sumption that the change in geometry is so large that $V_{Cu,Cu}$ actually increases as an electron is removed from this axis is any difficulty encountered. Similar arguments can be made for the other possible arrangements which show that the observed effects would not be expected to arise from this source.

Thus the results seem to be consistent only with order B of the levels given above.

Experimental

The crystal used was a cylinder approximately 10 mm. in diameter and 20 mm. long oriented with respect to the unit cell so that the Cu-Cu axes of both sites were normal to the cylinder axis. Since the orientation of the crystal was not critical, it was simply oriented manually using the external faces of the crystal and a protractor. The diameter was chosen to give a slip fit in the probe insert.

The spectra were taken with a Varian DP-60 spectrometer operating at 4.3 Mc./sec. The probe was fitted with a Varian 4331-TWL dewar probe insert cooled with liquid nitrogen. The only modification of the instrument was the replacement of the receiver gain control with a continuously variable resistor to permit operation at as high a gain as possible consistent with a reasonable base line. The spectra were recorded at maximum transmitter power, the sweep frequency was 40 c.P.s., and the scan rate was approximately 25 gauss/min.

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY. THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVASIA 16802

Stereospecific Reactions of Various *cis-* and **trans-Bromobis(ethylenediamine)cobalt(III)** Complexes with Chlorine^{1a}

BY JOSEPH F. REMAR, DAVID E. PENNINGTON, AND ALBERT $\text{H}\text{Al}^{\text{1b}}$

Received July 19, 1965

It has been shown² that the reaction of $Co(NH_3)_{5}$ - Br^{+2} with Cl_2 is rapid and results in the quantitative formation of $Co(NH₃)₅Cl⁺²$

$$
Co(NH_3)_8Hr^{+2} + 1/2Cl_2 = Co(NH_3)_6Cl^{+2} + 1/2Br_2
$$

In order to determine the stereochemistry of this type of reaction, the studies have been extended to complexes of the class *cis-* and *trans-*Co(en)₂XBr⁺ⁿ (X = NH3, C1, Br), and the results obtained are reported in the present paper.

Experimental

Preparation of Complexes.--*trans*-[Co(en)₂Cl₂] Cl was prepared according to the method of Bailar³ and was used as the starting material for the preparation of the other complexes. The following compounds were prepared as described in the references cited: cis -[Co(en)₂NH₃Br]Br₂,⁴ trans-[Co(en)₂NH₃Br]S₂O₆,⁵ *cis-*

(1) (a) This work was supported in part by a grant from the National Science Foundation, GP-2001; (b) Fellow of the Alfred P. Sloan Foundation. (2) **A.** Haim and H. Taube, *J.* Am. *Chem.* Soc., **85,** 3108 (1963).

(4) A. Werner, $Ann.,$ **386**, 176 (1912).

 $[Co(en)_2Br_2]Br$,⁶ *trans*- $[Co(en)_2Br_2]Br$,⁷ *trans*- $[Co(en)_2Br]ClO_4$,⁸ cis -[Co(en)₂BrCl]Br,⁹ and trans-[Co(en)₂BrCl]ClO₄.¹⁰ cis-[Co- $(en)_2BrCl] ClO_4$ was obtained by treating a concentrated solution of the bromide salt with concentrated perchloric acid.

The purity of the complexes was ascertained by comparing the absorption spectra measured in the present work with the spectra reported in the literature. Table I lists the wave lengths of the first absorption maximum and the corresponding molar absorbancy indexes for the complexes investigated.

a Measurements at room temperature, unless otherwise indicated. ^b Wave length for first absorption maximum. ^c Molar absorbancy index at maximum. d Average of fourteen measurements. *e* R. s. Nyholm and IM. L. Tobe, *J. Chem. Sac.,* 170i (1956). *I* Average of four measurements. *I* M. L. Tobe, *ibid.*, 3776 (1959). \hbar Measured at 13 \pm 1°. *i* Single measurement. **j 1LI.** Linhard and M. Weigel, *2. anorg. allgem. Chem.,* **271,** *101* (1952). ^k Average of two measurements. ⁱ J. Bjerrum, A. W. Adamson, and 0. Bostrup, *Acta Chem. Scand.,* **10,** 329 (1956). n Ref. 10.

Resolution of cis -[Co(en)₂NH₃Br] Br₂ was achieved by precipitation as the $D(+)$ - α -bromocamphor- π -sulfonate, as described by Werner.¹¹ Only the least soluble diastereoisomer, *d-cis-*[Co- $(en)_2NH_3Br]$ D(+)-C₁₀H₁₄O₄BrS)₂, was isolated. Four resolutions were carried out, but in no case was an optically pure material obtained. This was shown by a comparison of observed values of [M]_D (for example $+991, +940$) with the value [M]_D = $+1058$, calculated from the contributions of the cation¹² and anion.¹³ However, since we were only interested in the question of retention or loss of optical activity upon reaction, the polarimetric studies were carried out with the partially resolved materials.

Hypochlorous acid solutions were prepared and standardized as described elsewhere.² All other chemicals were reagent grade.

Procedure.--Acidified (HCl or $HCIO₄$), standard solutions of the complexes were prepared, and their absorption spectra were recorded. The oxidant was then added, $Cl₂$ as a gas and HOCl in solution. Visual observation indicated that, under the experimental conditions used, the reactions proceeded to completion within 1 min. However, in most instances the solutions were allowed to stand for 5 min. ($Cl₂$ experiments) or 15 min. (HOCl experiments). For the experiments with $Cl₂$, the excess oxidant was removed by a stream of nitrogen. For the experiments with HOC1, the excess oxidant was reduced with NaBr or NaC1, and the Br_2 or Cl_2 formed was removed by a stream of nitrogen.

(12) J. P. Mathieu, *Bull.* soc. *chim. fiiaizce,* **3,** 476 (1936).

⁽³⁾ *1iioi.g. Sy~i., 2,* 222 (1946).

⁽R) Ref. 4, p. 181.

⁽⁶⁾ Ref. *4,* p. 112.

⁽⁷⁾ Ref. 4. p. 111.

⁽⁸⁾ P. Bensonand A. Haim, *J.* Am. *Chem.* Soc., **87,** 3826 (1965).

⁽⁹⁾ Ref. 1, **p.** 118. (10) S. C. Chan and M. L. Tobe, *J. Chem. Soc.*, 4531 (1962).

⁽¹¹⁾ A. Werner, *Bey.,* **44,** 1887 (1911).

⁽¹³⁾ M. B. Thomas and H. 0. Jones, *J. Chem. Soc.,* **89,** 280 (1906).

Following this treatment, the resulting solutions were examined spectrophotometrically to determine the identity of the products.

The studies were carried out at room temperature $(ca. 25^{\circ})$, except in the cases of *cis*- and *trans*- $Co(en)_2Br_2^+$ and *cis*- and $trans\text{-}\mathrm{Co}\text{-}\mathrm{(en)}_2\mathrm{BrCl}^+$, where the rates of aquation of the starting materials and products are appreciable at 25° . In these cases, the treatment with the oxidant and the removal of the excess oxidant were carried out at 0° , and the spectra were recorded at 13 \pm 1° .

Solutions of d -cis-[Co(en)₂NH₃Br Cl₂ were obtained from the corresponding α -bromocamphor- π -sulfonate by an ion-exchange procedure whereby the organic anion was replaced by the Cl^- of a Dowex 1-X8 resin. Following the ion-exchange step, the solutions were treated as described above, with the exception that the optical activities of the reactant and product solutions were also measured. Blank experiments with ammonium $D(+)$ - α -bromocamphor- π -sulfonate demonstrated that exchange of the organic ion for Cl^- in the resin was complete.¹⁴

Measurements.--Absorption spectra were obtained using a Cary Model 14 or 15 recording spectrophotometer. Optical rotations at the sodium D line were obtained using a Rudolph 200 photoelectric polarimeter.

Results and Discussion

The results of the spectrophotometric studies designed to determine the steric course of the reactions of *cis-* and trans- $Co(en)_2XBr^{+n}$ with Cl_2 are summarized in Table 11. The reasonably good agreement between the values listed in columns 4 and 5 (wave lengths for absorption maxima and corresponding molar absorbancy indexes of the products observed) and columns ometry. For *cis-* or trans- $Co(en)_2Br_2^+$, the formation of cis - or trans-Co(en)₂Cl₂⁺, respectively, can be interpreted on the basis of the following two successive reactions: *cis-* or trans-Co(en)₂Br₂⁺ \rightarrow *cis-* or trans-Co- $(en)_2BrCl^+ \rightarrow cis$ - or trans-Co(en)₂Cl₂⁺. If this interpretation is correct, the observed retention of geometry for the reactions of *cis-* and *trans-* $Co(en)_2Br_2$ and of *cis*and trans- $Co(en)_2BrCl^+$ implies that retention of geometry also occurs in the first step of the postulated sequence.

Studies with *cis-* and *trans-*Co(en)₂NH₃Br⁺² were also carried out in the absence of Cl^- , and under these conditions mixtures of $Co(en)_2NH_3Cl^{+2}$ and $Co(en)_2$ - $NH₃OH₂+²$ are obtained (cf. second and fourth entries of Table 11). It is reasonable to assign the formation of $Co(en)_2NH_3OH_2^{+3}$ to the reaction of $Co(en)_2NH_3Br^{+2}$ with HOCl generated by the hydrolysis of $Cl₂$. The ratio of $Co(en)_2NH_3Cl^{+2}$ to $Co(en)_2NH_3OH_2^{+3}$ will depend, according to the present interpretation, upon the relative rates of reaction of $Cl₂$ and HOCl with $Co(en)₂$ - $NH₃Br⁺²$ and upon the concentrations of H⁺ and Cl⁻. Apparently, at 0.12 M HCl the hydrolysis of $Cl₂$ is sufficiently suppressed and $Co(en)_2NH_3Cl^{+2}$ is the principal product, whereas at 0.24 *M* $HClO₄$ for the *cis* complex and at 0.96 *M* HClO₄ for the *trans* complex chlorine hydrolysis is sufficiently important and the aquo products can be readily detected. **l5** Independent

TABLE **I1**

a Room temperature unless otherwise indicated. b Hydrochloric acid unless otherwise indicated. c Observed wave lengths for absorption maxima of product solutions. ^a Observed molar absorbancy indexes at maxima of product solutions. [«] Wave length for absorption maxima of products listed in column 8, literature values. I Molar absorbancy indexes at maxima of products listed in column 8, literature values. *0* Average for six experiments. ^h Ref. *e* of Table I. *i* Perchloric acid. *i* Average for three experiments. ^k Calculated using observed absorbancies at 550 and 450 m μ . *l* Average for two experiments. m Single experiment. n Spectrophotometric measurement at $13 \pm 1^\circ$. *Ref. j* of Table I. *P* Oxidant is HOCl. *Average for four experiments. P* Values for *cis-Co(en)*₂NH₃- P α *P* α *P* OH2+3 are 480 (65) and 340 (60), ref. *e* of Table I.

6 and 7 (corresponding values of the products expected for reactions proceeding with retention of geometry) demonstrates that for each bromo complex investigated, the reaction with $Cl₂$ (in the presence of $Cl⁻$) produces the corresponding chloro complex with retention of ge-

support for this interpretation was obtained from a study of the reactions of *cis*- and *trans*- $Co(en)_2NH_3Br^{+2}$ with HOCl. As shown by the last two entries of Table II, these reactions yield more than 80% of the corre-

⁽¹⁴⁾ It was also observed that $3-5\%$ of the cobalt was retained in the anion-exchange resin. This loss of cobalt did not affect the quality of the results since the studies on retention **or** loss of optical activity were carried out on solutions *ajter* the ion-exchange step.

⁽¹⁵⁾ This situation is in contrast with that reported for $Co(NH_3)_bBr^{+2}$, where even at 0.01 *M* HCIO₄ the principal product of the reaction with Cl₂ is $Co(NHs)_{8}Cl+2$, but conforms to the results reported for $Cr(NHs)_{8}Br+2.2$ Small differences in the reactivities of $Cl₂$ and HOCl toward a bromo complex can affect appreciably the relative yields of chloro and aquo complexes.

sponding aquo complexes.¹⁶ In this context, it is necessary to note that the reaction of $cis\text{-}\mathrm{Co(en)_2NH_3Br^{+2}}$ with HOCl does *not* proceed *via* formation of a cis-Co- $(en)_2NH_3Cl^{+2}$ intermediate, which then reacts with HOCl to yield the observed aquo product. A solution of cis -Co(en)₂NH₃C1⁺² treated with HOCl under the same conditions as $cis\text{-}Co(en)_2NH_3Br^{+2}$ showed no detectable change in light absorption over a period of 30 min. **l7**

TABLE 111

POLARIMETRIC DATA FOR THE REACTIONS OF d -cis-Co(en)₂NH₃Br⁺² WITH CHLORINE AND HYPOCHLOROUS ACID (ROOM TEMPERATURE)^a

Oxidant	[M]p. reactant	[M]p, product	$[M]$ p, calcd. ^b	% retention
Cl ₂	$+273c$	$+328c$	$+327$	100
Cl ₂	$+412^d$	$+487^{\rm d}$	$+495$	98
Cl ₂	$+460°$	$+543^\circ$	$+552$	98
HOCl ^e	$+438'$	$+377^{f}$	\cdots	92 ₀

^{*a*} Hydrochloric acid (0.12 *M*) unless otherwise stated. ^{*b*} Calculated using the values [M] $p = +500$ for d-cis-Co(en)₂NH₃Br⁺² (ref. 12), [M] $p = +600$ for d-cis-Co(en)₂NH₃Cl⁺² (ref. 12) and J. G. Brushmiller, E. L. Amma, and B. E. Douglas, *J. Am. Chern. Soc.*, **84,** 3227 (1962), and [M]D = $+432$ for d-cis-Co(en)₂NH₃-OH₂⁺³ (ref. 18). c Single experiment; $[Co(III)] = 1.11 \times 10^{-3}$ *M. d* Average for two experiments; $[Co(III)] = 8.14 \times 10^{-4} M$ and 1.11×10^{-3} *M*. *** Perchloric acid (0.015 *M*). *^f* Average for three experiments; [Co(III)] varied from 1.11 to 1.78 \times 10⁻³ *M. I* Calculated for the reaction which results in the formation of cis -Co(en)₂NH₃OH₂⁺³; see text.

The polarimetric studies carried out with *d-cis-* $Co(en)_2NH_3Br^{+2}$ are summarized in Table III and provide the most conclusive evidence for the retention of both geometry and optical configuration in the reaction with $Cl₂$. Within experimental error the retention of optical activity is 100% , a result which provides further support for the rearrangement mechanism postulated to account for the quantitative formation of $Co(NH_3)_4Cl^{+2}$ by the reaction of $Co(NH_3)_5Br^{+2}$ with $Cl₂$.²

Polarimetric studies of the reaction between d -cis- $Co(en)_2NH_3Br^{+2}$ (bromide salt) and HOCl were also carried out. A comparison of columns 3 and 4 of Table I11 shows that retention of optical activity is a major feature of the reaction. However, the quantitative interpretation of the results is complicated because of the formation of mixtures of chloro and aquo products. If it is assumed that the chloro product is formed with retention of optical activity, it is possible to calculate from the observed value of $[M]_D$ (+377), the known product distribution (18% cis-Co(en)²NH³Cl⁺² and 82% cis-Co(en)₈NH₃OH₂+3), and the value of [M]_D for $d\text{-}cis\text{-}\mathrm{Co(en)}_2\mathrm{NH}_3\mathrm{OH}_2{}^{+3}$ (+432)¹⁸ that the reaction which results in the formation of cis -Co(en)₂- $NH₃OH₂⁺³$ proceeds with 92% retention of optical activity. In view of the complications in this system, and of the accumulation of experimental errors in the calculation, it is reasonable to conclude that this reaction also proceeds with complete retention of optical activity.

If the retention of geometry and optical configuration proves to be a general feature of reactions of the present type, it is possible that such reactions wili be useful in syntheses and in the determination of geometries and optical configurations of related complexes.

Acknowledgment.---A. H. is indebted to Dr. A. M. Sargeson for helpful discussions regarding the optical activity of cis -Co(en)₂NH₃OH₂⁺³ and for the measurement of the value of $[M]$ D for this complex.

(18) **A** M. Sargeson, piivate communication.

CONTRIBUTION NO. 1770 FROM THE INSTITUTE FOR ATOMIC RESEARCH AND DEPARTMENT OF CHEMISTRY, IOWA STATE UNIVERSITY, AMES, IOWA

A Kinetic Study of the Reaction of Iodine and Iodochromium(II1) Ion in Acidic Solution]

BY JAMES H. ESPENSON

Keceioed Jzdy 26, 196j

In the course of a previous kinetic study2 of the formation of iodine in the reaction of iodate ion with iodide ion in an inert metal ion complex, $Cr(H₂O)₅I²⁺$, the rate equation suggested that the oxidation reaction might proceed through a mechanism where iodine catalyzed the removal of iodide ion from the primary coordination sphere of chromium(III), followed by rapid oxidation of the liberated iodide ion. The present work constitutes a kinetic study of the reaction of iodine and iodopentaaquochromium(II1) ion

$$
Cr(H_2O)_bI^2 + H_2 + H_2O = Cr(H_2O)_6^{3+} + I_3^-
$$
 (1)

and an examination of its role in the mechanism of oxidation of coordinated iodide ion.

Experimental

Reagents.-Iodochromium(II1) ion was prepared by reaction of solutions of chromium(I1) perchlorate and iodine and was isolated and purified by ion exchange on Dowex 50W-X8 cationexchange resin as described by Swaddle and King.³ During this procedure, water at 0° was circulated through the column jacket to prevent aquation of the complex

$$
Cr(H_2O)_{5}I^{2+} + H_2O = Cr(H_2O)_{8}^{3+} + I^{-}
$$
 (2)

(2) J. H. Espenson, *Inorg. Chem.*, 3, 968 (1964).

⁽¹⁶⁾ For trans-Co(en)₂NH₃Br⁺² the reaction with HOCl yields, apparently, only trans-Co(en)₂NH₃OH₂⁺³. However, for the corresponding reaction of the *cis* complex some cis -Co(en)₂NH₃Cl⁺² is detected in addition to the principal product cis-Co(en)₂NH₃OH₂⁺³. Part of the cis-Co(en)₂NH₃Cl⁺² may arise from the reaction of cis -Co(en)₂NH₃Br⁺² with the Cl₂ generated in the system by Br^- (inner and outer sphere) reduction of HOCI to Cl⁻, followed by HOC1 oxidation of C1-. Some attempts were made to investigate this point further, but the situation appears tc be complicated. **A** solution of cis -[Co(en)₂NH₃Br](C1O₄)₂ was prepared from the corresponding Br⁻ salt by an ion-exchange technique, and aliquots were treated with a 5fold excess of HOCl in the presence of 0.015 or 0.96 M HClO₄. The yields of $cis\text{-}\mathrm{Co(en)}_2\text{NH}_3\text{OH}_2$ were 91 and 85% , respectively. Furthermore, visual observation indicated that the rate of the reaction increases markedly with increasing [H +].

⁽¹⁷⁾ A similar observation was made previously. Co(NHa)sC1+2 does not react with HOC1 within 10 min. at room temperature.2

⁽¹⁾ This work was performed in the Ames Laboratory under the auspices of the U. S. Atomic Energy Commission.

⁽³⁾ T. W. Swaddle and E. L. King, $ibid.$, **4**, 532 (1965).