Calculational Study of the Protonation of BXH_2 and BX_2H (X = F and Cl). Structures of BXH_3^+ and $BX_2H_2^+$ and Their Dihydrogen Complexes BXH_5^+ and $BX_2H_4^{+1}$

Golam Rasul and George A. Olah*

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received August 4, 2000

Introduction

We have previously reported² the calculated structures of tetracoordinate BH₄⁺ and hexacoordinate boronium ion, BH₆⁺. The structure of BH₄⁺ is planar $C_{2\nu}$ symmetrical with a three-center two-electron (3c–2e) bond.² The structure of BH₆⁺ is $C_{2\nu}$ symmetrical with two 3c–2e bonds.² The structures of BH₄⁺ and BH₆⁺ were found to be isostructural with their isoelectronic carbon analogues CH₄^{2+ 3} and CH₆^{2+,4} respectively. In our report we suggested that BH₆⁺ could be made by the complexation of BH₄⁺ and H₂ as the process is exothermic by 16.7 kcal/mol.² DePuy et al. were indeed able to prepare and observe the BH₄⁺ and BH₆⁺ experimentally in the gas phase by reacting BH₂⁺ and H₂ and BH₄⁺ and H₂, respectively.⁵

Higher coordinate compounds involving main group elements are of both theoretical⁶ and experimental⁷ interest. Schmidbaur and his associates have prepared a variety of higher coordinated boron,⁸ carbon,⁹ nitrogen,¹⁰ oxygen,¹¹ phosphorus,¹² and sulfur^{13a} gold complexes and determined their X-ray structures. They

- Onium Ions. 55. Part 54: Olah, G. A.; Prakash, G. K. S.; Rasul, G. J. Am. Chem. Soc., in press.
- (2) Rasul, G.; Olah, G. A. Inorg. Chem. 1997, 36, 1278.
- (3) Wong, M. W.; Radom, L. J. Am. Chem. Soc. 1989, 111, 1155.
- (4) Lammertsma, K.; Olah. G. A.; Barzaghi, M.; Simonetta, M. J. Am. Chem. Soc. 1982, 104, 6851. Lammertsma, K.; Barzaghi, M.; Olah, G. A.; Pople, J. A.; Schleyer, P. v. R.; Simonetta, M. J. Am. Chem. Soc. 1983, 105, 5258.
- (5) DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E. J. Am. Chem. Soc. 1997, 119, 427. DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Krempp, M.; Damrauer, R. J. Am. Chem. Soc. 1998, 120, 5086.
- (6) Haberlen, O. D.; Schmidbaur, H.; Rosch, N. J. Am. Chem. Soc. 1994, 115, 8241. Gorling, A.; Rosch, N.; Ellis, D. E.; Schmidbaur, H. Inorg. Chem. 1991, 30, 0, 3986. Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. Advances in Gas Phase Ion Chemistry; JAI Press Inc.: Stamford, CT,1996; p 125. Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. J. Chem. Phys. 1995, 103, 5565.
- (7) Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391.
- (8) Blumenthal, A.; Beruda, H.; Schmidbaur, H. J. Chem. Soc., Chem. Commun. 1993, 1005.
- (9) (a) Scherbaum, F.; Grohmann, A.; Müller, G.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 463. (b) Scherbaum, F.; Grohmann, A.; Huber B.; Krüger, C.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1544.
- (10) Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140.
- (11) Schmidbaur, H.; Hofreiter, S.; Paul, M. Nature 1995, 377, 503.
- (12) Schmidbaur, H.; Beruda, H.; Zeller, E. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 87, 245.

have prepared trigonal bipyramidal^{9a} {[(C_6H_5)₃PAu]₅C}⁺ and octahedral^{9b} {[(C_6H_5)₃PAu]₆C}²⁺ involving five- and sixcoordinate carbon, respectively, representing the isolobal⁷ analogues of CH₅⁺ and CH₆²⁺. Lithiated penta- and hexacoordinated carbocations, CLi₅⁺ and CLi₆²⁺, respectively, were also calculated to be stable minima.^{13b} In a continuation of our study we have now extended our investigations to the protonated BXH₃⁺ and BX₂H₂⁺ (X = F and Cl) ions as well as their dihydrogen complexes BXH₅⁺ and BX₂H₄⁺, respectively.

Calculations

Calculations were performed with the Gaussian 98 program system.¹⁴ The geometry optimizations were carried out at the MP2/6-311+G** level.¹⁵ Vibrational frequencies at the MP2/6-311+G**//MP2/6-311+G** level were used to characterize stationary points as minima (number of imaginary frequency (NIMAG) = 0) and to evaluate zero point vibrational energies (ZPE) which were scaled by a factor of 0.96.¹⁶ For improved energy, single point energies at the MP4(SDTQ)/cc-pVTZ¹⁷ level on MP2/6-311+G** optimized geometries were computed. Final energies were calculated at the MP4(SDTQ)/cc-pVTZ¹⁷ level on MP2/6-311+G** at the MP4(SDTQ)/cc-pVTZ¹⁷ level on MP2/6-311+G** geometrical parameters are given in Table 2. MP2/6-311+G** geometrical parameters and final energies will be discussed throughout, unless stated otherwise.

Results and Discussion

BFH₃⁺ **and BFH**₅⁺. Two structures of protonated BFH₂, B–H protonated **1a** and F-protonated **1b** (Figure 1), were found to be the minima on the potential energy surface (PES). Structure **1a** is a planar boronium ion with a 3c-2e bond involving boron and two hydrogens. On the other hand structure **1b** is a fluoronium ion with a relatively long B–F bond (1.552 Å). **1a** is substantially more stable than **1b** by 9.7 kcal/mol. This shows that the B–H bond is a better donor than the fluorine nonbonded electron pair in BFH₂.

Ion **1a** can be considered as a complex between the dicoordinate BFH⁺ ion and H₂. The complexation process was computed to be exothermic by 3.0 kcal/mol (Scheme 1, Table 2). Similar complexation of BH₂⁺ and H₂ leading to BH₄⁺ **1x** (Figure 1) is exothermic by 13.2 kcal/mol. Thus the H₂ unit is

- (13) (a) Zeller, E.; Beruda, H.; Schmidbaur, H. *Inorg. Chem.* 1993, *32*, 3203. (b) Jemmis, E. D.; Chandrasekhar, J.; Würthwein, E.-U.; Schleyer, P. v. R.; Chinn, J. W.; Landro, F. J.; Lagow, R. J.; Luke, B.; Pople, J. A. *J. Am. Chem. Soc.* 1982, *104*, 4275. Schleyer, P. v. R.; Tidor, B.; Jemmis, E. D.; Chandrasekhar, J.; Würthwein, E.-U.; Kos, A. J.; Luke, B. T.; Pople, J. A. *J. Am. Chem. Soc.* 1983, *105*, 484. Reed, A. E; Weinhold, F. *J. Am. Chem. Soc.* 1985, *107*, 1919.
- (14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; M. Head-Gordon, M.; Pople, J. A. *Gaussian 98*, revision A.5; Gaussian, Inc.: Pittsburgh, PA, 1998.
- (15) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley-Interscience: New York, 1986.
- (16) Foresman, J. B.; Frisch, A. *Exploring Chemistry with Electronic Structure Methods*; Gaussian, Inc.: Pittsburgh, PA, 1996.
- (17) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.

Table 1. Total Energies (-au), ZPE,^{*a*} and Relative Energies $(\text{kcal/mol})^b$

	MP2/6-311+G**// MP2/6-311+G**	ZPE	MP4(SDTQ)/ cc-pVTZ// MP2/6-311+G**	rel energy (kcal/mol)
BFH ₃ ⁺ 1a	125.87831	17.6	125.97841	0.0
BFH ₃ ⁺ 1b	125.86878	20.0	125.96684	9.7
BFH ₅ ⁺ 2a	127.04521	27.0	127.15842	0.0
BFH ₅ ⁺ 2b	127.04624	31.3	127.15645	5.5
$ \begin{array}{l} \text{BClH}_3^+ \ \textbf{3a} \\ \text{BClH}_3^+ \ \textbf{3b} \end{array} $	485.84314	16.5	485.96113	4.3
	485.85338	18.6	485.97131	0.0
$\begin{array}{l} \text{BClH}_5^+ \ \textbf{4a} \\ \text{BClH}_5^+ \ \textbf{4b} \end{array}$	487.00495	27.2	487.13689	11.0
	487.02713	29.9	487.15866	0.0
$\begin{array}{l} BF_{2}H_{2}^{+} \; \textbf{5a} \\ BF_{2}H_{2}^{+} \; \textbf{5b} \\ BF_{2}H_{2}^{+} \; \textbf{5c} \end{array}$	225.02319	15.1	225.18124	2.4
	225.03119	16.6	225.18740	0.0
	225.03055	16.7	225.18679	0.5
$BF_2H_4^+$ 6a	226.18894	23.6	226.36010	
$\begin{array}{c} BCl_2H_2^+ \ \textbf{7b} \\ BCl_2H_2^+ \ \textbf{7c} \end{array}$	944.96898 944.96933	14.4 14.3		0.3^{c} 0.0^{c}

^{*a*} Zero point vibrational energies (ZPE) at MP2/6-311+G**//MP2/6-311+G** scaled by a factor of 0.96. ^{*b*} At the MP4(SDTQ)/cc-pVTZ//MP2/6-311+G** + ZPE level. ^{*b*} At the MP2/6-311+G**//MP2/6-311+G** + ZPE level.

Table 2. Dissociation Energy (ΔE_0), Thermal Contribution to the Enthalpy (ΔH), and Free Energy Change (ΔG) at 298 K for the Selected Processes^{*a*}

process	ΔE_0 (kcal/mol) ^a	ΔH (kcal/mol) ^b	ΔG (kcal/mol) ^b
$\begin{array}{c} BFH^+ + H_2 \rightarrow BFH_3^+ 1a \\ BH_2^+ + HF \rightarrow BFH_3^+ 1b \\ BFH_2 + H^+ \rightarrow BFH_3^+ 1a \\ BFH_3^+ 1a + H_2 \rightarrow BFH_5^+ 2a \\ BFH_3^+ 1b + H_2 \rightarrow BFH_5^+ 2b \\ BH_4^+ + HF \rightarrow BFH_5^+ 2b \end{array}$	$-3.0 \\ -35.7 \\ -135.3 \\ -2.0 \\ -6.1 \\ -29.4$	1.8 2.3 2.0 3.5 2.5	8.1 10.0 9.6 11.6 11.7
$\begin{array}{l} BH_2^+ + HCl \rightarrow BClH_3^+ \ \textbf{3b} \\ BClH_3^+ \ \textbf{3b} + H_2 \rightarrow BClH_5^+ \ \textbf{4b} \\ BH_4^+ + HCl \rightarrow BClH_5^+ \ \textbf{4b} \\ BF_2^+ + H_2 \rightarrow BF_2H_2^+ \ \textbf{5a} \\ BFH^+ + HF \rightarrow BF_2H_2^+ \ \textbf{5b} \\ BF_2H_2^+ \ \textbf{5a} + H_2 \rightarrow BF_2H_4^+ \ \textbf{6a} \end{array}$	-40.8 -4.7 -32.4 -8.0 -23.6 -2.2	2.4 3.5 2.6 2.0 1.4 1.3	10.3 11.8 12.2 8.0 9.8 8.8

^{*a*} At the MP4(SDTQ)/cc-pVTZ//MP2/6-311+G** + ZPE level. ^{*b*} At the MP2/6-311+G**//MP2/6-311+G** level.

Table 3. MP2/6-311+G** Calculated Frequencies^{*a*} and IR Intensities

no.	frequencies in cm ⁻¹ (IR intensities in km/mol)
1a	224 (1), 474 (310), 638 (5), 830 (30), 990 (41), 1049 (21),
	1530 (195), 2906 (7), 4154 (216)
1b	469 (200), 622 (100), 767 (207), 1009 (126), 1060 (55),
	1204 (51), 2762 (2), 2977 (2), 3722 (530)
3a	251 (0), 296 (304), 585 (2), 773 (5), 955 (79), 1011 (41),
	1163 (93), 2877 (3), 4123 (255)
3b	474 (42), 614 (136), 703 (11), 971 (9), 1014 (28), 1205 (84)
	2744 (5), 2895 (209), 2927 (0)

^a Not scaled.

more tightly bound in BH₄⁺ than in **1a**. Consequently the 3c– 2e B–H bond distances of **1a** (1.674 and 1.718 Å) are considerably longer than that of BH₄⁺ (1.448 Å). The parent BH₄⁺ **1x** has been prepared⁵ in the gas phase by complexing BH₂⁺ and H₂. Protonation of BFH₂ to give **1a** was calculated to be exothermic by 135.3 kcal/mol, which is slightly less exothermic than protonation of BH₃ (137.1 kcal/mol). The free energy change ΔG (i.e., including temperature and entropy corrections at 298 K using the rigid-rotor approximation) and thermal contribution to the enthalpy (ΔH) were also calculated and are listed in Table 2. The free energy change for $1a \rightarrow BFH^+ + H_2$ was computed to be 8.1 kcal/mol. These observations indicate that the complex **1a** is expected to be experimentally characterizable at low temperature but not at room temperature in the gas phase. Calculated vibrational frequencies of **1a** and **1b** are given in Table 2.

Further complexation of **1a** with H_2 leads to BFH₅⁺ **2a**, which was also found to be a stable minimum (Figure 1). The *C_s*-symmetric **2a** contains a six-coordinate boron and two 3c-2e bonds. Formation of **2a** from complexation of **1a** and H_2 is also an exothermic (by 2.0 kcal/mol) process (Scheme 1). However,

Scheme 1

the free energy change for $2a \rightarrow 1a + H_2$ was computed to be 9.6 kcal/mol. This indicates that the ion 2a should be unstable at room temperature. In comparison, formation of BH₆⁺ from BH₄⁺ 1x and H₂ was calculated to be exothermic by 17.7 kcal/mol. The hexacoordinate parent BH₆⁺ has been prepared by DePuy et al. in the gas phase by complexing BH₄⁺ with H₂.⁵

Isomeric **2b** with a five-coordinate boron and a 3c-2e bond is also a stable minimum which can be formed by complexing **1b** with H₂ (Scheme 2, Table 2). The complexation process was

Scheme 2

found to be exothermic by 6.1 kcal/mol. However, **2b** is 5.5 kcal/mol less stable than **2a** (Table 1). Ion **2b** is in fact a boronium–fluoronium ion and can be considered as a complex between BH_4^+ **1x** and HF. Formation of **2b** from BH_4^+ and HF was calculated to be exothermic by 29.4 kcal/mol (Table 1).

BClH₃⁺ and BClH₅⁺. The B–H and Cl-protonated BClH₂, **3a** and **3b** were found to be stable minima. The C_s -symmetric structure **3a** also contains a 3c–2e bond. The structure **3b** is a chloronium ion with a B–Cl bond distance of 1.861 Å. However, unlike fluorinated analogues, **3a** is less stable than **3b** by 4.3 kcal/mol (Table 1). This is expected because the calculated¹⁸ proton affinity (PA) on the chlorine of BClH₂ (145.7 kcal/mol) was found to be significantly higher than the PA on the fluorine of BFH₂ (126.1 kcal/mol). Calculated vibrational frequencies of **3a** and **3b** are given in Table 2. Complexations of **3a** and **3b** with H₂ also give stable structures **4a** involving a six-coordinate boron and two 3c–2e bonds and **4b** involving a

⁽¹⁸⁾ Proton affinities on the halogens at 298 K were calculated at the MP4-(SDTQ)/cc-pVTZ/MP2/6-311+G** + ZPE level (PA = 126.1 (BFH₂), = 145.7 (BClH₂), and = 124.4 kcal/mol (BF₂H)) and the MP2/6-311+G**Z/MP2/6-311+G** + ZPE level (PA = 146.0 kcal/mol (BCl₂H)); for calculational procedure, see: Hartz, N.; Rasul, G.; Olah, G. A. J. Am. Chem. Soc. **1993**, *115*, 1277.

Figure 1. MP2/6-311+G** structures of 1–7.

five-coordinate boron and a 3c-2e bond, respectively. However, **4a** is substantially less stable than **4b** by 11.0 kcal/mol (Table 1). Ion **4b** can also be considered as a complex between BH₄⁺ and HCl. Formation of **4b** from BH₄⁺ and HCl was calculated to be exothermic by 32.4 kcal/mol (Table 1).

 $BF_2H_2^+$ and $BF_2H_4^+$. B-H protonated form 5a with a 3c-2e bond and two F-protonated forms 5b and 5c (Figure 1) were found to be the minima. Between the two F-protonated forms, 5b is slightly more stable than 5c by 0.5 kcal/mol. However, unlike protonated BFH₂, the F-protonated **5b** is more more stable than the B–H protonated **5a** form by 2.4 kcal/mol. Thus the fluorine nonbonded electron pairs are better donors than the B–H bond in BF₂H. Complexation of BF₂⁺ with H₂ to give **5a** (Scheme 1) and complexation of BFH⁺ with HF to give **5b** (Scheme 2) were both calculated to be exothermic by 8.0 and 23.6 kcal/mol, respectively.

Further complexation of **5a** with H₂ leads to $BF_2H_4^+$ **6a**. Similar to **2a**, the $C_{2\nu}$ -symmetric structure **5a** also contains a hexacoordinate boron and two 3c-2e bonds (Figure 1). Formation of **6a** from **5a** and H₂ is also exothermic by 2.2 kcal/mol (Scheme 1). No minimum could be located for the complex of **5b** with H₂.

Unlike BF₂H, protonation on BCl₂H seems to occur primarily on the chlorine atom to give **7b** and **7c** (Figure 1) since on PES the B–H protonated structure is not a minimum. This is also consistent with the calculated¹⁸ PA on the chlorine of BCl₂H (146.0 kcal/mol), which was found to be significantly higher than PA on the fluorine of BF₂H (124.4 kcal/mol). The structure **7c** is slightly more stable than **7b** by 0.3 kcal/mol. No minimum for the complex of **7b** or **7c** with H₂, however, could be located.

Conclusion

The structures and stabilities of protonated BXH₂ and BX₂H

(X = F and Cl), BXH_3^+ and $BX_2H_2^+$, as well as their dihydrogen complexes BXH_5^+ and $BX_2H_4^+$, respectively, were calculated at the MP2/6-311+G** level. Global minimum structures for the BFH_3^+ and $BClH_3^+$ were found to be B–H protonated **1a** with a 3c–2e bond and Cl-protonated **3b**, respectively. Complexation of **1a** with H₂ leads to BFH_5^+ **2a** with a hexacoordinate boron atom and two 3c–2e bonds. On the other hand complexation of **3b** with H₂ leads to boroniumchloronium structure **4b** with a 3c–2e bond. Thermodynamics of the various complexation processes were computed. Structures of $BH_2F_2^+$ and $BF_2H_4^+$ were also calculated and discussed.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

IC000877Z