also. Gillespie's approach accounts for certain trends in a formally different way from Rundle's. According to Rundle's model variations in polarity and bond lengths stem in a straightforward way from variations in the atomic populations and bonding characteristics of the filled molecular orbitals. In Gillespie's scheme the forms of the orbitals are ignored and the trends correlate, through considerations of geometry, with the magnitudes of repulsions between the various valenceshell electron pairs.

In summary, the stereochemistry and bonding trends in the series $(CH_3)_n PF_{5-n}$ can be qualitatively understood on the basis of Rundle's formulation which neglects d orbitals or Gillespie's approach which neglects hybridization altogether.33 The quantitative interpretation of results, however, remains an interesting challenge.

(33) NOTE ADDED IN PROOF .--- For the molecules studied in this research Rundle's and Gillespie's models give similar structural implications. In the case of XeF6, however, Rundle's model has been widely interpreted as predicting that the molecule is a regular octahedron, whereas Gillespie's model requires that it be distorted from Oh symmetry. A preliminary analysis of electron diffraction data for XeF_6 has just been carried out in our laboratory. It shows that the molecule is indeed distorted, but that it is distorted much less than demanded by Gillespie's hypotheses. The truth seems to lie somewhere between the two simple models.

CONTRIBUTION FROM THE JOHN HARRISON LABORATORY OF CHEMISTRY AND THE LABORATORY FOR RESEARCH ON THE STRUCTURE OF MATTER, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19104

Chemical Properties of Disulfur Decafluoride^{1,2}

BY BERNARD COHEN AND ALAN G. MACDIARMID

Received January 4, 1965

Disulfur decafluoride, S₂F₁₀, has been found to react with Cl₂ at approximately 150° in a borosilicate glass vessel to give almost quantitative yields of SF₅Cl. With Br₂, high yields of SF₅Br were obtained. Disulfur decafluoride also underwent reaction with BCl₃ under similar conditions to give SF₃Cl, and with NH₃ to give NSF₃. The interaction of S₂F₁₀ with (CN)₂, Al₂Cl₆, NO, C_2H_4 , and $(CH_3)_2NH$ was also investigated.

Although the chemical inertness of sulfur hexafluoride, SF₆, to a large variety of reagents is well known,^{3,4} relatively little information is available concerning the chemical properties of the related compound, disulfur decafluoride, S₂F_{10.3} The properties of the sulfur-sulfur bond in S₂F₁₀ are of particular interest, since this is the only sulfur-sulfur bond known in which both sulfur atoms exhibit a coordination number of six.

Disulfur decafluoride is less stable thermally and more reactive chemically than SF₆. It decomposes slowly in an inert container above 150° to give SF₆ and SF₄⁵; it reacts upon heating with certain olefins and benzene to give small quantities of derivatives containing the $-SF_{\mathfrak{b}}$ group 6 and with $N_{2}F_{4}$ to give $SF_{\mathfrak{b}}NF_{2}.^{7}$ When streamed with chlorine through a heated tube, trace amounts of SF₅Cl have been observed.⁸ Under the influence of ultraviolet irradiation, S2F10 reacts with SO₂ to give SF₅OSO₂F.⁹

(4) G. C. Demitras and A. G. MacDiarmid, Inorg. Chem., 3, 1198 (1964).

E. C. Stump, Jr., C. D. Padgett, and W. S. Brey, Jr., ibid., 2, 648 (1963).

In the present investigation it was found that S_2F_{10} underwent reaction with excess chlorine in a glass container at 150° during 29 hr. to give almost quantitative yields of $SF_{5}Cl$ (eq. 1). Essentially no attack of the

$$S_2 F_{10} + Cl_2 \longrightarrow 2SF_5 Cl \tag{1}$$

glass was observed. The reaction was slow, and a heating period of less than 20 hr. resulted in incomplete consumption of the S_2F_{10} . When the heating was carried out during a period of 50 hr., some of the SF₅Cl underwent reaction with the glass reaction vessel to form SiF₄ and unidentified materials.

When S_2F_{10} was heated with bromine at 138° for 24 hr. in a glass vessel, a reaction analogous to that observed with chlorine took place, and a 77% yield of SF_5Br , based on the quantity of S_2F_{10} consumed, was obtained (eq. 2). The reaction differed markedly from

$$S_2F_{10} + Br_2 \xrightarrow{} 2SF_5Br$$
 (2)

that with chlorine in that nearly 53% of the S_2F_{10} did not react, even though an almost threefold molar excess of bromine was used. Even when the molar ratio of Br_2 to S_2F_{10} was increased to 5:1 and the temperature was raised to 150° , a large fraction of the S₂F₁₀ remained unreacted. It therefore appears that the reaction is reversible and that SF₅Br partly decomposes at 135- 150° to form S₂F₁₀ and bromine. The reaction appears to be a useful method for the preparation of SF₅Br, which has been synthesized previously only by the very

⁽¹⁾ This report is based on portions of a thesis submitted by Bernard Cohen to the Graduate School of the University of Pennsylvania in partial fulfillment of the requirements for the degree of Doctor of Philosophy

⁽²⁾ This research was supported by the Advanced Research Projects Agency, Office of the Secretary of Defense.

⁽³⁾ G. H. Cady, Advan. Inorg. Chem. Radiochem., 2, 105 (1960).

⁽⁵⁾ W. R. Trost and R. L. McIntosh, Can. J. Chem., 29, 508 (1951). (6) H. L. Roberts, J. Chem. Soc., 3183 (1962).

⁽⁷⁾ G. H. Cady, D. F. Eggers, and B. Tittle, Proc. Chem. Soc., 65 (1963); A. L. Logothetis, G. N. Sausen, and R. J. Shozda, Inorg. Chem., 2, 173 (1963);

⁽⁸⁾ J. W. George and F. A. Cotton, Proc. Chem. Soc., 317 (1959). (9) H. J. Emeléus and K. J. Packer, J. Chem. Soc., 771 (1962).

slow interaction of SF_4 with BrF_3 and Br_2 in a metal apparatus.¹⁰

A similar experiment in which cyanogen, $(CN)_2$, was used in place of the free halogen gave no SF_5CN but only the thermal decomposition products of S_2F_{10} . The apparent inability of $(CN)_2$ to react in an analogous fashion to chlorine and bromine might lie in the fact that the energy required to break the carbon–carbon bond in $(CN)_2$ (C–C bond dissociation energy in $(CN)_2$, 112 kcal./mole¹¹) is greater than that required to cleave the bond in chlorine (57.1 kcal./mole¹¹) or in bromine (45.5 kcal./mole¹¹). No new reaction products were observed when S_2F_{10} was heated with AgCN or AgOCN.

Since it appears likely that S_2F_{10} decomposes on heating by a process involving the formation of SF_5 radicals,⁵ the following free radical mechanism based upon cleavage of the sulfur-sulfur bond in S_2F_{10} is postulated for the reaction of S_2F_{10} with chlorine and bromine

$$S_2F_{10} \longrightarrow 2 \cdot SF_6$$
 (3)

$$SF_5 + X_2 \longrightarrow SF_5X + \cdot X$$
 (4)

$$\cdot SF_5 + \cdot X \longrightarrow SF_5 X \tag{5}$$

where X is chlorine or bromine.

Since SF_6 is known to react with Al_2Cl_6 at 180 to 200°12 to form aluminum fluoride, sulfur chlorides, and chlorine, it was not surprising that S_2F_{10} underwent what appeared to be a somewhat analogous reaction to give SF_6 and Cl_2 as identifiable products. However, it was interesting to find that BCl₃, which does not react with SF₆ at 200°,¹² did react with S₂F₁₀ during 17 hr. at 150° to give SF₅Cl, BF₃, and Cl₂, together with SF₆, SO_2 , and SOF_2 . The latter two compounds were presumably formed by reactions involving the walls of the glass reaction vessel. Of the SF5 groups present in the S_2F_{10} employed, 58.4% were isolated as SF_5Cl . The difference in reactivity of SF_6 and S_2F_{10} toward BCl_3 is apparently related to the presence of a sulfur-sulfur bond in the S_2F_{10} . Although it is possible to formulate a number of reaction mechanisms, based on the primary production of ·SF5 radicals, to account for the products obtained, there is no obvious preference for any particular reaction scheme.

When NH₃ was heated with excess S_2F_{10} in a glass container at 150° for 14 hr., a 53% yield of NSF₃, based on the quantity of S_2F_{10} consumed, was obtained, assuming that reaction occurred according to eq. 6.

$$S_2F_{10} + NH_3 \longrightarrow NSF_3 + SF_4 + 3HF$$
 (6)

Since a sample of S_2F_{10} , alone, was found to decompose to the extent of approximately 30% when heated at 150° for 23 hr. in a borosilicate glass container, the yield of NSF₃ would probably be greater if the reaction were carried out in an inert metal container. No HF or SF₄ was found among the reaction products. The HF would react with NH₃ to give ammonium fluorides or with the glass to give SiF_4 , which would then react further with NH_3 . The absence of SF_4 is consistent with the observation that, in a separate experiment, SF_4 was found to react with NH_3 , even at low temperatures, to form solid materials which contained S_4N_4 .

Since SF_6 does not react with NH_3 under the experimental conditions employed, and since S_2F_{10} probably decomposes on heating by a mechanism involving the formation of $\cdot SF_5$ radicals,⁵ it is likely that $\cdot SF_5$ radicals may first react with NH_3 to give SF_6H and SF_5NH_2 . It is to be expected^{13,14} that these species would be unstable and that each would spontaneously eliminate HF to form SF_4 and NSF_3 , respectively. Decomposition of this type, for H_2NSF_5 , is supported by the observation that CF_3NHSF_5 eliminates HF on heating to form $CF_3N=SF_4$.¹⁴

When S_2F_{10} was heated with an excess of NH₃, no NSF₃ was obtained. Instead, solid materials were formed which appeared to contain SiF₄·2NH₃, NH₄HF₂, and S₄N₄. This is consistent with an observation that NSF₃ and NH₃ underwent rapid reaction at low temperatures to yield an unidentified solid. The formation of NSF₃ in the reaction might well depend on the fact that the postulated H₂NSF₅ does not react readily with NH₃ and that it exists for an appreciable time in the reaction system, at least until most of the NH₃ is consumed, before decomposing to give NSF₃.

The interaction of S_2F_{10} with $(CH_3)_2NH$, NO, and C_2H_4 under varying reaction conditions did not result in the formation of any interesting species; however, it would appear that because of the presence of the relatively reactive sulfur-sulfur bond, S_2F_{10} might prove to be a useful reagent for the synthesis of many types of compounds containing sulfur-fluorine linkages.

Experimental

All experimental work was performed in a borosilicate glass vacuum system fitted with glass stopcocks lubricated with fluorocarbon (Kel-F 90) grease. Reactions of S_2F_{10} were studied at elevated temperatures in all-glass (borosilicate) containers fitted with glass break-seals. Gas chromatographic separations were carried out with a preparative scale column containing fluorocarbon oil (Kel-F 3) absorbed on "Chromosorb-W."¹⁵ A helium pressure of 25 p.s.i. at a flow rate of 290 cc./min. was employed. Mass spectra were obtained with a Consolidated Electrodynamics Model 21-130 spectrometer at an ionizing voltage of 77 v. and an ionizing current of 20 μ a.

The $S_2F_{10}^{16}$ used in the experiments was purified by gas chromatography and by slow distillation out of a trap held at -96° (mol. wt. found 254.0, calcd. 254.1; confirmed by infrared¹⁷ and mass spectra). The commercial SF₄ (94% minimum purity) employed, which contained small quantities of chlorine and SOF₂, was freed from the chlorine before use by shaking with mercury. Other volatile reagents were purified, where necessary, in the vacuum system or by gas chromatography until a molecular

⁽¹⁰⁾ G. H. Cady and C. I. Merrill, private communication, Oct. 1962; see E. W. Neuvar and A. W. Jache, J. Chem. Phys., **39**, 596 (1963).

⁽¹¹⁾ T. L. Cottrell, "The Strengths of Chemical Bonds," 2nd Ed., Butterworths Scientific Publications, London, 1958.

⁽¹²⁾ J. R. Case and F. Nyman, Nature, 193, 473 (1962).

⁽¹³⁾ H. L. Roberts, Quart. Rev. (London), 15, 30 (1961).

⁽¹⁴⁾ C. W. Tullock, D. D. Coffman, and E. L. Muetterties, J. Am. Chem. Soc., 86, 357 (1964).

⁽¹⁵⁾ B. Cohen and A. G. MacDiarmid, *Inorg. Chem.*, **1**, 754 (1962); "Chromosorb-W" (a diatomaceous silica product) obtained from Johns Manville Co., Philadelphia, Pa.

⁽¹⁶⁾ Kindly donated by Dr. M. Tremblay, Canadian Armament Research and Development Establishment, Quebec, Canada.

⁽¹⁷⁾ R. E. Dodd, L. A. Woodward, and H. L. Roberts, Trans. Faraday Soc., 53, 1545 (1957).

weight determination in the vapor phase gave a percentage error of less than 1%. Where appropriate, the purity of each reagent was also confirmed by examining its infrared and/or mass spectrum.

Reaction of S₂F₁₀ with Borosilicate Glass.—Disulfur decafluoride (0.2274 g., 0.8949 mmole) was heated at 150° for 23 hr. in a 30-ml. Pyrex glass tube. The contents of the tube were then distilled through a trap held at -112° in which the S₂F₁₀ condensed (0.1574 g., 0.6194 mmole, 69.2% recovery; mol. wt. found 254.1, calcd. 254.1; confirmed by infrared¹⁷ and mass spectra). The material which passed through the -112° trap weighed 0.0824 g., and after separation by passage through the gas chromatography column, it was found to consist of SF₆, SiF₄, and SOF₂, all of which were identified by their infrared¹⁸⁻²⁰ spectra. Since S₂F₁₀ decomposes thermally to give SF₆ and SF₄,⁵ it seems likely that the formation of the SiF₄ and SOF₂ might have resulted from the reaction of SF₄, produced from the S₂F₁₀, with the glass.

Reaction of S_2F_{10} with Cl_2 .—Disulfur decafiuoride (0.1263 g., 0.4970 mmole) and Cl_2 (0.1612 g., 2.274 mmoles) were heated in a 30-ml. borosilicate glass break-seal tube for 29 hr. at 150°. Separation by gas chromatographic techniques¹⁵ gave SF₃Cl (0.1560 g., 0.9600 mmole, 96.5% yield; mol. wt. found 161.3, calcd. 162.5; confirmed by infrared spectrum²¹) and Cl₂ (0.1250 g., 1.763 mmoles; mol. wt. found 69.2, calcd. 70.9). The mass spectrum of SF₃Cl has not been reported in the literature. Possible assignments (for the most abundant isotope) in decreasing order of intensity are SF₃+, 100%; SF₃+, 62.9%; SF₄+, 23.7%; SF₄Cl⁺, 15.7%; S⁺, 13.4%; SF₂+, 13.1%; Cl⁺, 6.5%; SFcl⁺, 2.3%; SCl²⁺, 1.0%; SFCl²⁺, 0.9%; S²⁺, 0.8%; SF₂Cl⁺, 0.5%; SF²⁺, 0.3%.

Reaction of S_2F_{10} with Br_2 .—Disulfur decafluoride (0.1038 g., 0.4085 mmole) and Br₂ (0.1857 g., 1.162 mmoles) were heated in a 30-ml. borosilicate glass break-seal tube for 24 hr. at 138°. Distillation from a glass low-temperature fractionating column²² yielded four fractions as the temperature of the column was raised slowly. Fraction 1 (~ 0.0025 g.) consisted of SOF₂, SF6, and SiF4, which were identified by their infrared spectra.¹⁸⁻²⁰ Fraction 2 was pure SF₅Br (0.0274 g., 0.132 mmole; mol. wt. found 209.2, calcd. 207.0; confirmed by infrared and mass spectra¹⁰). Infrared examination of fraction 3 showed that it consisted of a mixture of only $S_2F_{10}{}^{17}$ and $SF_5Br^{10}\ (0.0889\ g.;$ mol. wt. found 233.6). The molecular weight indicated the presence of 0.215 mmole of S₂F₁₀ and 0.166 mmole of SF₅Br in this fraction. The yield of $\mathrm{SF}_5\mathrm{Br},$ based on the $\mathrm{S}_2\mathrm{F}_{10}$ consumed, was 77.1%. Fraction 4 was unreacted Br₂ (0.1707 g., 1.068 mmoles; mol. wt. found 156.4, calcd. 159.8; confirmed by the absence of absorption bands in the infrared spectrum). Reaction of S₂F₁₀ with Br₂ during longer periods of time or at higher temperatures (150°) did not give increased yields of SF₅Br; instead, more extensive decomposition of the S2F10 and SF5Br took place. Pentafluorosulfur bromide reacts readily with mercury at room temperature. It may be handled in a Pyrex glass vacuum system if the glass is very clean and well-dried.

Reaction of S_2F_{10} with $(CN)_2$.—Disulfur decafluoride and $(CN)_2$ in the molar ratio of 1.0:3.7 were heated in a 30-ml. borosilicate glass break-seal tube for 24 hr. at 150°. No solid product was formed. Infrared and gas chromatographic examination of the reaction products showed only the presence of S_2F_{10} ,¹⁷ $(CN)_2$,²⁸ SOF₂,²⁰ and SiF₄.¹⁹

Reaction of S_2F_{10} with AgCN or AgOCN.—When S_2F_{10} was heated with either AgCN or AgOCN for 17–24 hr. at 150–200°,

the only volatile compounds isolated were $\mathrm{SF}_{8},\,\mathrm{SO}_2\mathrm{F}_2,\,\mathrm{SOF}_2,\,\mathrm{SO}_2,$ and $\mathrm{SiF}_4.$

Reaction of S_2F_{10} with Al_2Cl_6 .—Disulfur decafluoride (0.1250 g., 0.4919 mmole) was heated with Al_2Cl_6 (~0.2 g.) for 17 hr. in a 30-ml. borosilicate glass break-seal tube at 200°. Gas chromatographic separation of the volatile material showed the presence of only SF₆ (identified by retention time and infrared spectrum¹⁸) and Cl₂ (identified by retention time). Since SF₆ reacts only slowly with Al_2Cl_6 under these conditions,¹² it is not surprising to find it in the products.

Reaction of S_2F_{10} with BCl_3 .—Disulfur decafluoride (0.1092) g., 0.4298 mmole) and BCl₃ (0.0459 g., 0.392 mmole) were heated in a 30-ml. borosilicate glass break-seal tube for 17 hr. at 150°. A very small quantity of nonvolatile solid had formed in the reaction vessel after this time. Gas chromatographic separation of the volatile material gave SiF_4 (0.0107 g., 0.103 mmole; confirmed by infrared spectrum¹⁹), SOF₂ (0.0120 g., 0.139 mmole; confirmed by infrared spectrum²⁰), and SF₅Cl (0.0817 g., 0.503 mmole; mol. wt. found 161.0, calcd. 162.5; confirmed by infrared²¹ and mass spectra). All species were further confirmed by their retention times. An unknown quantity of chlorine, which had a very similar retention time to SO2 on the column employed, was also recovered in a Cl2-SO2 fraction. The chlorine was removed from the SO₂ (0.0080 g., 0.12 mmole; confirmed by infrared spectrum²⁸) by shaking the mixture with mercury. The solid which formed contained chloride ion. The infrared spectrum of the mixture of products from the reaction before passage through the gas chromatography column showed the presence of BF_3 . This compound did not elute from the column; however, a subsequent quantitative infrared examination showed that 0.0260 g. (0.383 mmole) of BF₃ was present in the original products.

Reaction of S_2F_{10} with NH_3 . (A) With Excess S_2F_{10} . Disulfur decafluoride (1.8681 g., 7.3518 mmoles) and NH₃ (0.1117 g., 6.571 mmoles) were distilled into a 500-ml. borosilicate glass flask. After warming to room temperature, an infrared spectrum of the gaseous mixture showed the presence of only the unreacted starting materials. The mixture was then heated in the glass flask at 150° for 14 hr. After 2 hr., a thin film of white solid, the density of which continued to increase throughout the experiment, had formed on the walls of the flask. The volatile products were then passed through two traps immersed in -134° baths and thence into a trap immersed in liquid nitrogen. The condensate in the -134° traps was next passed through the gas chromatography column to remove SO2, SF6, and unreacted S_2F_{10} (1.1649 g., 4.5844 mmoles, 62.4% recovery; mol. wt. found 254.0, calcd. 254.1; confirmed by infrared¹⁷ and mass spectra) from pure NSF₃ (0.1519 g., 1.4620 mmoles, yield 53.2%; mol. wt. found 103.9, calcd. 103.9; confirmed by infrared spectrum²⁴). The infrared spectrum of the material (~ 0.1 g.) which passed through the -134° traps showed the presence of SF_{6} , ¹⁸ SiF_{4} , ¹⁹ and an unidentified material (possibly H₂NSF₅) which could not be isolated in the pure state.

Possible assignments of the fragments in the mass spectrum of NSF₃ (values are given only for the most abundant isotope) are NSF₃⁺, 100%; SF₃⁺, 30.2%; SF₂⁺, 22.2%; S⁺, 20.3%; NSF⁺, 20.2%; N₂⁺, 19.1%; NSF₂⁺, 18.3%; NS⁺, 14.1%; SF⁺, 9.8%; N⁺, 6.5%; F⁺, 2.7%; SF²⁺, 1.0%; SF₂²⁺, 0.8%; S²⁺, 0.6%.

(B) With Excess NH₃.—Disulfur decafluoride (0.1220 g., 0.4801 mmole) and NH₃ (0.1146 g., 6.741 mmoles) were heated at 150° for 18 hr. in a 30-ml. borosilicate glass tube. The only volatile materials present after this time were an unidentified gas which could not be condensed at liquid nitrogen temperature and excess NH₃ (0.0592 g., 3.48 mmoles; mol. wt. found 17.0, calcd. 17.0; confirmed by infrared spectrum²³). An infrared examination of the solid material suggested the presence of SiF₄· 2NH₃²⁵ and S₄N₄.^{23,27} An X-ray power photograph was also

⁽¹⁸⁾ R. T. Lagmann and E. A. Jones, J. Chem. Phys., 19, 534 (1951).

⁽¹⁹⁾ K. S. Jones, P. J. H. Woltz, and A. H. Nielsen, ibid., 19, 242 (1951).

⁽²⁰⁾ J. K. O'Loane and M. K. Wilson, *ibid.*, 23, 1313 (1955).

⁽²¹⁾ L. H. Cross, H. L. Roberts, P. Goggin, and L. A. Woodward, Trans. Faraday Soc., 56, 945 (1960).

⁽²²⁾ A. G. MacDiarmid, "Preparative Inorganic Reactions," Vol. 1, W. L. Jolly, Ed., Interscience Publishers, New York, N. Y., 1964, p. 194.

⁽²³⁾ R. H. Pierson, A. N. Fletcher, and E. St. Clair Gantz, Anal. Chem., 28, 1218 (1956).

⁽²⁴⁾ H. Richert and O. Glemser, Z. anorg. allgem. Chem., 307, 328 (1961).

⁽²⁵⁾ T. S. Piper and E. G. Rochow, J. Am. Chem. Soc., 76, 4318 (1954).

⁽²⁶⁾ E. R. Lippincott and M. C. Tobin, J. Chem. Phys., 21, 1559 (1953).

⁽²⁷⁾ D. Chapman and A. G. Massey, Trans. Faraday Soc., 58, 1291 (1962).

consistent with the presence of $SiF_4 \cdot 2NH_8^{23}$ and NH_4HF_2 .²⁸ Sulfur nitride was further identified by direct comparison of the Xray film to a film prepared from a sample of pure S_4N_4 .²⁹

Reaction of SF₄ with NH₃.—Sulfur tetrafluoride (0.5815 g., 5.379 mmoles) and NH₃ (0.1467 g., 1.629 mmoles) were distilled into a reaction vessel, and upon allowing the vessel to warm from liquid nitrogen temperature, reaction was observed to occur while the reactants were still very cold. The infrared spectrum of the gas which was removed at room temperature showed the presence of SF₄³⁰ (~0.176 g.) and SOF₂.²⁰ Benzene was distilled into the multicolored solid remaining in the reactor. Evaporation of the filtered benzene solution yielded an orange solid, which was shown by infrared^{26, 27} and X-ray powder pattern examination to be S₄N₄. When the experiment was repeated using a large excess of NH₄, similar results were obtained, except that the volatile material at the conclusion of the reaction consisted only of unreacted NH₈.

It has been reported that SF₄ and NH₈ interact to give NSF³¹; however, only trace amounts were observed spectroscopically among the gaseous products of the reaction, and none of the pure material was isolated.³² A more extensive examination of this reaction indicates that up to 70% yields of S₄N₄ may be obtained.³³

(28) Indexto the X-ray Powder Data File (1961), ASTM Special Technical Publication 48-K. American Society for Testing Materials, Philadelphia, Pa. 19103.

⁽²⁹⁾ M. H. M. Arnold, J. A. C. Hugill, and J. M. Hutson, J. Chem. Soc., 1645 (1936).

(30) R. E. Dodd, L. A. Woodward, and H. L. Roberts, Trans. Faraday Soc., 52, 1052 (1956).

(31) O. Glemser, H. Meyer, and A. Haas, Chem. Ber., 97, 1704 (1964).

(32) O. Glemser, private communication, July 1964.

(33) B. Cohen, T. R. Hooper, and R. D. Peacock, private communication, July 1964.

Reaction of S_2F_{10} with $(CH_3)_2NH$.—Disulfur decafluoride (0.1320 g., 0.5195 mmole) and $(CH_3)_2NH$ (0.0235 g., 0.521 mmole) were heated in a 30-ml. borosilicate glass break-seal tube for 19 hr. at 160°. A nonvolatile yellow solid was deposited on the walls of the reaction vessel. Gas chromatographic separation of the volatile material showed the presence of S_2F_{10} , SiF₄, and SO₂, which were identified by their retention times and by their infrared spectra. All the $(CH_3)_2NH$ was consumed.

Reaction of S₂**F**₁₀ with **C**₂**H**₄.—Disulfur decafluoride (0.2607 g., 1.026 mmoles) and C₂**H**₄ (2.9954 g., 106.98 mmoles) were vaporized in a 2-1. bulb and irradiated with ultraviolet light for a total period of 10 hr. The composition of the gaseous products was examined from time to time. A nonvolatile tarry material formed on the walls of the bulb. The volatile products which condensed in a trap held at -78° had an infrared spectrum similar to that found for hydrocarbons containing some SF₅ groups.³⁴ The molecular weight of the material ranged from 100 to 120. The infrared and mass spectra suggested that the material consisted primarily of short-chain hydrocarbons containing some SF₅ end groups.

Reaction of S_2F_{10} with NO.—A number of experiments were carried out in which S_2F_{10} , mixed with a large excess of NO, was either heated to temperatures up to 200° or exposed to ultraviolet light. Although reaction occurred and unidentified absorption bands were observed in the infrared spectra of the volatile products, no pure compound apart from SiF₄ and SOF₂ could be obtained. Extensive decomposition of many of the products appeared to take place when gas chromatographic separations were attempted.

CONTRIBUTION FROM THE WESTERN RESEARCH CENTER, STAUFFER CHEMICAL COMPANY, RICHMOND, CALIFORNIA

Difluorochlorates(I) of Cesium, Rubidium, and Potassium

BY KARL O. CHRISTE AND JACQUES P. GUERTIN

Received June 10, 1965

The difluorochlorates(I) of cesium, rubidium, and potassium were successfully prepared by the reaction of the corresponding fluorides with chlorine monofluoride or NO⁺ClF₂⁻. These white solids are the first known difluorochlorate(I) salts stable at 25°. They decompose exothermally at temperatures higher than 230°. Their composition and structure were established by elemental analysis, infrared, and X-ray studies. The salts are ionic and contain linear ClF_2^- anions. Attempts to prepare LiClF₂ and Ca(ClF₂)₂ failed, while NaClF₂, Ba(ClF₂)₂, and Sr(ClF₂)₂ may have formed to a very small extent.

Introduction

The existence of ionic complexes containing species such as $\text{ClF}_2^{+,1-5}$ and $\text{ClF}_4^{-,6-9}$ derived from chlorine trifluoride, is well-established. However, complexes containing such species as Cl^+ and ClF_2^{-} , formed from

(2) F. Seel and O. Detmer, Z. anorg. allgem. Chem., 301, 113 (1959).

(3) N. Bartlett and D. H. Lohmann, J. Chem. Soc., 5253 (1962).

(4) H. Selig and J. Shamir, Inorg. Chem., 3, 294 (1964).

(5) K. O. Christe and A. E. Pavlath, Z. anorg. allgem. Chem., 335, 210 (1965).

(6) L. B. Asprey, J. L. Margrave, and M. E. Silverthorn, J. Am. Chem. Soc., 33, 2955 (1961).

(7) D. H. Kelly, B. Post, and R. W. Mason, *ibid.*, **85**, 307 (1963).

(8) E. Whitney, R. MacLaren, C. Fogle, and T. Hurley, *ibid.*, **86**, 2583 (1964).

(9) E. Whitney, R. MacLaren, T. Hurley, and C. Fogle, *ibid.*, **86**, 4340 (1964).

chlorine monofluoride, have not been investigated until recently. Schmeisser¹⁰ isolated Cl⁺AsF₆⁻ and Cl⁺SbF₆⁻, prepared by the interaction of ClF with the corresponding Lewis acid, AsF₅ or SbF₅. We¹¹ have reported the existence of the ClF₂⁻ anion in the form of its nitrosyl salt, NO⁺ClF₂⁻. Nitrosyl difluorochlorate(I) was shown to be ionic in solution and in the solid state. The ClF₂⁻ anion was assigned a linear structure based on infrared investigation. Since NO⁺-ClF₂⁻ is stable only at low temperature we have investigated the replacement of the NO⁺ cation by an alkali or alkaline earth metal cation with the hope of

⁽³⁴⁾ L. H. Cross, G. Cushing, and H. L. Roberts, Spectrochim. Acta, 17, 344 (1961).

⁽¹⁾ F. Seel and O. Detmer, Angew. Chem., 70, 163 (1958).

⁽¹⁰⁾ Summary Report on the Inorganic Fluorine Chemistry Meeting, Argonne, 1963; *Science*, **143**, 1058 (1964).

⁽¹¹⁾ K. O. Christe and J. P. Guertin, Inorg. Chem., 4, 905 (1965).