It is likely, but not essential to the argument, that reaction 4 is rate-determining in the over-all oxidation of water.

If direct reaction of the additives with the perxenate were predominant in our experiments, these reactions would have to have bimolecular rate constants exceeding 10^{8} 1./mole sec. Although it is possible that chloride might react with perxenate at such a rate, it seems very unlikely that any of the organic materials would do so, particularly when we consider that under these conditions dichromate oxidizes such materials with rate constants of 10^{-2} or less.⁸ Thus it seems highly probable that at the concentrations employed in this study, all of the organic additives react primarily with the OH radicals formed by reactions 4 and 5.

Acknowledgments.—We wish to thank Mr. Lloyd Krout for carrying out the mass spectrometric analyses, and we are greatly indebted to Professor Henry Taube for valuable criticism.

On the Oxidation of Vanadium(II) by Oxygen and Hydrogen Peroxide

By JAMES H. SWINEHART

Received January 7, 1965

The mechanism by which aqueous solutions of firstrow transition metal ions in the +2 oxidation state, M(II), are oxidized to the +3 oxidation state, M(III), has received considerable attention. The problem becomes especially interesting with oxygen and hydrogen peroxide which can act as one- or two-electron oxidizing agents.¹ Two possible mechanisms for the oxidation process are: (i) a one-electron oxidation and (ii) a two-electron oxidation of M(II) to M(IV) followed by a reaction between M(IV) and M(II) yielding M-(III). The question is how much of the reaction proceeds by each mechanism?

Recently an intermediate in the reaction between V_{aq}^{2+} and VO_{aq}^{2+} , VOV_{aq}^{4+} , was characterized.² This intermediate, which has a high intensity absorption band centered at 4250 Å., forms slowly from the reactants. The extent to which the intermediate forms will depend on its rate of decomposition, which to a first approximation in acid solution is proportional to the product of the intermediate and hydrogen ion concentrations. At moderate hydrogen ion concentrations the intermediate is a sensitive probe of the mechanism by which V_{aq}^{2+} is oxidized to V_{aq}^{3+} by O_2 and H_2O_2 . Detection of the intermediate means that the oxida-

(1) W. M. Latimer, "The Oxidation States of the Elements and their Potentials in Aqueous Solutions," 2nd Ed., Prentice-Hall, Inc., New York, N. Y., 1952, Chapter 4. tion has yielded VO_{aq}^{2+} by a process which is rapid compared with the rate of formation of the intermediate. If the intermediate is not observed either a oneelectron oxidation of V_{aq}^{2+} and V_{aq}^{8+} occurs or the formation of VO_{aq}^{2+} is very slow compared to the formation of the intermediate.

This note describes a study of the reaction of excess V_{ag}^{2+} with O_2 and H_2O_2 in acid solution.

Experimental

Materials.—The chemicals used were: VOSO₄·2H₂O (purified, Fisher Scientific Co.); HClO₄, 70.9% by specific gravity measurement (reagent, Baker and Adamson); Ba(ClO₄)₂·3H₂O (G. F. Smith Chemical Co.); Na₂CO₃ (reagent, J. T. Baker Chemical Co.); H₂O₂, 30% solution (reagent, J. T. Baker Chemical Co.); and Fe(ClO₄)₃·6H₂O (G. F. Smith Chemical Co.).

Vanadium(II) perchlorate solutions were prepared by reduction of VO(ClO₄)₂ solutions containing HClO₄ and NaClO₄ with Zn amalgam. Vanadium(IV) perchlorate solutions were prepared from VOSO₄ solutions by adding Ba(ClO₄)₂ to precipitate BaSO₄. Constant ionic strength solutions of HClO₄ and Na-ClO₄ were prepared by adding the appropriate amount of HClO₄ (70.9% by weight) to weighed amounts of Na₂CO₃. Iron(III) and vanadium(IV) solutions were prepared by adding weighed amounts of Fe(ClO₄)₃·6H₂O or VOSO₄·3H₂O to the proper NaClO₄-HClO₄ solution.

Measurements.—All absorbancy measurements were made with a Cary Model 14 recording spectrophotometer using 1cm. cells. An appropriate volume of the solution of the oxidizing agent (O₂, H₂O₂, Fe_{aq}³⁺, or VO_{aq}²⁺) at a total ionic strength of approximately 1.0 in NaClO₄, HClO₄, and Zn(ClO₄)₂ was prepared in a 1-cm. capped spectrophotometer cell. Iron(III) and vanadium(IV) solutions were outgassed with N₂ which had passed through bubblers containing chromium(II) to remove O₂. Oxygen-containing solutions were prepared by bubbling the gas into NaClO₄-HClO₄ solutions contained in capped cells. Hydrogen peroxide solutions were prepared by adding the appropriate volume of 30% H₂O₂ to N₂-outgassed NaClO₄-HClO₄ solutions.

The V_{aq}^{2+} solution was added to the capped 1-cm. cell with a syringe while the cell was in the spectrophotometer. The solution was mixed by pulling the contents of the cell back into the syringe and then forcing it back into the cell. The order of mixing did not affect the results. Blanks were run by adding vanadium(II) solutions to N2-outgassed solutions containing no oxidizing agent. The resulting solutions were spectrophotometrically pure Vag2+ as determined from knowledge of the visible spectrum of Vaq^{2+.8} The concentration of oxidizing agent present in the original solution was determined from the amount of V_{BG}^{8+} produced in the reaction. The total vanadium content of each solution, $[V_{aq}^{2+} + V_{aq}^{3+}]$, was determined spectrophotometrically using the absorbance at 5700 Å. At this wave length the extinction coefficient of V_{aq}^{2+} equals that of V_{aq}^{3+} (5.25 cm.⁻¹ M^{-1}).^{3·4} The V_{aq}^{3+} produced in the oxidation was determined from the absorbance at 4000 Å. which was corrected for the excess V_{aq}^{2+} present. At 4000 Å. $\epsilon_{V_{aq}^{3+}}$ equals 8.30 cm. $^{-1}$ $M^{-1}, ^{3-5}$ and $\epsilon_{\rm V_{eq}2^+}$ equals 1.16 cm. $^{-1}$ $M^{-1}, ^{5}$ The concentration of oxidizing agent in the original solution was the final concentration of $\mathrm{V}_{aq}{}^{3+}$ divided by 4 for oxygen and 2 for VO_{aq}^{2+} and H_2O_2 .

Results and Discussion

When excess V_{aq}^{2+} reacts with O_2 or H_2O_2 , curves of the absorbance at wave lengths between 3500 and 5500 Å. recorded as a function of time increase to a maximum and then decrease to a final value indicating

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA

⁽²⁾ T. W. Newton and F. B. Baker, Inorg. Chem., 8, 569 (1964).

⁽³⁾ W. R. King, Jr., and C. S. Garner, J. Phys. Chem., 58, 29 (1954).

⁽⁴⁾ S. C. Furman and C. S. Garner, J. Am. Chem. Soc., 72, 1785 (1950).

⁽⁵⁾ As determined by the author.

that an intermediate forms in the reaction. The spectrum of the intermediate, ΔD vs. wave length, where ΔD is defined in ref. 2 as the difference in absorbance between the zero time extrapolation of the decreasing portion of the absorbance vs. time curve minus the contribution from the initial concentrations of V_{aq}^{2+} and VO_{aq}^{2+} , is identical with the spectrum Newton and Baker find for the intermediate in the reaction between V_{aq}^{2+} and VO_{aq}^{2+} , $VOV_{aq}^{4+,2}$ The maximum in the spectrum is at 4250 Å. Measurements at 7600 Å. show that VO_{aq}^{2+} is an initial product in the reaction. No intermediate forms in the reaction between V_{aq}^{2+} and Fe_{aq}^{3+} , a one-electron oxidizing agent. Spectra of the solutions recorded after completion of the reaction between V_{aq}^{2+} and O_2 or H_2O_2 showed only V_{aq}^{2+} and V_{aq}^{3+} to be present. Therefore, it is concluded that one path for the oxidation of excess V_{aq}^{2+} to V_{aq}^{3+} by O_2 or H_2O_2 involves the *rapid* oxidation of $V_{aq}{}^{2+}$ to $VO_{aq}{}^{2+}$ followed by the reaction of $\mathrm{VO}_{aq}{}^{2+}$ with $\mathrm{V}_{aq}{}^{2+}$ yielding $\mathrm{V}_{aq}{}^{3+}$. As stated in ref. 2 about 65% of the V_{aq}^{2+} - VO_{aq}^{2+} reaction goes by the intermediate VOV_{aq}^{4+} while the remainder proceeds by an outer-sphere mechanism. The second path, a one-electron oxidation of $V_{aq}{}^{2+}$ to $V_{aq}{}^{3+}$, must also be rapid.

The question to be answered is what fraction of the V_{ag}^{3+} produced in the reaction of excess V_{ag}^{2+} with O_2 or H_2O_2 proceeds by the $V_{aq}^2 + VO_{aq}^2 + path$? Newton and Baker have shown that for the reaction between V_{aq}^{2+} and VO_{aq}^{2+} the quantity $\Delta D[H^+]/[V_{aq}^{2+}]$. $[VO_{aq}^{2+}]$, where $[V_{aq}^{2+}]$ and $[VO_{aq}^{2+}]$ are the initial concentrations of $\mathrm{V}_{aq}{}^{2+}$ and $\mathrm{VO}_{aq}{}^{2+}\text{,}$ is a constant at a given temperature.² The fraction of the reaction proceeding by a $V_{aq}^{2+}-VO_{aq}^{2+}$ path can be estimated from the discrepancy between the quantity $\Delta D/$ $[V_{aq}^{2+}][VO_{aq}^{2+}]$, at constant $[H^+]$, obtained for the $V_{aq}^{2+}-VO_{aq}^{2+}$ reaction and values obtained for the $V_{aq}^{2+}-O_{2}$ and $H_{2}O_{2}$ reactions assuming all of the oxidizing agent reacts rapidly with V_{aq}^{2+} to give VO_{aq}^{2+} $([VO_{aq}^{2+}])$ equals the concentration of H_2O_2 and twice the concentration of O_2). In all cases $[V_{aq}{}^{2+}]$ was calculated using $\Delta D/[V_{aq}^{2+}][VO_{aq}^{2+}]$ from the V_{aq}^{2+} - $\mathrm{VO}_{aq}{}^{2+}$ reaction and equations for total vanadium and total oxidizing agent.

Table I presents some typical data collected at 4250 Å. when excess V_{aq}^{2+} was allowed to react with O_2 , H_2O_2 , and VO_{aq}^{2+} . The quantity $\Delta D/[V_{aq}^{2+}][VO_{aq}^{2+}]$ for the reaction of V_{aq}^{2+} with VO_{aq}^{2+} is approximately $13 \times 10^3 M^{-2}$ at 20°, $[H^+] \approx 0.3 M$, and $\mu = 1.0.^6$ The values calculated for the H_2O_2 and O_2 reactions with V_{aq}^{2+} are 4×10^3 and $8 \times 10^3 M^{-2}$, respectively. This means that in the V_{aq}^{2+} -H₂O₂ and V_{aq}^{2+} -O₂ reactions about 30 and 60%, respectively, of the V_{aq}^{3+} is produced *via* the V_{aq}^{2+} - VO_{aq}^{2+} path.

The oxidation of Cr_{aq}^{2+} by O_2 and H_2O_2 has been studied by Ardon and Plane.⁷ Oxidation with H_2O_2

TABLE I					
Data on the Oxidation of Vanadium(II)					
	Conditions: 20°, $\mu \approx 1.0$ (HClO ₄ , NaClO ₄ , and				
$Zn(ClO_4)_2)$, [H ⁺] $\approx 0.3 M$					
		10 ^s [oxi- dizing			$10^{-2}\Delta D/$ $[V_{aq^{2}}]$
Run ^a	Oxidizing agent	agent], M	$\frac{10^{2}[V_{ag}^{2}+]}{M}$	ΔD	$[VO_{aq^{2}}], b$ M^{-2}
1	H_2O_2	1.5	2.20	0.15	4.5
2	H_2O_2	3.8	1.81	0.27	3.9
3	$\rm H_2O_2$	3.9	1.81	0.32	4,5
4	O_2	0.6	2.27	0.20	7.3
$\mathbf{\tilde{o}}$	O_2	0.7	2.18	0.26	8.5
6	Og	1, 2	1,16	0.24	8.6
7	$\rm VO_{aq}^{2+}$	0.3	2.26	0.09	13.3
8	VO_{aq}^{2+}	1.2	2.26	0.36	13.3
9	VO_{aq}^{2+}	3.3	2.15	0.81	11.5

^a Each run done in duplicate. ^b $[VO_{aq}^{2+}] = n [oxidizing agent]$, where *n* equals 2 for oxygen and 1 for H_2O_2 and VO_{aq}^{2+} .

yields primarily Cr_{aq}^{3+} . However, a dinuclear chromium(III) species, which is believed to result from a reaction between Cr_{aq}^{2+} and a chromium(IV) species, is the only product when O_2 is used. It is interesting to note that in both cases oxidation with O_2 proceeds primarily by the M(II)-M(IV) path, while the H_2O_2 oxidation proceeds predominantly by a one-electron path.

Lower limits can be set on the rate constants associated with the oxidation of V_{aq}^{2+} directly to V_{aq}^{3+} and VO_{aq}^{2+} . Assuming pseudo-first-order kinetics $([V_{aq}^{2+}] = 10^{-2} M$ and a half-time less than 1 sec.) the rate constants are greater than $10^2 M^{-1}$ sec.⁻¹ at 20° .

Acknowledgment.—This investigation was supported by Public Health Service Research Grant GM 11767-01 from the National Institutes of Health.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CALIFORNIA 92502

Proton Nuclear Magnetic Resonance Studies of the Bismuth(III) and Lead(II) Tartrate Complexes

BY JAMES R. BRANNAN AND DONALD T. SAWYER¹

Received January 20, 1965

Metal tartrate complexes are well known and a number of stability constants have been reported.²⁻⁵

⁽⁶⁾ The quantity $0.693\Delta D/[V_{aq}^{2+}]$ $[VO_{aq}^{2+}]t_{1/2}$, where $t_{1/2}$ is defined in ref. 2, is 2900 and 3000 M^{-2} sec.⁻¹ for runs 7 and 8, respectively. The value at 20° extrapolated from the data of Newton and Baker is 2900 M^{-2} sec.⁻¹.

⁽⁷⁾ M. Ardon and R. A. Plane, J. Am. Chem. Soc., 81, 3197 (1959).

⁽¹⁾ To whom correspondence and requests for reprints should be addressed.

⁽²⁾ J. Bjerrum, G. Schwarzenbach, and L. G. Sillén, "Stability Constants," Part I, Special Publication No. 6, The Chemical Society, London, 1957, p. 19.

⁽³⁾ K. B. Vatsimirskii and V. P. Vasil'ev, "Instability Constants of Complex Compounds," Consultants Bureau, New York, N. Y., 1960, pp. 165, 166.
(4) A. Ringbom, "Complexation in Analytical Chemistry," Interscience

⁽⁴⁾ A. Ringbom, "Complexation in Analytical Chemistry," Interscience Publishers, New York, N. Y., 1963, p. 327.
(5) S. Chaberek and A. E. Martell, "Organic Sequestering Agents," John

⁽⁵⁾ S. Chaberek and A. E. Martell, "Organic Sequestering Agents," John Wiley and Sons, Inc., New York, N. Y., 1959, pp. 308, 513.