served that upon irradiating the Co(III) acidopentaammine complexes at wave lengths where electron-transfer and d-d bands partially overlap, both photoreactions occur. Since with irradiation of the Co(III)amino acid complexes in pure d-d bands (λ 546 m μ) no appreciable reaction occurs, it is thought that the d-d excitation does not contribute to quantum yields at every wave length. Therefore the photodecomposition following the irradiations at 313 and 365 m μ can be attributed to the partial electron-transfer character of the absorption. Thus the overlap between the electrontransfer and d-d bands is probably more accentuated in α -tris(valinato)cobalt(III),^{5b} in accordance with the quantum yields obtained for this complex.

Finally, according to the proposed mechanism, which regards the photodecomposition as a direct consequence of the radial redistribution of the electronic charge caused by the excitation, the quantum yield is wholly independent of the H^+ concentration and is also almost independent of the temperature, the type of coordinated amino acid, and the steric arrangement of the complex.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA

Complexes of Trivalent Lanthanide and Actinide Ions. I. Outer-Sphere Ion Pairs

BY GREGORY R. CHOPPIN AND WILLIAM F. STRAZIK

Received March 1, 1965

Stability constants have been measured for the mononitrato complexes of Ce(III), Pm(III), Eu(III), Tb(III), Tm(III), and Am(III) by a solvent-extraction technique. These stability constants as well as the enthalpy and entropy data for MNO_3^{2+1} indicate that these are outer-sphere ion pairs. It is proposed that these data can be interpreted in terms of a general model of lanthanide complexing in which the effect on the hydration sphere about the cation is the dominant effect.

Introduction

The sequence of stabilities of lanthanide complexes as a function of atomic number has been of interest for a number of years. Attempts to correlate this sequence with various properties of the lanthanide ions have been less than successful. A major reason for this difficulty has been the lack of sufficiently complete thermodynamic data. Although values of the enthalpy and entropy of complexation have been published in the past few years, 1-6 considerable disagreement exists in interpretation of the observed data. This is to be attributed partially to the relative complexity of the chelate systems studied. We have begun examination of simpler systems to minimize this difficulty. In previous publications^{7,8} the thermodynamic values for the formation of MCl²⁺ and MS- CN^{2+} have been reported. In this paper the results of a study of the nitrate complexes are reported. In the next paper, we report the thermodynamic parameters for the formation of propionate and isobutyrate systems.9

Peppard and his co-workers¹⁰ have measured the first

- (4) J. L. Mackey, J. E. Powell, and F. H. Spedding, J. Am. Chem. Soc., 84, 2047 (1962).
 - (5) I. Grenthe, Acta Chem. Scand., 17, 2487 (1963).
 - (6) I. Grenthe, *ibid.*, **18**, 283 (1964).
- (7) G. R. Choppin and P. J. Unrein, J. Inorg. Nucl. Chem., 25, 387 (1963).
 - (8) G. R. Choppin and J. Ketels, *ibid.*, 27, 1335 (1965).
- (9) G. R. Choppin and A. J. Graffeo, Inorg. Chem., 4, 1254 (1965).

(10) D. F. Peppard, G. W. Mason, and I. Hucher, J. Inorg. Nucl. Chem., 24, 881 (1962).

stability constants for several trivalent lanthanide nitrates and obtained values only half as large as those reported by Russian chemists.¹¹ Recently Bansal, Patil, and Sharma¹² have reported first stability constants for Eu(III) and Am(III) nitrates which were smaller than Peppard's. Second step constants for these same ions were also given in this last paper. However, thus far no data have been reported on the enthalpy and entropy changes in formation of these complexes.

Experimental

Materials.—Ce¹⁴⁴, Pm¹⁴⁷, Eu^{152–154}, and Am²⁴¹ were obtained from the Oak Ridge National Laboratory as carrier-free isotopes. Tb¹⁶⁰ and Tm¹⁷⁰ were obtained by the neutron irradiation of Tb₃O₄ and Tm₂O₈ at the University of Florida reactor. All isotopes were dissolved in 1 M HClO₄.

The extractant, dinonylnaphthalenesulfonic acid (referred to as HD), was obtained from the R. T. Vanderbilt Co., Inc., as a 38.2% solution in *n*-heptane. It was analyzed according to the procedure described previously⁷ and found to be approximately 0.8 M.

All acids were reagent grade, diluted to volume, and standardized to a phenolphthalein end point with standard NaOH. The aqueous and organic solutions were pre-equilibrated with each other prior to use.

Procedure.—The procedure followed that of the earlier report.⁷ Whenever possible, the aqueous phase was prepared to contain at least 7000 counts/min. per ml. for each radioisotope. The concentration of HD was varied from approximately $10^{-2} M$ to $6 \times 10^{-5} M$. The total ionic strength of the aqueous phase

⁽¹⁾ R. H. Betts and O. F. Dahlinger, Can. J. Chem., 37, 91 (1959).

⁽²⁾ T. Moeller and R. Ferrus, J. Inorg. Nucl. Chem., 20, 261 (1961).

⁽³⁾ T. Moeller and L. C. Thompson, *ibid.*, 24, 499 (1962).

⁽¹¹⁾ I. A. Lebedev, S. V. Pirozhkov, and G. N. Yakovlev, Akad. Nauk. SSSR, Ordena Lenina Institut Atomnoi Energii. United States Atomic Energy Commission Translation, AEC-Tr-4275.

⁽¹²⁾ B. M. L. Bansal, S. K. Patil, and H. D. Sharma, J. Inorg. Nucl. Chem., 26, 993 (1964).

was adjusted to the desired values for mixture of the necessary concentrations of $HClO_4$ and HNO_3 . All tubes were mixed for 12–24 hr.

Duplicate 1-ml. aliquots from both phases were taken for counting samples. Radionuclides whose decay is accompanied by sufficiently energetic γ emission were counted directly as liquid aliquots using a NaI(Tl) well scintillation counter. The other nuclides were counted as solid samples for either α or β emission in a windowless 2π gas flow proportional counter. Because of the corrosive effect of the acids on metal, the aqueous samples were prepared on glass planchets and evaporated to dryness under a heat lamp. The organic samples were prepared on metal planchets, evaporated to dryness, and ignited in the flame of a Fischer burner to ensure removal of the organic residue. Correction was made for the difference in backscattering between the two types of planchets. It was demonstrated that no correction was necessary in either case for sample self-absorption.

Results

The equations describing the equilibria in this system have been discussed by White, *et al.*,¹³ and Choppin and Unrein.⁷ The extraction of the metal ion by HD is described by the equation

$$M_{A^{3+}} + ((HD)_{x})_{0} = M(H_{x-3}D_{x})_{0} + 3H_{A^{+}}$$
 (1)

where the subscripts A and O denote the aqueous and organic phases, respectively. In the presence of nitrate ion in the aqueous phase, competing reactions exist, such as

$$M^{3+} + NO_3^- = MNO_3^{2+}$$
 (2a)

$$MNO_3^{2+} + NO_3^- = M(NO_3)_2^+$$
 (2b)

The distribution ratio is defined as

$$K_{\rm d} = \frac{\Sigma({\rm M})_{\rm 0}}{\Sigma({\rm M})_{\rm A}} \tag{3}$$

If we assume that the variation of anionic composition at constant ionic strength does not change the activity coefficients, and the concentration of H^+ and HD are kept constant, the relation between the distribution ratio and the stability constant of the complex species is

$$\frac{K_{\rm d}^0}{K_{\rm d}} = 1 + K_1[\rm NO_8^-] + K_1K_2[\rm NO_3^-]^2 + \dots K_n[\rm NO_8^-]^n (4)$$

where K_1, K_2, \ldots, K_n are the step stability constants for the formation of the species MNO₃²⁺.....M- $(NO_3)_n^{3^{-n}}$ and K_d^0 is the distribution ratio in the absence of complexing ligand. If only the first complex is formed, a plot of $1/K_d vs.$ [NO₃-] gives a straight line whose slope is equal to K_1/K_d^0 and whose intercept is equal to $1/K_{d^0}$. If the second complex in the series is also formed, the above line will curve upward as the relative amount of the second complex becomes important. For the majority of our runs, the data could be fitted quite well with a straight line (Figure 1). The values of K_1 were obtained from a least-squares analysis of the $1/K_d$ vs. $[NO_3^-]$ data using an I.B.M. 709 computer. The error limits were obtained by compounding the standard deviations of the slope and intercept for each graph. Table I gives a typical set of data, while Figure 1 shows other sets of data.¹⁴ The values of K_1 averaged from several runs in most cases

(13) J. M. White, P. Kelly, and N. C. Li, J. Inorg. Nucl. Chem., 16, 337 (1961).

Figure 1.—Extraction of Ce (O, $\mu_{=} = 1.0$ M), Eu (\Diamond , $\mu_{=} = 0.75$ M), and Tb (\Box , $\mu = 0.75$ M) as a function of [NO₃⁻] by 0.009 M HD.

Table	I	

DETERMINATION OF STABILITY CONSTANTS FOR Eu(III) COMPLEXES WITH NITRATE IONS^a

Activity			
Initial conen. of	Aqueous	Organic	
HNO ₈ , M	phase	phase	$1/K_{ m d}$
1.00	4792	1524	3.145
0.95	4641	1641	2.828
0.90	4626	1655	2.795
0.85	4561	1712	2.664
0.80	4361	1921	2.270
0.75	4310	1925	2.239
0.70	4402	1871	$2 \ 353$
0.65	4271	2054	2.079
0.60	4226	2075	2.037
0.55	4054	2177	1.862
0.50	4097	2162	1.895
0.45	3981	2203	1.807
0.40	4000	2299	1.740
0.35	3835	2655	1.444
0.30	3768	2596	1.451
0.25	3655	2584	1.414
0.20	3560	2615	1.361
0.15	3345	2900	1.153
0.10	3446	3038	1.134
0.05	3269	3038	1.076
0.00	• • •		0.95^{b}

 ${}^{a}T = 25.0 \pm 0.02^{\circ}$. Initial volume of both phases = 3.0 ml. Volume of aliquots taken = 1.0 ml. Tracer used = Eu¹⁵²⁻¹⁶⁴. Initial concentration of HD 0.009 M. μ = 1.00 M (initial concentration of HClO₄ = 1.00 - concentration of HNO₃). b Determined independently in other experiments.

are listed with the compounded error limits in Table II for solutions at 25° .

In some cases, a definite upward curvature was

⁽¹⁴⁾ The data supplementary to this article have been deposited as Document No. 8479 with the A.D.I. Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington 25, D. C. A copy may be secured by citing the document number and by remitting \$5.00 for photoprints or \$2.25 for 35-mm. microfilm. Advance payment is required. Make checks or money orders payable to: Chief, Photoduplication Service, Library of Congress.

TABLE II

STABILITY C	Constants for the Nitr.	ATE COMPLEXES AT 25.0°
Trivalent	Ionic strength,	
metal ion	μ	K_1
Ce	1.00	1.63 ± 0.10
Pm	1.00	2.48 ± 0.29
Eu	1.00	2.04 ± 0.05
	0.75	2.43 ± 0.08
	0.50	2.73 ± 0.15
	0.30	2.89 ± 0.12
	0.20	2.68 ± 0.44
	0.00	17.0ª
Тb	1.00	1.13 ± 0.05
	0.75	1.32 ± 0.04
	0.50	1.27 ± 0.03
	0.40	1.30 ± 0.04
	0.30	1.34 ± 0.13
	0.00	7.5^a
Tm	1.00	0.56 ± 0.10
Am	1.00	1.80 ± 0.10
ª Value ext	trapolated using eq. 7.	

noticeable in the $1/K_d$ curve at the highest nitrate concentrations consistent with the formation of a second complex. However, in these cases the data were neither sufficiently accurate nor numerous to define the curve well enough to allow simultaneous calculation of K_1 and K_2 by a least-squares fit for the quadratic equation. Irving and Khopkar have discussed this same problem recently for the quite similar Eu⁺⁸-Cl⁻ system.¹⁵ The value of K_2 for the formation of M-(NO₃)₂⁺ could be estimated to be roughly 0.3-0.6. In these cases of curvature in the $1/K_d$ plots, only the data below 0.6-0.7 M HNO₃ were used to calculate K_1 as this always fitted a straight line within the error limits.

The major uncertainty in evaluation of these stability constants is the validity of the assumption that the activity coefficients do not change as the anionic composition is varied at constant ionic strength. From eq. 1 and 3 it can be shown when no complexing occurs that

$$K_{\rm d} \propto \gamma_{\rm M} / \gamma_{\rm H}^{3}$$
 (5)

 K_1

where $\gamma_{\rm M}$ and $\gamma_{\rm H}$ are the activity coefficients of the trivalent metal ion and the hydrogen ion in the aqueous phase. Unfortunately, insufficient data exist to attempt to apply Harned's rule for these mixed electrolyte systems. However, estimates of the effect on the activity coefficients (and, hence, on K_d) can be obtained by assuming that the changes in the activity coefficients are linear with concentration, using values for $\mu = 1 M$ nitrate and $\mu = 1$ M perchlorate as the limits. This approach was given an experimental test by measuring the extraction of Na²² in $\mu = 1.0 M (H^+)$ for perchlorate-chloride⁷ and for perchlorate-nitrate solutions. Sodium ion was chosen as no complexing is expected and activity coefficient data are readily available.¹⁶ The expected ratio $K_d(1 \ M \ HClO_4)/K_d(1 \ M$ HCl) for Na²² was calculated to be 0.93, which compared well with the experimental value of $0.90.^7$ A value of unity was calculated for the expected ratio (15) H. M. N. H. Irving and P. K. Khopkar, J. Inorg. Nucl. Chem., 26, 1561 (1964).

 $K_{\rm d}(1 \ M \ {\rm HClO_4})/K_{\rm d}(1 \ M \ {\rm HNO_3})$ and experimentally no change was observed in $K_{\rm d}$ within experimental error as the nitrate concentration was varied from 0 to 1.0 M.

The lack of proper activity coefficient data for the trivalent lanthanide ions does not allow direct calculation of the expected K_d ratio in 1 M HClO₄ and 1 M HNO₃. The calculated ratios for Li⁺, Ca²⁺, Mg²⁺, and Na⁺ were used to arrive at an estimated $K_d(1 M$ HClO₄)/ K_d (1 M HNO₃) ratio of 1.0–1.2 for the lanthanide ions. The ions Li⁺ and Ca²⁺ have similar ionic charge densities as M³⁺ and their ratios were both 1.05. Since the experimental ratio for M³⁺ is 2.5–3.0, even this crude treatment seems to justify the interpretation that the change in K_d can be attributed to complexing.

If it is assumed that MNO_3^{2+} does form, eq. 4 can be rewritten to show the influence of activity coefficients

$$\frac{1}{K_{\rm d}} = \frac{1}{K_{\rm x}} \frac{\gamma_{\rm H}^3}{\gamma_{\rm M}} + \frac{K_{\rm 1}}{K_{\rm x}} \frac{\gamma_{\rm H}^3}{\gamma_{\rm M}} \gamma_{\rm NO_4} [\rm NO_3^{-}]$$
(6)

where K_x is the equilibrium constant for eq. 1. Estimations based on Harned's rule (for γ_{NO_8}) and on the preceding arguments lead to an estimate that the "correct" values for K_1 in $\mu = 1.0 M$ HNO₃ are roughly 10% larger than the values given in Table II.

To determine the ΔH° of formation for the species EuNO₃²⁺, a series of experiments was carried out with Eu(III) at various temperatures and at constant ionic strength of 1.00 *M*. The resulting data are tabulated in Table III. The Van't Hoff relationship was used to

TABLE III				
Stability Constants for Europium(III) Nitrate				
Complex at $\mu = 1.0 M$				
	0°	25°	40°	55°
2	10 ± 0.05	1.99 ± 0.12	1.8 ± 0.05	1.76 ± 0.06

calculate the enthalpy change at 25° . The change in entropy, ΔS° , was then determined by application of the Gibbs-Helmholtz equation. These thermodynamic constants, which relate to a standard state of $\mu = 1.00$ M (HClO₄ + HNO₃), are summarized in Table IV.

Since all the species involved are charged, it was decided to follow the suggestion of Rossotti and Rossotti¹⁷ in determining the thermodynamic stability constant at $\mu = 0$ of the species MNO_3^{2+} . Accordingly, the stability constants for $EuNO_3^{2+}$ and $TbNO_3^{2+}$ were determined at various ionic strengths. These constants (Table II) were then used in an extended form of the Debye–Hückel equation

$$\log {^{T}K_{I}} = \log K_{I} - \frac{\Delta Z^{2}A\sqrt{\Gamma}}{1 + B\delta\sqrt{\Gamma}} - Cc - Dc^{2} \quad (7)$$

where ${}^{T}K_{1}$ and K_{1} are the first stability constants for $\mu = 0$ and $\mu > 0$, respectively; A, B, C, and D are the constants used in the Debye-Hückel equation and depend on the dielectric constant of the solvent and the temperature; Γ is the ional concentration $(i.e., 2\mu)$; c is the concentration $(= \mu)$; and \hat{a} is the mean distance of closest approach (in Ångstroms). The quantity

⁽¹⁶⁾ K. S. Pitzer and L. Brewer, "Thermodynamics," McGraw-Hill Book Co., New York, N. Y., 1961, Appendix 4.

⁽¹⁷⁾ F. J. C. Rossotti and H. Rossotti, "The Determination of Stability Constants," McGraw-Hill Book Co., New York, N. Y., 1961, p. 32.

THEREOFTNAMIC TARAMETERS FOR EANTHANIE COMPLEXES AT 20				
Ionic strength, M	ΔF_1° , kcal./mole	ΔH_1° , kcal./mole	ΔS_1° , e.u.	Ref.
1.00	-0.41 ± 0.02	-0.57 ± 0.06	-0.54 ± 0.20	
1.00	-0.07 ± 0.03	-0.05 ± 0.03	-0.41 ± 0.20	7
1.00	-1.10 ± 0.01	-5.47 ± 0.20	-14.7 ± 0.7	8
2.00	-2.64	1.71	14.6	6
2.00	-2.70	1.76	15.0	9
3.00	-9.8	-5.5 ± 0.6	14.5	a
	Innicato J 111 Ionic strength, M 1.00 1.00 2.00 2.00 3.00	Inductor Fraction of the first of the f	Indication of the second problem of the seco	Index of Law matrice Confidences at 20Ionicstrength, M ΔF_1° , kcal./mole ΔM_1° , kcal./mole ΔS_1° , e.u. 1.00 -0.41 ± 0.02 -0.57 ± 0.06 -0.54 ± 0.20 1.00 -0.07 ± 0.03 -0.05 ± 0.03 -0.41 ± 0.20 1.00 -1.10 ± 0.01 -5.47 ± 0.20 -14.7 ± 0.7 2.00 -2.64 1.71 14.6 2.00 -2.70 1.76 15.0 3.00 -9.8 -5.5 ± 0.6 14.5

TABLE IV

THERMODYNAMIC PARAMETERS FOR LANTHANIDE COMPLEXES AT 25°

^a Sr. M. J. M. Woods, O. P., P. K. Gallagher, Z Z. Hugus, and E. L. King, Inorg. Chem., 3, 1313 (1964).

 ΔZ^2 is the difference in the square of the ionic charge of $MNO_{3^{2+}}$ and the sum of the squares of the charges of M^{3+} and $NO_{3^{-}}$; it has a value of -6 in this case. Equation 7 may be rewritten¹⁸ for reaction 2a as

$$\log {}^{T}K_{1} = \log K_{1} + \frac{2.16\sqrt{\Gamma}}{1 + 0.232\delta\sqrt{\Gamma}} - \frac{2.206 \times 10^{-3}\delta^{3}M}{2.206 \times 10^{-3}\delta^{3}M}$$
(8)

(a final term, $2.627 \times 10^{-6} \delta^6 M^2$, is small enough to permit its omission).

The right-hand side of eq. 8 was evaluated as a function of ional concentration. The slope of the straight line resulting from the plot of the resulting values vs. Γ was minimized by varying δ and then extrapolated to $\Gamma = 0$ to obtain log ${}^{T}K_{1}$. The mean distances of closest approach were calculated as 5.0 ± 0.2 Å. for both EuNO₃²⁺ and TbNO₃²⁺. The values of ${}^{T}K_{1}$ were calculated to be 17 for formation of EuNO₃²⁺ and 7.5 for that of TbNO₃²⁺.

Discussion

Our values for the stability constants for the formation of MNO₃²⁺ agree more closely with those of the Argonne group¹⁰ than with other reports.^{11,12} They also show that the stability of MNO₃²⁺ is intermediate between that of MCl²⁺ and that of MSCN²⁺. In Table IV, the thermodynamic parameters of the nitrate, chloride, and thiocyanate complexes also reflect this intermediate character of the nitrate complexes. As in the case of the chloride and thiocyanate complexes, the negative values for both ΔS_1° and ΔH_1° are interpreted as indicating that the lanthanide cations retain most of their primary hydration sphere and form outer-sphere ion pairs with the nitrate anions. Data for the europium monopropionate, europium monisobutyrate, and thallium(III) monochloride complexes are included in Table IV for comparison. It is assumed that the propionate and the isobutyrate ligands form inner-sphere complexes with the trivalent metal ions. The positive entropy change for TlCl²⁺ formation is further evidence for this difference in lanthanide complexes since TlCl²⁺ is believed to be an inner-sphere complex (Tl^{3+} has the same crystal radius as Eu^{3+}).

Our value of 5.0 Å. for the å parameter in the Debye-Hückel equation is in reasonable agreement with that of 4.7 Å. reported by Spedding and Jaffe¹⁹ from conductance data for $Nd(NO_3)_3$. Brady has calculated from X-ray diffraction data a value of 4.6 Å. as the average distance between Er(III) and Cl^- in concentrated $ErCl_3$ solutions,²⁰ which agrees with the sum of the radii of the lanthanide ion (0.9 Å.) plus the chloride ion (1.8 Å.) plus the diameter of a water molecule (2.8 Å.). However, the significance of correspondence between the value of the å parameter and the physical distance expected for outer-sphere ion pairs is questionable due to the obscurity of the meaning of å in eq. 7.

At the present time, the theory of ion-pair association seems to be expressed as well by the Bjerrum theory¹⁷ as by any other. Using a value of 79 for the dielectric constant and of 5.0 Å. for a, the Bjerrum theory would predict a value of approximately 40 for the stability constant of LnNO₃²⁺. Considering the inherent problems in applying the Bjerrum approach, the agreement between 40 and 17 (for EuNO₃²⁺) is not unsatisfactory.

Comparison of the data in Table IV suggests a model for lanthanide complexes. For the outer-sphere complexes the enthalpy term is favorable whereas the entropy change is unfavorable. For the inner-sphere complexes, formed by the propionate and isobutyrate ligands, this situation is reversed, with unfavorable enthalpy and favorable entropy terms. To understand this, we must turn to the model of ionic solutions proposed by Frank and Evans²¹ and Gurney²² which considers three concentric zones of water about each ion. The inner first zone consists of one or more layers of water molecules oriented by ionic attraction; the outermost zone has the hydrogen-bonded structure of normal water (or, in this case, of $1 N \text{HClO}_4$ solution). The middle zone is a "thawed" zone of less order than the bulk solution phase. In a previous study by infrared spectroscopy²³ it was shown that La(III) has a large inner zone and small middle zone. The lanthanide ions, consequently, are net structure promoters. The enthalpy and entropy terms in complex formation will reflect the disruption of this solvent structure as well as the combination of the ions. For the enthalpy the disruption of hydration structure is an endothermic contribution while the ionic combination is an exothermic one. In the outer-sphere complexes such as $EuNO_3^{2+}$, the hydration sphere is only partially disrupted and the net enthalpy is exothermic, in agreement with the data

⁽¹⁸⁾ H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions," Reinhold Publishing Corp., New York, N. Y., 1958, pp. 62, 508, 520, 522.

⁽¹⁹⁾ J. H. Spedding and S. Jaffe, J. Am. Chem. Soc., 76, 884 (1954).

⁽²⁰⁾ G. W. Brady, J. Chem. Phys., 33, 1079 (1960).

⁽²¹⁾ H. S. Frank and M. Evans, ibid., 13, 507 (1945).

⁽²²⁾ R. W. Gurney, "Ionic Processes in Solution," McGraw-Hill Book Co., New York, N. Y., 1953.

⁽²³⁾ G. R. Choppin and K. Buijs, J. Chem. Phys., 39, 2042 (1963).

in Table IV. At the same time, the entropy change is negative due to the ordering of ionic charges without a compensatory disordering due to extensive disruption of the hydration sphere. The more negative entropy for NdSCN²⁺ formation is probably due to loss of rotational entropy by the thiocyanate ion.

In the inner-sphere complexes, the hydration zone is disrupted to a greater extent which results in a net endothermic enthalpy term. The elimination of water molecules from the inner hydration zone to the thawed middle zone also results in a net positive entropy effect.

A test of the suggestion that the outer-sphere complexes involve little disruption in the inner hydration zone is possible. We would expect that the free energy changes upon ion-pair formation would reflect changes in ionic attraction and, hence, vary linearly as the radius of hydrated ions. While such radii are unknown, it is possible to assume that the ionic conductances, Λ^+ , at infinite dilution are proportional to these hydrated radii. These conductances have been calculated previously²⁴ from data of Spedding and coworkers (values for Pm and Tb were interpolated). Figure 2 shows the expected linear relationship between log K_1 and Λ_+ except for cerium. We can offer no explanation for the behavior of cerium but it seems

(24) R. A. Robinson and R. H. Stokes, "Electrolyte Solutions," Academic Press Inc., New York, N. Y., 1959, p. 463.

Figure 2.—The relation between log K_1 for $MNO_{3^{2+}}$ and the ionic conductance at infinite dilution of M^{3+} .

unlikely that either log K_1 or the Λ_+ value could be sufficiently in error to account for this.

Acknowledgment.—This research was supported by the U. S. Atomic Energy Commission. The N.S.F. also contributed support through a grant to the F.S.U. Computing Center. We wish to thank Dr. E. Ward for assistance with some of the experiments and Dr. W. Ellis for his assistance in the reactor irradiations.

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA

Complexes of Trivalent Lanthanide and Actinide Ions. II. Inner-Sphere Complexes¹

BY GREGORY R. CHOPPIN AND ANTHONY J. GRAFFEO

Received March 1, 1965

The stability constants and thermodynamic parameters for the first and second steps in the formation of the lanthanide propionate and isobutyrate complexes have been determined at 25.0° and an ionic strength of 2.00 M NaClO₄. The stability constants were obtained by direct pH titrations and the enthalpy changes by calorimetric titrations. An interpretation of the data is offered in terms of the effect of complexing on the hydration sphere about the cation.

0.50

Introduction

In the preceding publication, the thermodynamic parameters for the formation of complexes between lanthanide ions and inorganic anions were reported.² In this paper, we report on a study of the complexes between lanthanide ions and simple organic anions. Previous reports (see ref. 1–6 of the preceding paper) have been concerned with polydentate organic ligands with the exception of a recent paper by Grenthe³ in which data on acetate and thioglycolate are presented.

Experimental

Reagents and Apparatus.—Stock solutions of the lanthanide perchlorates were prepared as described carlier.⁴ The working solutions were prepared from these by dilution. Buffer solutions were prepared from the acids by the "half-neutralization" method also described in the previous publication. The ionic strength of all solutions was adjusted to 2.00 M by the addition of solid sodium perchlorate (anhydrous reagent grade).

The calorimeter used in these determinations was designed in our laboratories and is similar to that used by Schlyter.⁵ It contained a pH measuring system, a heater, and a thermistor making possible the simultaneous determination of both the stability

⁽¹⁾ Abstracted in part from a Master's Thesis by A. J. G., Florida State University, 1964.

⁽²⁾ G. R. Choppin and W. F. Strazik, Inorg. Chem., 4, 1250 (1965).

⁽³⁾ I. Grenthe, Acta Chem. Scand., 18, 283 (1964).

⁽⁴⁾ G. R. Choppin and J. A. Chooporian, J. Inorg. Nucl. Chem., 22, 97 (1961).

⁽⁵⁾ K. Schlyter, Trans. Roy. Inst. Technol., Stockholm, No. 132 (1959).