963, p. 103.

⁽⁶⁾ C. B. Colburn, F. A. Johnson, A. Kennedy, K. McCallum, L. C. Metzger, and C. O. Parker, J. Am. Chem. Soc., 81, 6397 (1959).