Photon Upconversion Properties of Ni²⁺ in Magnetic and Nonmagnetic Chloride Host Lattices

Oliver S. Wenger and Hans U. Güdel*

Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland

Received June 19, 2000

Near-infrared to visible upconversion luminescence in Ni²⁺:CsCdCl₃, Ni²⁺:CsMnCl₃, and Ni²⁺:RbMnCl₃ is presented and analyzed. In all three materials upconversion occurs via a sequence of ground-state absorption/ excited-state absorption processes, which are both formally spin-forbidden transitions. Consequently, in the diamagnetic Ni²⁺:CsCdCl₃ they are weak, and the efficiency of the upconversion process is relatively low. This is in clear contrast to the isostructural Ni²⁺:RbMnCl₃ where the spin selection rule relaxes because of Ni²⁺⁻ Mn²⁺ exchange interactions, leading to an intensity enhancement of the spin-flip transitions involved in the Ni²⁺:RbMnCl₃ relative to Ni²⁺:CsCdCl₃ by 2 orders of magnitude after two-color excitation into the maxima of the ground-state and excited-state absorption bands. In Ni²⁺:CsMnCl₃ the Ni²⁺-Mn²⁺ exchange interaction does not play a significant role. This is due to the different Ni²⁺-Cl⁻-Mn²⁺ bridging geometry relative to Ni²⁺: RbMnCl₃ and Ni²⁺:RbMnCl₃ where the upconversion luminescence occurs from Ni²⁺, in Ni²⁺:CsMnCl₃ the upconverted energy is emitted from Mn²⁺ in the visible spectral region. This leads to an enhanced *visible* upconversion luminescence in Ni²⁺:CsMnCl₃, relative to the other two samples where Ni²⁺ near-infrared inter-excited-state emissions compete with the visible upconversion luminescence.

1. Introduction

Many studies have been made over the past few years on materials displaying new photophysical effects. Among those, the photon upconversion process^{1,2} has received a lot of attention. Photoexcitation at long wavelengths is followed by short wavelength luminescence. A defining characteristic for all upconversion materials is the existence of a long-lived intermediate state that serves as a storage reservoir for the pump energy. Therefore, the basic prerequisite for upconversion materials is the existence of at least two emitting states. Because of the shielded nature of the spectroscopically active 4f and 5f orbitals, luminescence from multiple excited states is a common phenomenon in rare earth doped insulating materials. Thus, the vast majority of upconversion studies has been devoted to lanthanide systems. Such materials have found use, for example, as laser light sources,³ imaging materials,⁴ and IR quantum counters.⁵ By contrast, very few studies exist on transition metal ion upconversion systems. This is mainly due to the fact that the electron-phonon interaction of these ions is much stronger than in the case of the rare earths. Consequently, most transition metal ions follow Kasha's rule⁶ and have at most one metastable excited state with a sufficiently long lifetime to observe luminescence, i.e., the first excited state. Among transition metal ions in octahedral coordination, upconversion has so far only

- (5) Chivian, J. S.; Case, W. E.; Eden, D. D. Appl. Phys. Lett. 1979, 35, 124-125
- (6) Kasha, M. Discuss. Faraday Soc. 1950, 9, 14-19.

been observed in Ti^{2+,7} Ni^{2+,8,9} Mo^{3+,10} Re^{4+,10,11} and Os^{4+,12,13} The great advantage of such transition metal upconverters compared to rare earth upconversion ions is their sensitivity toward their ligand field environments. It allows a tuning of the upconversion properties by means of chemical variation. It is this fact that we exploit in this study.

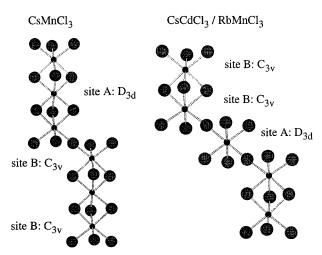
 Ni^{2+} upconversion has been observed in oxides,⁹ fluorides,⁹ and chlorides.⁸ The upconversion efficiency of the Ni²⁺ ion is, particularly in chlorides, limited by the fact that two weak spinforbidden transitions are involved in the upconversion process. In this paper we show how the Ni²⁺ spin selection rule relaxes in the presence of Ni²⁺-Mn²⁺ exchange interaction and we report the influence of such a magnetic perturbation on the Ni²⁺ upconversion properties. For that purpose we compare the upconversion properties of Ni²⁺:CsCdCl₃ and isostructural Ni²⁺: RbMnCl₃. The comparison with Ni²⁺:CsMnCl₃ underlines the importance of the exact Ni²⁺-Mn²⁺ exchange pathway. In addition, we demonstrate that in Ni²⁺:CsMnCl₃ the *visible* upconversion luminescence output is enhanced relative to Ni²⁺: CsCdCl₃.

2. Crystal and Magnetic Structures

The local environments of the divalent cations are quite similar in CsMnCl₃, RbMnCl₃, and CsCdCl₃ and consist of

- (8) Oetliker, U.; Riley, M. J.; May, P. S.; Güdel, H. U. Coord. Chem. Rev. 1991, 111, 125–130 and references therein.
- (9) Moncorgé, R.; Benyattou, T. Phys. Rev. B 1988, 37, 9186–9196.
 (10) Gamelin, D. R.; Güdel, H. U. J. Am. Chem. Soc. 1998, 120, 12143–
- 12144. (11) Gamelin, D. R.; Güdel, H. U. Inorg. Chem. **1999**, 38, 5154–5164.
- (12) Wermuth, M.; Güdel, H. U. *Chem. Phys. Lett.* **1998**, 281, 81–85.
- (13) Wermuth, M.; Güdel, H. U. J. Am. Chem. Soc. 1999, 121, 10102– 10111.

Wright, J. C. In *Topics in Applied Physics: Radiationless Processes in Molecules and Condensed Phases*; Fong, F. K., Ed.; Springer: Berlin, 1976; pp 239–295.


⁽²⁾ Auzel, F. E. Proc. IEEE 1973, 61, 758-786.

⁽³⁾ Lenth, W.; Macfarlane, R. M. Opt. Photonics News 1992, 3, 8-15.

⁽⁴⁾ Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. *Science* **1996**, 273, 1185–1189.

⁽⁷⁾ Jacobsen, S. M.; Güdel, H. U. J. Lumin. 1989, 43, 125-137.

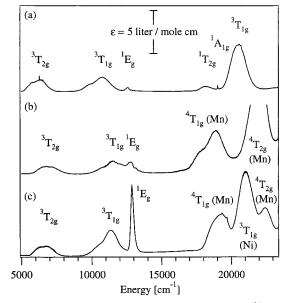
^{10.1021/}ic000662p CCC: \$20.00 © 2001 American Chemical Society Published on Web 12/07/2000

Figure 1. Relevant elements of the CsMnCl₃ and RbMnCl₃/CsCdCl₃ crystal structures illustrating the two types of Mn²⁺/Cd²⁺ sites D_{3d} (A) and C_{3v} (B) as well as the bridging arrangements (face- and cornersharing octahedra).

trigonally distorted $[M^{II}Cl_6]^{4-}$ octahedra. The Ni^{2+} dopant ions substitute for Mn^{2+} and $Cd^{2+}.$

CsMnCl₃ crystallizes in the hexagonal space group R3m.¹⁴ The compound consists of face-sharing trimers of [MnCl₆]^{4–} octahedra. Each trimer is linked to six other trimers by shared corners. This is illustrated in Figure 1 on the left. We see the two crystallographically nonequivalent sites A and B with D_{3d} and C_{3v} point symmetries, respectively.

RbMnCl₃ and CsCdCl₃ are isostructural and crystallize in the hexagonal space group $P6_3/mmc$.^{15,16} Two-thirds of the [M^{II}Cl₆]⁴⁻ octahedra form dimers by sharing one face. The site symmetry of these M^{II} ions is $C_{3\nu}$. These [M^{II}₂Cl₉]⁵⁻ units share corners with six [M^{II}Cl₆]⁴⁻ with D_{3d} point symmetry. This is illustrated in Figure 1 on the right. EPR investigations of 0.1% Ni²⁺: CsCdCl₃¹⁶ indicate that Ni²⁺ substitutes into only one of the two Cd²⁺ sites, and in an optical spectroscopic study this was identified as the $C_{3\nu}$ site.¹⁷ We assume that this is also the case in the isostructural RbMnCl₃. It is also reasonable to assume that in CsMnCl₃ the Ni²⁺ dopant ions preferentially substitute into only one of the two distinct Mn²⁺ sites.


Both CsMnCl₃ and RbMnCl₃ are three-dimensional antiferromagnets with ordering temperatures of 67 and 94 K, respectively.^{18,19} In both materials the spin orientation is perpendicular to the crystallographic c axis.

3. Experimental Section

The methods of sample preparation and crystal growth used to obtain the crystals for these investigations have been described elsewhere.^{20,21} The Ni²⁺ dopant concentrations in the crystals used for the spectroscopic measurements were 0.1%/10% in CsCdCl₃ and 10% in CsMnCl₃/ RbMnCl₃. In all crystals the nominal and effective dopant concentrations were found to be almost identical.

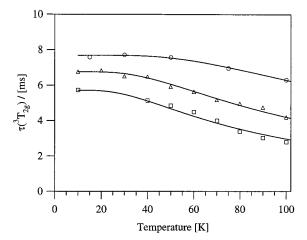
Absorption spectra were measured on a Cary 5e (Varian) spectrometer. Continuous-wave downconversion luminescence measurements

- (14) Ting-I, L.; Stucky, G. D.; McPherson, G. L. Acta Crystallogr. 1973, B29, 1330–1335.
- (15) Goodyear, J.; Steigman, G. A.; Ali, M. E. Acta Crystallogr. 1977, B33, 256–258.
- (16) Chang, J. R.; McPherson, G. L.; Atwood, J. L. Inorg. Chem. 1975, 14, 3079–3085.
- (17) Oetliker, U.; Riley, M. J.; Güdel, H. U. J. Lumin. 1995, 63, 63-73.
- (18) Melamud, M.; Makovsky, J.; Shaked, H. *Phys. Rev. B* **1971**, *3*, 3873. (19) Melamud, M.; Makovsky, J.; Shaked, H.; Shtrikman, S. *Phys. Rev. B*
- **1971**, *3*, 821–826.
- (20) May, P. S.; Güdel, H. U. J. Lumin. 1989, 46, 277-290.
- (21) Kambli, U.; Güdel, H. U. J. Phys. C 1984, 17, 4041-4054.

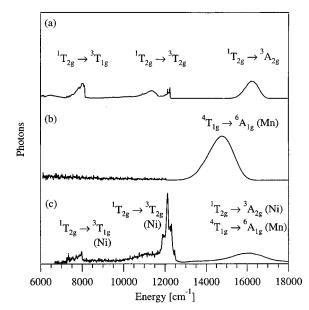
Figure 2. The 15 K survey absorption spectra of (a) 10% Ni²⁺:CsCdCl₃ (axial), (b) 10% Ni²⁺:CsMnCl₃ (unpolarized), and (c) 10% Ni²⁺: RbMnCl₃ (axial). Spin singlet and triplet labels denote Ni²⁺ absorption bands, and spin quartet labels indicate Mn^{2+} absorptions.

were performed using an Ar⁺ laser (Ion Laser Technology) or a Kr⁺ laser (Coherent Innova 300) as an excitation source. The sample luminescence was dispersed by a ${}^{3}/_{4}$ m single monochromator (Spex 1702). Visible luminescence was detected using a cooled red sensitive photomultiplier tube (Hamamatsu 3310-01) connected to a photon-counting system (Stanford Research 400). Near-infrared luminescence was detected with a low-noise Ge detector (ADC 403L, operated at 77 K) or a dry-ice-cooled PbS detector (Hamamatsu P3337) and processed with a lock-in amplifier (Stanford Research 510). For upconversion luminescence and excitation measurements two Ar⁺ laser (Spectra Physics 2060-10A) pumped Ti:sapphire lasers (Spectra Physics 3900S) were used. The detection system consisted of a 0.85 m double monochromator and a cooled photomultiplier tube (RCA 31034) connected to the photon-counting system (SR400).

Rectangular excitation pulses for the lifetime experiments were generated by passing the laser beam through an accousto-optic modulator (Coherent 305) connected to a function generator (Stanford Research DS345). The sample luminescence decay was analyzed with a multichannel scaler (Stanford Research 430).


Sample cooling was achieved by a closed-cycle cryostat (Air Products Displex) for absorption measurements and with a He gas flow technique for the emission experiments.

All luminescence spectra were corrected for the sensitivity of the detection system and are displayed as photon counts versus energy.


4. Results

Spectra a, b, and c of Figure 2 shows the survey absorption of 10% Ni²⁺-doped CsCdCl₃, CsMnCl₃, and RbMnCl₃, respectively. The absorption spectrum of Ni²⁺ in the near-infrared and visible spectral region consists of three spin-allowed and three spin-forbidden d-d transitions as shown in Figure 2a. In the Ni²⁺:CsMnCl₃ and Ni²⁺:RbMnCl₃ absorption spectra the two lowest energy ⁴T_{1g} and ⁴T_{2g} absorption bands of Mn²⁺ are superimposed on the ¹T_{2g}, ¹A_{1g}, and ³T_{1g} (³P) absorption bands of Ni²⁺. Below 17 000 cm⁻¹ Mn²⁺ is spectroscopically transparent. Relative to 10% Ni²⁺:CsCdCl₃ the integrated ³A_{2g} \rightarrow ¹Eg absorption intensity is larger in 10% Ni²⁺:CsMnCl₃ and 10% Ni²⁺:RbMnCl₃ by factors of 5 and 20, respectively.

In Figure 3 lifetimes of the ${}^{3}T_{2g}$ first excited state of 0.1% Ni²⁺:CsCdCl₃ (circles), 10% Ni²⁺:CsMnCl₃ (triangles), and 10% Ni²⁺:RbMnCl₃ (squares) are plotted as a function of temperature. The ${}^{3}T_{2g}$ lifetimes were extracted from the rise times in the

Figure 3. Temperature dependences of the Ni^{2+ 3}T_{2g} lifetimes in 0.1% Ni²⁺:CsCdCl₃ (circles), 10% Ni²⁺:CsMnCl₃ (triangles), and 10% Ni²⁺: RbMnCl₃ (squares). The solid lines are fits of eq 1 to the experimental data.

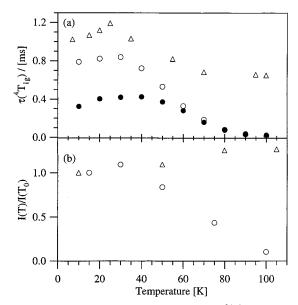
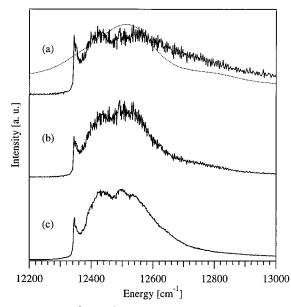


Figure 4. The 15 K unpolarized survey luminescence spectra of (a) 10% Ni²⁺:CsCdCl₃ (excited at 20 492 cm⁻¹), (b) 10% Ni²⁺:CsMnCl₃ (excited at 17 599 cm⁻¹), and (c) 10% Ni²⁺:RbMnCl₃ (excited at 20 986 cm⁻¹). Spectra a and c are scaled to an equal integrated ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ emission intensity.


upconversion luminescence transients obtained after low-power near-infrared excitation with rectangular square wave pulses.

The 15 K unpolarized survey luminescence of 10% Ni²⁺: CsCdCl₃, 10% Ni²⁺:CsMnCl₃, and 10% Ni²⁺:RbMnCl₃ are presented in spectra a, b, and c of Figure 4, respectively. Spectra a and c are scaled to an equal integrated ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ emission intensity. Ni²⁺:CsCdCl₃ and Ni²⁺:RbMnCl₃ were excited into the Ni^{2+ 3}T_{1g} (³P) absorption band at 20 492 and 20 986 cm⁻¹, respectively. Ni²⁺:CsMnCl₃ was excited into the Mn^{2+ 4}T_{1g} absorption band at 17 599 cm⁻¹.

The upper half of Figure 5 shows the temperature dependence of the $Mn^{2+} {}^{4}T_{1g}$ lifetimes in undoped CsMnCl₃ (open triangles) and in 10% Ni²⁺-doped CsMnCl₃ (open circles) after Mn²⁺ excitation at 17 599 cm⁻¹. The full circles represent the temperature-dependent Mn²⁺ ${}^{4}T_{1g}$ lifetimes in the same 10% Ni²⁺:CsMnCl₃ crystal after Ni²⁺ excitation at 12 345 cm⁻¹. In the lower half of Figure 5 the integrated Mn²⁺ ${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ emission intensities of undoped CsMnCl₃ (open triangles) and

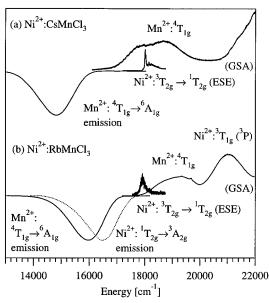
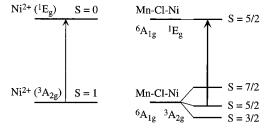

Figure 5. (a) Temperature dependences of the $Mn^{2+} {}^{4}T_{1g}$ lifetimes in undoped CsMnCl₃ (Δ) and in 10% Ni²⁺:CsMnCl₃ (O, after Mn²⁺ excitation at 17 599 cm⁻¹; •, after Ni²⁺ excitation at 12 345 cm⁻¹). (b) Temperature dependences of the relative integrated Mn²⁺ ${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ emission intensities in undoped CsMnCl₃ (Δ) and in 10% Ni²⁺: CsMnCl₃ (O) after Mn²⁺ excitation at 17 599 cm⁻¹.

Figure 6. (a) 15 K ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ ground-state absorption (GSA) spectrum (dotted line) and 15 K ${}^{3}T_{2g} \rightarrow {}^{1}T_{2g}$ excited-state excitation (ESE) of 0.1% Ni²⁺:CsCdCl₃ (solid line). In the ESE experiment a Ti:sapphire laser (typical power, 100 mW) was used to provide a high ${}^{3}T_{2g}$ population by pumping into the ${}^{3}T_{1g}$ (${}^{3}F$) absorption at 11 000 cm⁻¹. ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ emission at 16 500 cm⁻¹ was monitored as a function of wavelength of a second probe Ti:sapphire laser (typical power, 2 mW) (b) Calculated product of the GSA and ESE line shape functions from (a). (c) Experimental 15 K upconversion luminescence excitation spectrum monitoring Ni²⁺¹T_{2g} $\rightarrow {}^{3}A_{2g}$ emission at 16 500 cm⁻¹.

of 10% Ni²⁺:CsMnCl₃ (open circles) after $Mn^{2+4}T_{1g}$ excitation at 17 599 cm⁻¹ are plotted against temperature.

Figure 6 shows spectroscopic data of Ni²⁺:CsCdCl₃. Figure 6a shows the 15 K Ni²⁺ ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ ground-state absorption (GSA) spectrum (dotted line) together with the Ni²⁺ ${}^{3}T_{2g} \rightarrow {}^{1}T_{2g}$ excited-state excitation (ESE) spectrum at 15 K (full line). In the ESE experiment the Ni²⁺ ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ emission was monitored at 16 500 cm⁻¹. One Ti:sapphire laser was used to provide a high ${}^{3}T_{2g}$ population by pumping into the ${}^{3}T_{1g}$


Figure 7. (a) 15 K GSA spectrum of 10% Ni²⁺:CsMnCl₃ in the spectral region of the Mn²⁺ ⁴T_{1g}, ⁴T_{2g} with the Ni²⁺ ³T_{2g} \rightarrow ¹T_{2g} ESE spectrum shifted by the energy of the Ni²⁺ ³T_{2g} origin (5660 cm⁻¹), to show the absolute energy of the Ni²⁺ ¹T_{2g} excited state with respect to the ³A_{2g} ground state. The Mn²⁺ ⁴T_{1g} \rightarrow ⁶A_{1g} emission spectrum (excited at 17 599 cm⁻¹) is shown upside down. (b) 15 K GSA spectrum of 10% Ni²⁺:RbMnCl₃ in the spectral region of the Mn²⁺ ⁴T_{1g} \rightarrow ⁴T_{1g} and Ni²⁺ ³A_{2g} \rightarrow ³T_{1g} (³P) transitions together with the Ni²⁺ ³T_{2g} \rightarrow ¹T_{2g} ESE spectrum shifted by the energy of the ³T_{2g} origin (5551 cm⁻¹). The 15 K Mn²⁺ ⁴T_{1g} \rightarrow ⁶A_{1g} and Ni²⁺ ¹T_{2g} \rightarrow ³A_{2g} emission spectra (excited at 19 436 and 12 345 cm⁻¹, respectively) are shown upside down. The intensities of the GSA and ESE spectra are not comparable.

absorption band at 11 000 cm⁻¹. A second Ti:sapphire laser was used to probe the ${}^{3}T_{2g} \rightarrow {}^{1}T_{2g}$ excited-state absorption transition. The laser powers were around 100 mW for the pump and less than 2 mW for the probe laser. Figure 6b shows the calculated product of the GSA and ESE line shape functions from Figure 6a. Figure 6c presents the experimental 15 K one-color upconversion luminescence excitation spectrum monitoring ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ emission of Ni²⁺ at 16 500 cm⁻¹.

Figure 7a presents data collected on a 10% Ni²⁺:CsMnCl₃ crystal at 15 K. Shown are the GSA spectrum in the spectral region of the Ni²⁺ ¹T_{2g}, ¹A_{1g}, and ³T_{1g} (³P) and the Mn²⁺ ⁴T_{1g} and ⁴T_{2g} excited states, the Ni²⁺ ³T_{2g} \rightarrow ¹T_{2g} ESE spectrum shifted by the energy of the Ni²⁺ ³T_{2g} origin (5660 cm⁻¹), and the Mn²⁺ ⁴T_{1g} \rightarrow ⁶A_{1g} emission spectrum excited at 17 599 cm⁻¹ (upside down). In Figure 7b analogous data measured at 15 K on a 10% Ni²⁺:RbMnCl₃ crystal are presented. The GSA spectrum shifted by the energy region and the Ni²⁺ ³T_{2g} \rightarrow ¹T_{2g} ESE spectrum shifted by the energy of the Ni²⁺ ³T_{2g} origin (5551 cm⁻¹). The 15 K Mn²⁺ ⁴T_{1g} \rightarrow ⁶A_{1g} downconversion emission spectrum excited at 19 436 cm⁻¹ (full line), and the 15 K Ni²⁺ ¹T_{2g} \rightarrow ³A_{2g} upconversion emission spectrum excited at 12 345 cm⁻¹ (dashed line) are shown upside down.

5. Analysis and Discussion

A. Exchange-Enhanced ${}^{1}E_{g}$ Excitation in Ni²⁺:RbMnCl₃. In diamagnetic host lattices such as CsCdCl₃ the spin-forbidden Ni²⁺ transitions from the ${}^{3}A_{2g}$ ground state to the ${}^{1}E_{g}$, ${}^{1}A_{1g}$, and ${}^{1}T_{2g}$ excited states gain their intensity via spin-orbit coupling to energetically close-lying spin-allowed d-d transitions (Figure 2a). In magnetic hosts such as CsMnCl₃ and RbMnCl₃ there is an additional intensity-gaining mechanism

Figure 8. Schematic energy levels and spin quantum numbers of the Ni²⁺-centered ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ transition for (a) an isolated Ni²⁺ ion in CsCdCl₃ and (b) a Ni²⁺-Mn²⁺ pair in Ni²⁺:RbMnCl₃.

for formally spin-forbidden transitions, an intensity mechanism resulting from exchange interactions between the metal centers.²² Because of this mechanism, the absorption bands of concentrated Mn²⁺ compounds are more intense than those of dilute crystals containing isolated Mn²⁺ ions.²³ It has been demonstrated that the exchange interactions between unlike metal ions are usually stronger than those between like ions.^{24,25} Ni²⁺-Mn²⁺ exchange interactions may therefore lead to an exchange enhancement of the spin-forbidden ${}^3\!A_{2g} \rightarrow {}^1\!E_g, \, {}^1\!A_{1g}$, and ${}^1\!T_{2g}$ transitions in the absorption spectra of Ni²⁺:CsMnCl₃ and Ni²⁺:RbMnCl₃. However, in these lattices the latter two transitions are obscured by the $Mn^{2+} {}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$ absorption bands. Therefore, we focus on the $Ni^{2+} {}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ transition. The integrated intensity of this transition is larger in Ni²⁺:CsMnCl₃ than in Ni²⁺:CsCdCl₃ by approximately a factor of 5 (Figure 2a,b). Because of the stronger ligand field in Ni²⁺:CsMnCl₃ relative to Ni²⁺:CsCdCl₃, the ${}^{3}T_{1g}$ (${}^{3}F$) and the ${}^{1}E_{g}$ excited states are energetically closer to each other in Ni2+:CsMnCl3 than in Ni2+:CsCdCl3 by approximately 15%. This leads to a stronger spin-orbit interaction of the ³T_{1g} (³F) and ¹E_g excited states in Ni²⁺:CsMnCl₃ than in Ni²⁺:CsCdCl₃, which manifests itself in a weak progression pattern on the high-energy side of the ¹Eg absorption band of Ni²⁺:CsMnCl₃. It indicates that this whole absorption band has a mixed singlet-triplet character, similar to the situation in Ni²⁺:CsMgCl₃.²⁶ The absorption spectrum of Ni²⁺ in CsMgCl₃ is qualitatively and quantitatively very similar to the absorption spectrum of Ni²⁺:CsMnCl₃.^{26,27} We therefore conclude that the enhanced ¹E_g absorption intensity in Ni²⁺: CsMnCl₃ (Figure 2b) relative to Ni²⁺:CsCdCl₃ (Figure 2a) is mainly due to stronger spin-orbit interaction of the ${}^{3}T_{1g}$ (${}^{3}F$) and the ${}^{1}E_{g}$ excited states in the former.

A comparison of the Ni²⁺:CsCdCl₃ and Ni²⁺:RbMnCl₃ absorption spectra (Figure 2a,c) shows that the energetic separation of the ${}^{3}T_{1g}$ (${}^{3}F$) and ${}^{1}E_{g}$ exicted states is similar in both compounds. Therefore, spin—orbit coupling cannot account for the very pronounced intensity enhancement of the ${}^{1}E_{g}$ absorption band in Ni²⁺:RbMnCl₃. We conclude that the ${}^{3}A_{2g}$ $\rightarrow {}^{1}E_{g}$ transition in Ni²⁺:RbMnCl₃ is enhanced by Ni²⁺—Mn²⁺ exchange interactions. A simple Ni²⁺—Mn²⁺ dimer picture illustrates the principle of this exchange-induced intensity enhancement, the so-called Tanabe mechanism²³ (see Figure 8). The dimer ground state is [Ni²⁺({}^{3}A_{2g}), Mn²⁺({}^{6}A_{1g})] and therefore has dimer spin levels with $S_{dimer} = {}^{3}/_{2}, {}^{5}/_{2}, {}^{7}/_{2}$. The

- (23) Ferguson, J.; Guggenheim, H. J.; Tanabe, Y. J. Phys. Soc. Jpn. 1966, 21, 692–704.
- (24) Ferguson, J.; Guggenheim, H. J.; Tanabe, Y. J. Chem. Phys. 1966, 45, 1134–1141.
- (25) Gondaira, K.; Tanabe, Y. J. Phys. Soc. Jpn. 1966, 21, 1527-1548.
- (26) Buissière, G.; Reber, C. J. Am. Chem. Soc. 1998, 120, 6306-6315.
- (27) McPherson, G. L.; Stucky, G. D. J. Chem. Phys. 1972, 57, 3780-3786.

⁽²²⁾ McCarthy, P. J.; Güdel, H. U. Coord. Chem. Rev. 1988, 88, 69-131 and references therein.

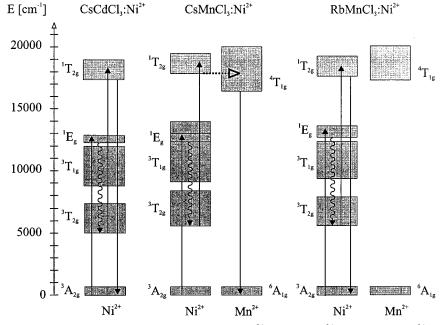


Figure 9. Summary of the near-infrared to visible upconversion processes in Ni²⁺:CsCdCl₃, Ni²⁺:CsMnCl₃, and Ni²⁺:RbMnCl₃. The solid arrows represent radiative processes of GSA, ESA, and luminescence. The curly arrows indicate nonradiative multiphonon relaxation processes, and the dashed arrow represents an energy-transfer process.

Ni²⁺-centered ¹E_g excited state has $S_{Ni} = 0$, and therefore, the corresponding [Ni²⁺(¹E_g), Mn²⁺(⁶A_{1g})] dimer excited state has only one $S_{\text{dimer}} = \frac{5}{2}$ spin level. Thus, there is a formally spinallowed $S_{\text{dimer}} = \frac{5}{2} \rightarrow \frac{5}{2}$ transition that dominates the ${}^{3}\text{A}_{2g} \rightarrow$ ${}^{1}E_{\sigma}$ oscillator strength in the Ni²⁺:RbMnCl₃ absorption spectrum. This transition is thermally activated with an intensity maximum around 50 K, in agreement with the fact that $S_{\text{dimer}} = \frac{5}{2}$ is not the ground state in Figure 8. Above this temperature the ${}^{3}A_{2g}$ \rightarrow ¹E_g oscillator strength decreases again and reaches a value at 300 K that is about 10% lower than that at 50 K. By contrast, the ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ oscillator strengths in Ni²⁺:CsMnCl₃ and Ni²⁺: CsCdCl₃ increase with increasing temperature steadily up to 300 K. In both these materials the respective oscillator strength is approximately 30% larger at 300 K than at 15 K. The difference in the temperature dependence of the ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ oscillator strength in Ni²⁺:RbMnCl₃ and Ni²⁺:CsMnCl₃ is therefore another indication that the intensity-gain mechanism for that transition is different in these two compounds, i.e., $Ni^{2+}-Mn^{2+}$ exchange interaction in the case of Ni²⁺:RbMnCl₃ leading to an intensity maximum at a specific temperature and spin-orbit interaction in the case of Ni²⁺:CsMnCl₃ leading to a steady increase of the absorption oscillator strength with increasing temperature. The simple dimer picture for Ni²⁺:RbMnCl₃ thus provides a satisfactory qualitative explanation of the observed ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ absorption temperature dependence, but it is not capable of modeling it quantitatively. The real situation in Ni²⁺: RbMnCl₃ is more complicated. Each Ni²⁺ ion has four nearest Mn²⁺ neighbors instead of one. In addition the RbMnCl₃ lattice is antiferromagnetically ordered below 94 K.19

It is a characteristic of the Tanabe intensity mechanism that pure spin-flip transitions involving no changes in electron orbital occupancies are influenced most strongly by exchange interactions, while spin-allowed transitions essentially stay unaffected. Spin-forbidden transitions involving an orbital promotion represent an intermediate case. These trends are observed in Figure 2c, where the pure spin-flip ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ transition shows by far the largest exchange enhancement. From the fact that this ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ transition is exchange-enhanced in Ni²⁺:RbMnCl₃ but not in Ni²⁺:CsMnCl₃ (see above) we

conclude that the Ni²⁺-Mn²⁺ exchange interaction is stronger in Ni²⁺:RbMnCl₃ than in Ni²⁺:CsMnCl₃. The spin density of the Ni²⁺ d⁸ ion is located in the e_g set of d orbitals and thus has a σ -type interaction with Cl⁻ ligand orbitals. Consequently, the dominant Ni²⁺-Mn²⁺ exchange interactions occur via a σ -superexchange pathway, which is most efficient for a 180° Ni²⁺-Cl⁻-Mn²⁺ bridge,^{28,29} i.e., corner-sharing octahedral units. As mentioned in section 2, it is reasonable to assume that the Ni²⁺ dopant ions predominately occupy one of two crystallographically distinct Mn²⁺ sites in both RbMnCl₃ and CsMnCl₃. In Ni²⁺:RbMnCl₃ the Ni²⁺ dopant ions occupy the C_{3v} site, and consequently, corner-sharing Ni²⁺-Cl⁻-Mn²⁺ bridges exist (see Figure 1). In Ni²⁺:CsMnCl₃ we have no direct EPR information on the identity of the Ni²⁺ site. Because we observe no exchange enhancement of the ¹E_g excitation, we conclude that Ni²⁺ occupies the D_{3d} site in this lattice (see Figure 1). This site is sharing faces of the two neighboring Mn²⁺ octahedra, and thus, there is no efficient 180° Ni²⁺-Cl⁻-Mn²⁺ exchange pathway.

B. Downconversion Luminescence. Dynamics and Temperature Dependences. 1. Ni^{2+ 3}T_{2g} First Excited-State Emission. Figure 9 presents the Ni²⁺ energy level schemes for Ni²⁺:CsCdCl₃, Ni²⁺:CsMnCl₃, and Ni²⁺:RbMnCl₃. In all three compounds excitation with a Ti:sapphire laser into the Ni^{2+ 3}T_{1g} (3F) and ¹E_g excited states leads to rapid (typically within picoseconds) nonradiative multiphonon relaxation to the ${}^{3}T_{2g}$ first excited state. From there near-infrared ${}^{3}T_{2g} \rightarrow {}^{3}A_{2g}$ emission occurs at temperatures below 200 K (spectra not shown). In the 15–100 K temperature range the integrated ${}^{3}T_{2g} \rightarrow {}^{3}A_{2g}$ emission intensity is nearly constant in all three compounds considered in this study (data not shown), and we conclude that nonradiative relaxation processes can be neglected below 100 K. The 15 K ${}^{3}T_{2g}$ lifetimes in 0.1% Ni²⁺:CsCdCl₃, 10% Ni²⁺: CsMnCl₃, and 10% Ni²⁺:RbMnCl₃ are 7.8, 6.8, and 5.8 ms, respectively. The temperature dependences of these lifetimes

⁽²⁸⁾ Ferguson, J.; Guggenheim, H. J.; Tanabe, Y. Phys. Rev. Lett. 1965, 14, 737–738.

⁽²⁹⁾ Ferguson, J.; Guggenheim, H. J.; Tanabe, Y. Phys. Rev. 1967, 161, 207–212.

in the 15–100 K temperature range shown in Figure 3 can be fitted with the following equation:³⁰

$$\tau_{\rm rad}(T) = \tau_{\rm rad}(T_0) \left[\coth\!\left(\frac{\nu_{\rm eff}}{2kT}\right) \right]^{-1} \tag{1}$$

Equation 1 describes the temperature dependence of the radiative lifetime τ_{rad} as resulting from an increased ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ absorption oscillator strength upon warming due to thermally induced vibronic intensity. ν_{eff} is a weighted average of the ungerade enabling modes in the Herzberg–Teller mechanism. Reasonable fits with eq 1 to the experimental ${}^{3}T_{2g}$ lifetime data between 15 and 100 K are obtained with the following fit parameters: $\nu_{eff} = 130 \pm 10 \text{ cm}^{-1} (\text{Ni}^{2+}:\text{CsCMCl}_3), 101 \pm 10 \text{ cm}^{-1} (\text{Ni}^{2+}:\text{CsMnCl}_3), and 90 \pm 10 \text{ cm}^{-1} (\text{Ni}^{2+}:\text{RbMnCl}_3).$

For each of the three crystals considered here, there is a temperature above 100 K where nonradiative multiphonon relaxation becomes important, causing a steep decrease in both the ${}^{3}T_{2g} \rightarrow {}^{3}A_{2g}$ emission intensity and the ${}^{3}T_{2g}$ lifetime (data not shown). These temperatures are 175 \pm 5 K in 0.1% Ni²⁺: CsCdCl₃, 150 \pm 5 K in 10% Ni²⁺:CsMnCl₃, and 110 \pm 5 K in 10% Ni²⁺:RbMnCl₃.

2. Ni^{2+}/Mn^{2+} Emission in the Visible Spectral Region. a. Ni²⁺:CsCdCl₃. A close inspection of the Ni²⁺:CsCdCl₃ absorption spectrum (Figure 2a) reveals that both the energy gap between the Ni^{2+ 3}T_{2g} first excited state and the ${}^{3}A_{2g}$ ground state and the energy gap between the ${}^{1}T_{2g}$ and ${}^{1}E_{g}$ higher excited states are about 5000 cm⁻¹. It is therefore not too surprising to find radiative emission of Ni^{2+} not only from the ${}^{3}T_{2g}$ first excited state but also from the ${}^1\!T_{2g}$ higher excited state. From there, transitions to all lower-lying levels are observed at cryogenic temperatures. Shown in Figure 4a are the three spinforbidden transitions to the ${}^{3}A_{2g}$, ${}^{3}T_{2g}$, and ${}^{3}T_{1g}$ (${}^{3}F$) states. In 0.1% Ni²⁺:CsCdCl₃ the ${}^{1}T_{2g}$ lifetime is 85 μ s at 15 K. With increasing temperature, this lifetime drops sharply. This lifetime reduction is accompanied by a corresponding decrease in ¹T_{2g} emission intensity (data not shown). This indicates that nonradiative multiphonon relaxation processes play a significant role down to the lowest temperatures. At 300 K, ¹T_{2g} emission is completely quenched. A comparison of the 15 K Ni²⁺:CsCdCl₃ emission (Figure 4a) and absorption spectra (Figure 2a) reveals energy regions where emission and absorption bands overlap. This enables nonradiative cross-relaxation processes, particularly in concentrated Ni²⁺ systems, at the expense of ¹T_{2g} luminescence. To obtain a high quantum efficiency of visible ${}^{1}T_{2g} \rightarrow$ ${}^{3}A_{2g}$ emission, the Ni²⁺ dopant concentration therefore has to be very low.³¹

b. Ni²⁺:CsMnCl₃. In Ni²⁺:CsMnCl₃, excitation with 17 599 cm⁻¹ photons exclusively leads to ${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ luminescence of Mn²⁺ in the visible spectral region as shown in Figure 4b. It will be demonstrated in section 5.C that the origin of the Ni²⁺ ${}^{1}T_{2g}$ excited state is around 17 800 cm⁻¹, more than 1300 cm⁻¹ above the origin of the Mn²⁺ ${}^{4}T_{1g}$ first excited state in this material.²¹ Excitation at 17 599 cm⁻¹ therefore only excites Mn²⁺ ions. At 10 K the ${}^{4}T_{1g}$ lifetime in 10% Ni²⁺:CsMnCl₃ is 0.79 ms (Figure 5a), compared to 1.02 ms in undoped CsMnCl₃. Partial Mn²⁺ \rightarrow Ni²⁺ energy transfer in 10% Ni²⁺:CsMnCl₃ and subsequent fast relaxation on the Ni²⁺ center cannot account for this shortening for energetic reasons (see above). We ascribe it to the following two effects. First, the relatively high Ni²⁺ dopant concentration will cause changes in the Mn²⁺ crystal

field environment and may therefore lead to a reduction of the $Mn^{2+} {}^{4}T_{1g}$ lifetime. Second, there is evidence for an additional $Mn^{2+} {}^{4}T_{1g}$ depopulation process in Ni²⁺:CsMnCl₃ that does not exist in undoped CsMnCl₃. After pure ${}^{4}T_{1g}$ excitation of Mn^{2+} at 17 599 cm⁻¹, Ni²⁺ ${}^{3}T_{2g} \rightarrow {}^{3}A_{2g}$ near-infrared emission is observed, even at 15 K. A comparison of the 10% Ni²⁺: CsMnCl₃ absorption (Figure 2b) and emission spectra (Figure 4b) indicates how this $Mn^{2+} \rightarrow Ni^{2+}$ energy transfer occurs. There is some spectral overlap of $Mn^{2+} {}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ emission with Ni²⁺ ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$, ${}^{1}E_{g}$ absorption between 12 700 and 14 000 cm⁻¹. Consequently, $Mn^{2+} {}^{4}T_{1g}$, Ni²⁺ ${}^{3}A_{2g} \rightarrow Mn^{2+} {}^{6}A_{1g}$, Ni²⁺ ${}^{3}T_{1g}/{}^{1}E_{g}$ cross-relaxation can take place and thus lead to a shortening of the $Mn^{2+} {}^{4}T_{1g}$ lifetime in 10% Ni²⁺:CsMnCl₃ relative to that of the undoped CsMnCl₃.

The temperature dependence of the ${}^{4}T_{1g}$ lifetime between 7 and 100 K in undoped CsMnCl₃ (open triangles in Figure 5a) has been explained as follows.²¹ The ${}^{4}T_{1g}$ origin of the D_{3d} Mn²⁺ ions is energetically lower than the ${}^{4}T_{1g}$ origin of the C_{3v} Mn²⁺ ions. As a consequence, there is a unidirectional $C_{3v} \operatorname{Mn}^{2+} \rightarrow$ D_{3d} Mn²⁺ energy transfer at the lowest temperatures. This process is thermally activated and becomes more efficent between 10 and 30 K, causing an increase of the ⁴T_{1g} lifetime due to the longer radiative lifetime of the centrosymmetric D_{3d} site, relative to the noncentrosymmetric C_{3v} site. Above 30 K, $D_{3d} \operatorname{Mn}^{2+} \rightarrow C_{3v} \operatorname{Mn}^{2+}$ back energy transfer becomes important, resulting in a decrease of the ⁴T_{1g} lifetime. Up to 100 K there is no reduction of the integrated ${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ emission intensity in undoped CsMnCl₃ (open triangles in Figure 5b), indicating that in this sample nonradiative ${}^{4}T_{1g}$ depopulation is unimportant between 10 and 100 K.

As shown in Figure 5, in 10% Ni²⁺:CsMnCl₃ the temperature dependence of the Mn²⁺ ⁴T_{1g} lifetime and the Mn²⁺ ⁴T_{1g} \rightarrow ⁶A_{1g} integrated emission intensity is analogous to that of undoped CsMnCl₃ only between 10 and 30 K. Above 30 K the decrease of the Mn²⁺ ⁴T_{1g} lifetime is accompanied by a decrease of the Mn²⁺ ⁴T_{1g} \rightarrow ⁶A_{1g} emission intensity. At 100 K, the Mn²⁺ emission is almost completely quenched in 10% Ni²⁺:CsMnCl₃. We ascribe this to an increased Mn²⁺ ⁴T_{1g}, Ni²⁺ ³A_{2g} \rightarrow Mn²⁺ ⁶A_{1g}, Ni²⁺ ³T_{1g}/¹Eg cross-relaxation efficiency as the temperature is raised.

c. Ni²⁺:RbMnCl₃. At 10 K, excitation into the Ni^{2+ 3} T_{1g} (³P) absorption band of 10% Ni²⁺:RbMnCl₃ at 20 986 cm⁻¹ leads to the same Ni²⁺ emission transitions as observed in 10% Ni²⁺: CsCdCl₃ (Figure 4) but with completely different relative intensities. As expected from the similarity of host lattices, the transitions occur at a very similar energy in the emission spectra of both compounds. The broad emission feature around 16 000 cm⁻¹ in the Ni²⁺:RbMnCl₃ spectrum consists of overlapping Ni²⁺ ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ (90%) and Mn²⁺ ${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ (10%) luminescence transitions due to a coexcitation of both ions at 20 986 cm⁻¹. Selective Ni²⁺ excitation in the near-infrared (see section 5.C) results in a pure Ni²⁺ ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ emission band with an origin around 17 800 cm⁻¹ as shown in Figure 7b (dotted trace). On the other hand, selective $Mn^{2+4}T_{1g}$ excitation at 19 436 cm⁻¹ is followed by pure Mn^{2+ 4}T_{1g} \rightarrow ⁶A_{1g} emission (Figure 7b, full trace). As in the undoped RbMnCl₃, the origin of this Mn^{2+} emission is around 17 500 cm⁻¹ and the ${}^{4}T_{1g}$ lifetime is about 1 ms (lifetime data not shown). Consequently, the origin of the Ni^{2+ 1}T_{2g} excited state lies approximately 300 cm^{-1} above the origin of the $Mn^{2+}\,^4T_{1g}$ excited state. The energy transfer from the ${}^{1}T_{2g}$ of Ni²⁺ to the ${}^{4}T_{1g}$ of Mn²⁺ is not quantitative at 15 K because there are very fast ¹T_{2g} relaxation processes that compete with $Ni^{2+} \rightarrow Mn^{2+}$ energy transfer in 10% Ni²⁺:RbMnCl₃. Two of these are independent of the Mn

⁽³⁰⁾ Ballhausen, C. J. Introduction to Ligand Field Theory; McGraw-Hill: New York, 1962.

⁽³¹⁾ May, P. S.; Güdel, H. U. Chem. Phys. Lett. 1989, 164, 612-616.

host lattice and have their origin in the high Ni²⁺ concentration. It has been demonstrated in previous studies on Ni²⁺-doped CsCdCl₃ that the following cross-relaxation processes become important at Ni²⁺ concentrations above 0.1%: ${}^{1}T_{2g}$, ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$, ${}^{3}T_{1g}$ (³F) and ${}^{1}T_{2g}$, ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (³F), ${}^{3}T_{1g}$ (³F). 31,32 Another process is due to the efficient Ni²⁺-Cl⁻-Mn²⁺ exchange interaction in this system. The ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ transition is hardly affected by exchange interaction (section 5.A); therefore, the emission spectra of 10% Ni²⁺:CsCdCl₃ and 10% Ni²⁺:RbMnCl₃ are scaled to an equal integrated $Ni^{2+}\ ^1T_{2g} \rightarrow \ ^3A_{2g}$ emission intensity. Comparison of the respective emission spectra (Figure 4) shows that the ${}^{1}T_{2g} \rightarrow {}^{3}T_{2g}$ transition around 12 000 cm⁻¹ has an increased oscillator strength by about an order of magnitude in Ni²⁺:RbMnCl₃ compared to that in Ni²⁺:CsCdCl₃. This leads to a reduction of the ${}^{1}T_{2g}$ lifetime by a factor of 4 in the magnetic host lattice. In concert, these three processes prevent an efficient energy transfer (ET) from ${}^{1}T_{2g}$ on Ni²⁺ to ⁴T_{1g} on Mn²⁺ at 15 K. At higher temperatures this ET becomes more competitive because of better spectral overlap, and we observe a slow decay component due to $Mn^{2+} {}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ superimposed on the fast $Ni^{2+1}T_{2g}$ emission in the lifetime of the broad luminescence band measured at 16 500 cm⁻¹. The two emissions overlap, but do not coincide, which leads to a broadening of the band at elevated temperatures (data not shown).

C. Upconversion and Relaxation Mechanisms. Nearinfrared excitation around 12 500 cm⁻¹ into ${}^{1}E_{g}$ of a 10% Ni²⁺: CsCdCl₃ crystal at 15 K leads to an upconversion luminescence spectrum that is identical to the downconversion luminescence spectrum obtained after excitation into the Ni²⁺ ${}^{3}T_{1g}$ (³P) excited state (Figure 4a). The same is true for 10% Ni²⁺:RbMnCl₃ with the only small difference that the upconversion luminescence spectrum is a pure Ni²⁺ spectrum, whereas the spectrum excited at 20 986 cm⁻¹ (Figure 4c) contains a small amount of Mn²⁺ ${}^{4}T_{1g}$ emission. Ni²⁺:CsMnCl₃ shows contrasting behavior; Ni²⁺ ${}^{1}E_{g}$ excitation in the near-infrared exclusively leads to visible Mn²⁺ ${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ emission, the same as observed after direct Mn²⁺ excitation (Figure 4b).

From this behavior we derive the excitation and relaxation schemes in Figure 9 for the three systems. Excitation in the near-infrared into ${}^{1}\text{E}_{g}$ is followed by fast multiphonon relaxation to ${}^{3}\text{T}_{2g}$ and upconversion to ${}^{1}\text{T}_{2g}$ in all the three systems. Luminescence from ${}^{1}\text{T}_{2g}$ into the various lower-lying states of Ni²⁺ is then observed below 100 K in the CsCdCl₃ and RbMnCl₃ hosts, whereas in 10% Ni²⁺:CsMnCl₃ the ${}^{1}\text{T}_{2g}$ excitation of Ni²⁺ is transferred to ${}^{4}\text{T}_{1g}$ of Mn²⁺, from which emission takes place.

What is the mechanism of the upconversion process? From a comparison of the spectra in Figure 6 we can answer this question for 0.1% Ni²⁺:CsCdCl₃ at 15 K, and this answer can then be generalized for the other systems. First we note that the ground-state absorption (GSA) spectrum (dotted line in Figure 6a) is not identical with the one-color upconversion excitation spectrum (Figure 6c). The latter shows additional structure and a sharp feature at about 12 350 cm⁻¹. These same features are also observed in the ${}^{3}\text{T}_{2g} \rightarrow {}^{1}\text{T}_{2g}$ excited-state excitation (ESE) spectrum shown in Figure 6a (full line). It follows that the sharp features in the one-color upconversion excitation spectrum of Figure 6c are due to a ${}^{3}\text{T}_{2g} \rightarrow {}^{1}\text{T}_{2g}$ excited-state absorption (ESA) process. We conclude that upconversion occurs by a sequence of ${}^{3}\text{A}_{2g} \rightarrow {}^{1}\text{E}_{g}$ (GSA) and ${}^{3}\text{T}_{2g} \rightarrow {}^{1}\text{T}_{2g}$ (ESA) steps.

In a pure GSA/ESA upconversion mechanism the one-color upconversion excitation spectrum is given by the product of the GSA and ESA line shape functions.³³ This product, obtained from multiplication of the two spectra in Figure 6a, is shown in Figure 6b. Its agreement with the one-color upconversion excitation spectrum of Figure 6c is very good. In 10% Ni²⁺: CsMnCl₃ the agreement is almost equally good, whereas in 10% Ni²⁺:RbMnCl₃ it is slightly worse (data not shown). We conclude that in all three systems GSA/ESA is the predominant upconversion mechanism. The alternative energy-transfer upconversion (ETU) mechanism would exhibit a different signature from that observed in Figure 6. In addition, an ETU mechanism can also be ruled out on energetic grounds.

The ${}^{3}T_{2g} \rightarrow {}^{1}T_{2g}$ ESE spectra at 15 K of 10% Ni²⁺:CsMnCl₃ and 10% Ni²⁺:RbMnCl₃ are shown in Figure 7. They are shifted to higher energies by 5660 and 5551 cm^{-1} , respectively, i.e., by the energies of the ${}^{3}T_{2g}$ origins, to show the absolute energies of the Ni^{2+ 1}T_{2g} excited states relative to the ${}^{3}A_{2g}$ ground state. The comparison of this ESE spectrum with the GSA spectrum in Figure 7a shows that in 10% Ni²⁺:CsMnCl₃ the Ni²⁺ ¹T_{2g} origin lies more than 1300 cm⁻¹ above the Mn^{2+ 4}T_{1g} origin. Consequently, there is a good spectral overlap for nonradiative $Ni^{2+} {}^{1}T_{2g} \rightarrow Mn^{2+} {}^{4}T_{1g}$ energy transfer. It has been demonstrated in a previous study that in the CsMnCl₃ host there is essentially no $Mn^{2+} \rightarrow Mn^{2+}$ energy migration at 15 K; i.e., the excitation energy is self-trapped in the $Mn^{2+} {}^{4}T_{1g}$ excited state.³⁴ Therefore, in 10% Ni²⁺:CsMnCl₃ at 15 K, after Ni²⁺ near-infrared excitation followed by upconversion and Ni²⁺ \rightarrow Mn²⁺ energy transfer, the excitation stays in proximity to the Ni²⁺ ions. The following cross-relaxation process is thus likely to contribute to the $Mn^{2+} {}^{4}T_{1g}$ deactivation: $Mn^{2+} {}^{4}T_{1g}$, $Ni^{2+} {}^{3}A_{2g} \rightarrow Mn^{2+} {}^{6}A_{1g}$, $Ni^{2+} {}^{3}T_{1g}/{}^{1}E_{g}$. This explains the different ${}^{4}T_{1g}$ lifetimes of 10% Ni²⁺:CsMnCl₃ below 70 K after upconversion excitation via Ni^{2+} (full circles in Figure 5a) and direct excitation of the bulk Mn^{2+} at 17 599 cm⁻¹ (open circles in Figure 5a). With the two excitation modes we thus probe different subsets of Mn^{2+} ions in the crystal. At elevated temperatures $Mn^{2+} \rightarrow$ Mn²⁺ energy migration becomes important, and the same value for the $Mn^{2+} {}^{4}T_{1g}$ lifetime is obtained above 70 K after both Ni²⁺ excitation in the near-infrared and after direct Mn²⁺ excitation.

A comparison of the GSA and Ni²⁺ ${}^{3}T_{2g} \rightarrow {}^{1}T_{2g}$ ESE spectra of 10% Ni²⁺:RbMnCl₃ at 15 K in Figure 7 shows that in this system the origins of the Ni²⁺ ${}^{1}T_{2g}$ and the Mn²⁺ ${}^{4}T_{1g}$ excited states are energetically much closer than in 10% Ni²⁺:CsMnCl₃. In the case of 10% Ni²⁺:RbMnCl₃ the energetic separation of the respective origins is better extracted from the Ni²⁺ ${}^{1}T_{2g} \rightarrow {}^{3}A_{2g}$ and Mn²⁺ ${}^{4}T_{1g} \rightarrow {}^{6}A_{1g}$ emission spectra (both shown upside down in Figure 7b). The Ni²⁺ ${}^{1}T_{2g}$ origin lies about 300 cm⁻¹ above the Mn²⁺ ${}^{4}T_{1g}$ origin. The spectral overlap required for Ni²⁺ ${}^{1}T_{2g} \rightarrow Mn^{2+} {}^{4}T_{1g}$ energy transfer is therefore several orders of magnitude smaller in 10% Ni²⁺:RbMnCl₃ than in 10% Ni²⁺:CsMnCl₃. In particular, as discussed in section 5.B, at 15 K this energy-transfer process is negligible compared to the other processes deactivating ${}^{1}T_{2g}$. As a consequence, in contrast to the CsMnCl₃ host, no Mn²⁺ emission is observed upon Ni²⁺ upconversion excitation.

D. Effect of Exchange Interactions on Upconversion. We have established a sequence of GSA and ESA steps as the predominant upconversion mechanism in all three chemical systems (see Figure 9). Both the GSA and ESA steps are

⁽³³⁾ Pollnau, M.; Gamelin, D. R.; Lüthi, S. R.; Hehlen, M. P.; Güdel, H. U. *Phys. Rev. B* **2000**, *61*, 3337–3346.

⁽³⁴⁾ Kambli, U.; Güdel, H. U. Inorg. Chem. 1984, 23, 3479-3486.

formally spin-forbidden triplet to singlet spin-flip transitions and are therefore weak in Ni2+:CsCdCl3. Thus, the whole upconversion process in this compound is relatively inefficent. In 10% Ni²⁺:RbMnCl₃, on the other hand, the single-ion spin selection rules relax due to Ni²⁺-Mn²⁺ exchange interactions. Specifically, the pure spin-flip ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}$ and the ${}^{3}T_{2g} \rightarrow {}^{1}T_{2g}$ transitions, corresponding to the GSA and ESA steps in the upconversion mechanism, are exchange-enhanced by factors of 20 and 10, respectively, in 10% Ni²⁺:RbMnCl₃ relative to 10% Ni²⁺:CsCdCl₃. The Ni^{2+ 3}T_{2g} first excited state serves as an energy storage reservoir for the second upconversion step (ESA). A long lifetime helps to establish a high population of Ni²⁺ ions that can be upconverted to the ¹T_{2g} excited state. Because the ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ transition is spin-allowed, the Ni²⁺-Mn²⁺ exchange interaction does not affect its oscillator strength. The radiative ${}^{3}T_{2g}$ lifetimes in Ni²⁺:RbMnCl₃ ($\tau_{15K} = 5.8$ ms) and in Ni²⁺:CsCdCl₃ ($\tau_{15K} = 7.8$ ms) are therefore about the same. Taking into account that the ${}^{3}T_{2g}$ lifetime is a factor of 1.34 shorter in Ni2+:RbMnCl3 than in Ni2+:CsCdCl3, a total enhancement of the upconversion rate by a factor of roughly 150 is calculated for the magnetic lattice.³⁵ This is compared to an experimentally determined enhancement factor of 80, which was obtained from a comparison of 15 K upconversion luminescence intensities in 10% Ni2+:CsCdCl3 and 10% Ni2+:RbMnCl3 after two-color excitation with one laser in resonance with the GSA maximum and a second laser in resonance with the ESA maximum. Considering the experimental uncertainty of roughly a factor of 4 in this experiment, the calculated and observed enhancement factors agree fairly well.

The comparison of the 10% Ni^{2+} :RbMnCl₃ and 10% Ni^{2+} : CsMnCl₃ systems demonstrates the importance of the bridging geometry for the Ni^{2+} -Mn²⁺ exchange interaction. It is strongest for a 180° Ni²⁺-Cl⁻-Mn²⁺ bridging angle occurring between sites A and B in Ni²⁺:RbMnCl₃ (see Figure 1).

The specialty of 10% Ni²⁺:CsMnCl₃ is the enhanced *visible* luminescence quantum yield after near-infrared excitation (see Figure 4). In 10% Ni²⁺:CsCdCl₃ and 10% Ni²⁺:RbMnCl₃ there are three Ni²⁺ inter-excited-state luminescence transitions in the near-infrared spectral region that compete with the visible ¹T_{2g} \rightarrow ³A_{2g} upconversion luminescence. This is avoided in Ni²⁺: CsMnCl₃ where the upconverted energy is transferred to Mn²⁺, which emits exclusively in the visible spectral region. Using the ¹T_{2g} emission branching ratio of Ni²⁺:CsCdCl₃ as a basis, we calculate an enhancement of visible upconversion luminescence output in Ni²⁺:CsMnCl₃ relative to Ni²⁺:CsCdCl₃ by roughly a factor of 5 at 15 K. Such a selective enhancement of *visible* upconversion luminescence has no precedent.

In summary, we have established in this study that exchange interactions between transition metal ions can be exploited for the modification of transition metal upconversion properties. We have shown that the combination of transition metal upconversion ions with other emitting (transition metal) ions provides a tool for the tuning of the upconversion luminescence properties. In this sense the present study demonstrates the broader principle of environmental control of transition metal upconversion properties using chemical means. The feasibility of such controlled modifications represents the major advantage of transition metal ion upconversion systems when compared to the lanthanide systems where, because of the shielded nature of the spectroscopically active f orbitals, a controlled tuning of the upconversion properties by means of chemistry is impossible.

Acknowledgment. The authors thank Daniel R. Gamelin for many valuable discussions. This research has been financially supported by the Swiss National Science Foundation.

IC000662P

⁽³⁵⁾ Wenger, O. S.; Gamelin, D. R.; Güdel, H. U. J. Am. Chem. Soc. 2000, 122, 7408–7409.