Synthesis of a Spin-Coupled, Mixed-Metal Double Square Grid Complex [(poap-H)4Cu(II)3Fe(III)- (NO_3) ₂ $(CIO_4)_{4}$ $(NO_3)_{4}$ $12H_2O$ (poap $=$ **N3-(2-pyridoyl)-2-pyridinecarboxamidrazone)** with an $S = 3$ Ground State, from a **Mononuclear Fe(III) Precursor Complex**

Zhiqiang Xu,† Laurence K. Thompson,*,† Craig J. Matthews,† David O. Miller,† Andre´**s E. Goeta,‡ and Judith A. K. Howard‡**

Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X7, and University of Durham, Durham DH1 3LE, United Kingdom

*Recei*V*ed August 11, 2000*

Introduction

The synthesis of mixed-metal complexes can be achieved by the selective occupation of one polytopic ligand site by one metal, prior to occupancy of a second site by a different metal. Such bridging ligands as oxalate, oxamide, and their derivatives, $1-4$ oximes,⁵ and polyfunctional ligands derived from phenolic substrates^{$6-9$} have been successfully metalated in this fashion, leading to heterodinuclear complexes. Producing higher nuclearity heteronuclear clusters is more difficult, but there have been some successes.¹⁰ The polyfunctional diazine ligands pahap (picolinamide azine) and poap $(N^3-(2-pyridoyl)-2-pyridinecar$ boxamidrazone) (Chart 1) provide several different dinucleating bonding motifs with cis and trans conformations about the single $N-N$ bond,¹¹ and also oxygen-bridged structures (poap).¹² The magnetic properties vary as a function of the rotation of the magnetic planes about the $N-N$ bond.¹¹

This report outlines an unusual reaction between a mononuclear Fe(III) complex $[Fe(Hpoap-H)(NO₃)(H₂O)₂](NO₃)₂(1)$ with a "vacant" coordination pocket and $Cu(CIO₄)₂$ to produce a square $\lbrack Cu_3Fe]_2$ gridlike dimeric octanuclear cluster, $\lbrack (poap-$

- ‡ University of Durham.
- (1) Ohba, M.; Tamaki, H.; Matsumoto, N.; Oh kawa, H. *Inorg. Chem*. **¹⁹⁹³**, *32*, 5358.
- (2) Corte´s, R.; Urtiaga, M. K.; Lezama, L.; Arriortua M. I.; Rojo, T. *Inorg. Chem.* **1994**, *33*, 829.
- (3) Gulbrandsen, A.; Sletten, J.; Nakatani, K.; Pei, Y.; Kahn, O. *Inorg. Chim. Acta* **1993**, *212*, 271.
- (4) Nakatani, K.; Bergerat, P.; Cordjovi, E.; Mathonière, C.; Pei, Y.; Kahn, O. *Inorg. Chem.* **1991**, *30*, 3978.
- (5) Birkelback, F.; Winter, M.; Flörke, U.; Haupt, H.-J.; Butzclaff, C.; Lengen, M.; Bill, E.; Trautwein, A. X.; Wieghardt, K.; Chaudhuri, P. *Inorg. Chem*. **1994**, *33*, 3990.
- (6) Tola, P.; Kahn, O.; Chauvel, C.; Coudanne, H. *Nou*V*. J. Chim.* **¹⁹⁷⁷**, *1*, 467.
- (7) Kahn, O.; Galy, J.; Journaux, Y.; Jaud, J.; Morgenstern-Badarau, I. *J. Am. Chem. Soc.* **1982**, *104*, 2165.
- (8) Journaux, Y.; Kahn, O.; Zarembowitch, J.; Galy, J.; Jaud, J. *J. Am. Chem. Soc*. **1983**, *105*, 7583.
- (9) Daizheng, L.; Zhong, Z. J.; Okawa, H.; Kida, S. *Inorg. Chim. Acta* **1986**, *118*, 21.
- (10) Yonemura, M.; Okawa, H.; Ohba, M.; Fenton, D. E.; Thompson, L. K. *Chem. Commun*. **²⁰⁰⁰**, 817-818.
- (11) Xu, Z.; Thompson, L. K.; Miller, D. O. *Inorg. Chem*. **1997**, *36*, 3985.
- (12) Matthews, C. J.; Xu, Z.; Mandal, S. K.; Thompson, L. K.; Biradha, K.; Poirier, K.; Zaworotko, M. J. *Chem. Commun*. **1999**, 347.

Chart 1

 H ₄Cu₃Fe(NO₃)₁₂(ClO₄)₄(NO₃)₄ · 12H₂O (2), with only alkoxide bridges between the metal centers. Structural and magnetic properties will be discussed in the light of the magnetic orbital connections within the cluster.

Experimental Section

Physical Measurements. Electronic spectra were recorded as Nujol mulls and in solution using a Cary 5E spectrometer. Infrared spectra were recorded as Nujol mulls using a Mattson Polaris FTIR instrument. C, H, N, and metal analyses on vacuum-dried samples (24 h) were performed by the Canadian Microanalytical Service, Delta, B.C., Canada. Variable temperature magnetic data $(2-300 \text{ K})$ were obtained with a Quantum Design MPMS5S SQUID magnetometer operating at 0.1-5 T. Calibrations were carried out with a palladium standard cylinder, and temperature errors were determined with [H2TMEN]- $[CuCl₄]$ (H₂TMEN = $(CH₃)₂HNCH₂CH₂NH(CH₃)₂²⁺).¹³$
Synthesis of $[({\bf n} \circ {\bf n} - {\bf E} \circ {\bf N} \circ {\bf A}) \circ {\bf C} \circ {\bf C} \circ {\bf N} \circ {\bf C} \circ {\bf$

Synthesis of [(poap-H)4Cu3Fe(NO3)]2(ClO4)4(NO3)4'**12H2O (2).** $Cu(CIO₄)₂·6H₂O$ (0.18 g, 0.50 mmol) dissolved in methanol (10 mL) was added to a solution of [Fe(Hpoap-H)(NO₃)(H₂O)₂](NO₃)₂ (1)¹⁴ (0.26 g, 0.5 mmol) and triethylamine (0.05 g, 0.5 mmol) in methanol (25 mL). The dark-green solution was stirred at room temperature for 30 min, filtered, and allowed to stand at room temperature for 2 weeks. Dark-green crystals of **2** suitable for structural analysis formed (yield, 0.17 g, 85% based on poap) after 2 weeks. IR (Nujol mull, cm^{-1}): 3555 (m) (*ν*(H2O)); 3328 (m) (*ν*(NH2)); 1737 (w) (*ν*¹ ⁺ *^ν*4(NO3)); 1671 (s) ($ν$ (C=N)); 1086 ($ν$ ₃(ClO₄)); 1018 (m) ($ν$ (py)); Vis (Nujol mull) $λ$ (nm): 615. Vis (H₂O) λ (nm) (ϵ (M⁻¹ cm⁻¹)): 616 (1830). Anal. Calcd for $[Cu_3Fe(C_{12}H_{10}N_5O)_4(NO_3)](ClO_4)_2(NO_3)_2 \cdot 6H_2O$: C, 33.90; H, 3.08; N, 18.95; Cu, 11.21; Fe, 3.28. Found: C, 33.81; H, 2.76; N, 18.69; Cu, 11.10; Fe, 3.21. A similar monomeric complex, [(poap-H)4Cu3Fe- $(H_2O)_2$](ClO₄)₅ \cdot H₂O (3), was produced with essentially the same method except that the reaction mixture was heated. 24 Anal. Calcd for [Cu₃-

- (13) Brown, D. S.; Crawford, V. H.; Hall, J. W.; Hatfield, W. E. *J. Phys. Chem*. **1977**, *81*, 1303.
- (14) Xu, Z.; Thompson, L. K.; Miller, D. O.; Clase, H. J.; Howard, J. A. K.; Goeta, A. E. *Inorg. Chem*. **1998**, *37*, 3620.
- (15) Siemens. *SMART Data Collection Software*, version 4.050; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1996.
- (16) Siemens. *SAINT Data Reduction Software*, version 4.050; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1996.
- (17) Sheldrick, G. M. *SHELXTL 5.04*/*VMS, An integrated system for sol*V*ing, refining and displaying crystal structures from diffraction data*; Siemens Analytical X-ray Instruments, Inc.: Madison, WI, 1995.
- (18) Sheldrick, G. M. *SADABS. Empirical Absorption Correction Program*; University of Göttingen: Göttingen, Germany, 1996.
- (19) SIR92: Altomare, A.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A. *J. Appl. Crystallogr*. **1993**, *26*, 343.
- (20) DIRDIF94: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-94 program system; Technical Report of the Crystallography Laboratory; University of Nijmegen: Nijmegen, The Netherlands, 1994.
- (21) Cromer, D. T.; Waber, J. T. *International Tables for X-ray Crystallography*; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A.
- (22) *teXsan for Windows: Crystal Structure Analysis Package*; Molecular Structure Corporation: The Woodlands, TX, 1997.
- (23) Matthews, C. J.; Avery, K.; Xu, Z.; Thompson, L. K.; Zhao, L.; Miller, D. O.; Biradha, K.; Poirier, K.; Zaworotko, M. J.; Wilson, C.; Goeta, A. E.; Howard, J. A. K. *Inorg. Chem*. **¹⁹⁹⁹**, *³⁸*, 5266-5276.
- (24) Xu, Z.; Matthews, C. J.; Zhao, L.; Parsons, S. R.; Thompson, L. K.; Miller, D. O. Unpublished results.

10.1021/ic000923v CCC: \$20.00 © 2001 American Chemical Society Published on Web 04/12/2001

^{*} To whom correspondence should be addressed. Fax: 709-737-3702. E-mail: lthomp@morgan.ucs.mun.ca.

Memorial University.

 α R1 = $\sum ||F_0| - |F_c||/\sum |F_0|$. wR2 = $[\sum [w(|F_0|^2 - |F_c|^2)^2]/w(|F_c|^2 + 2e^{-\frac{1}{2}})$
 α ² $\sum [w(|F_0|^2)^2]]^{1/2}$. $R = \sum ||F_0| - |F_c|/\sum |F_0|$. $R_{\rm w} = [(\sum w(|F_0| - |F_c|)^2/\sum |F_0|)^2]$ $\sum w F_0^2$)]^{1/2}.

Fe(C12H10N5O)4](ClO4)5'H2O: C, 33.47; H, 2.46; N, 16.26. Found: C, 33.44; H, 2.66; N, 16.39.

X-ray Crystallography. Diffraction data for a black, rectangular prism of 1 of dimensions 0.13 mm \times 0.20 mm \times 0.32 mm were collected using a Siemens Smart three-circle diffractometer equipped with a CCD area detector using graphite-monochromatized Mo $K\alpha$ radiation and controlled by a Pentium based PC running the SMART software package.¹⁵ Raw frame data were integrated using the SAINT¹⁶ program. The structure was solved by direct methods.¹⁷ An empirical absorption correction was applied to the data using the program SADABS.18 The structure solution and the refinement were based on *F*2 . All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon atoms were fixed at idealized positions with isotropic *U* values set 1.2*U* (atom connected) and not refined. Hydrogen atoms bonded to N and O atoms were located from difference Fourier maps and refined. Abbreviated crystal data are listed in Table 1.

Diffraction data were collected for a black, irregular crystal of **2** of dimensions 0.52 mm \times 0.20 mm \times 0.05 mm using a Bruker P4/CCD system with graphite-monochromatized Mo $K\alpha$ X-radiation and a rotating anode generator. The data were corrected for Lorentz and polarization effects, but no decay correction was applied. The structure was solved by direct methods¹⁹ and expanded using Fourier techniques.20 All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were fixed at idealized positions with isotropic *U* values set 1.2*U* (atom connected) and not refined. Neutral atom scattering factors were taken from Cromer and Waber,²¹ and all calculations were performed using teXsan.22 Abbreviated crystal data are listed in Table 1.

Results and Discussion

Structures. The structure of **1** is illustrated in Figure 1, and important bond distances and angles are listed in Table 2. The mononuclear Fe(III) center has a seven-coordinate pentagonalbipyramidal structure, and the tridentate ligand poap has a planar trans conformation. The equatorial pentagonal plane comprises an N_2O donor set from the ligand and a tightly bound bidentate nitrate. Fe-ligand distances in the equatorial plane fall in the range $2.05-2.23$ Å, while the axial contacts are quire short $(\leq 2.014$ Å). This structural arrangement is stabilized by hydrogen-bonding contacts from nitrate oxygen O(12) to hydrogen atoms bonded to N(2) and protonated nitrogen N(5) $(N(5)-O(12)$ 2.836 Å, $N(2)-O(12)$ 2.380 Å; $N(5)-H-O(12)$ 163.6°, $N(2)$ –H–O(12) 174.7°) and leads to a situation where there are three potentially open coordination sites in this trans conformation $(N(2), N(4),$ and $N(5)$). This presents an opportunity for the complex to behave as a ligand. Further

Figure 1. Molecular structure of [Fe(Hpoap-H)(NO₃)(H₂O)₂](NO₃)₂ **(1)**. Hydrogen atoms are omitted for clarity.

Figure 2. Molecular structure for $[(poap-H)_4Cu_3Fe(NO_3)]_2(CIO_4)_4$ -(NO3)4'12H2O (**2**). Hydrogen atoms are omitted for clarity.

Table 2. Selected Bond Lengths (Å) and Angles (deg) for [Fe(Hpoap-H)(NO3)(H2O)2](NO3)2 (**1**)

$Fe(1)-O(1)$	2.0174(17)	$O(3) - Fe(1) - N(3)$	90.72(9)
$Fe(1)-O(2)$	2.009(3)	$O(4) - Fe(1) - O(5)$	58.30(7)
$Fe(1)-O(3)$	2.013(3)	$O(4) - Fe(1) - N(1)$	137.50(8)
$Fe(1)-O(4)$	2.228(2)	$O(4) - Fe(1) - N(3)$	150.12(8)
$Fe(1)-O(5)$	2.1632(18)	$O(5)$ -Fe (1) -N (1)	79.22(7)
$Fe(1)-N(1)$	2.250(2)	$O(5) - Fe(1) - N(3)$	151.10(8)
$Fe(1)-N(3)$	2.052(2)	$N(1) - Fe(1) - N(3)$	72.26(8)
$O(1) - Fe(1) - O(2)$	91.17(9)	$O(2) - Fe(1) - O(3)$	172.97(9)
$O(1) - Fe(1) - O(3)$	93.69(9)	$O(2) - Fe(1) - O(4)$	88.93(8)
$O(1) - Fe(1) - O(4)$	75.34(7)	$O(2) - Fe(1) - O(5)$	88.44(8)
$O(1) - Fe(1) - O(5)$	133.64(7)	$O(2) - Fe(1) - N(1)$	88.84(10)
$O(1) - Fe(1) - N(1)$	147.14(7)	$O(2) - Fe(1) - N(3)$	95.45(8)
$O(1) - Fe(1) - N(3)$	75.03(8)	$O(3) - Fe(1) - O(4)$	87.39(8)
		$O(3)$ -Fe (1) -O(5)	84.53(8)
		$O(3) - Fe(1) - N(1)$	89.83(10)

hydrogen-bonding contacts through N(2) link subunits together in the *y* direction (N(2)-O(8) 2.954 Å; N(2)-H-O(8) 176.6°).

The structure of **2** is illustrated in Figure 2, and important bond distances and angles are listed in Table 3. The complex consists of a dimeric entity with two heterotetranuclear subunits associated via a weak nitrate-bridging contact. Each subunit has an unusual square, tetranuclear gridlike arrangement of two nominally six-coordinate copper(II) centers, one squarepyramidal copper(II) center, and one six-coordinate iron(III) center, bridged by four poap ligands via their deprotonated oxygen centers. The square grid structure is very similar to homotetranuclear $Cu₄$ and $Ni₄$ square grids of poap and related ligands already reported.23 The ligands are arranged in parallel pairs above and below the metal pseudoplane, with $NH₂$ ends pointing toward Fe(1), Cu(3), and Cu(1). The fifth and sixth sites at $Cu(2)$ are occupied by oxygen atoms $O(5)$ and $O(6)$

Table 3. Selected Bond Lengths (Å) and Angles (deg) for [(poap-H)4Cu3Fe(NO3)]2(ClO4)4(NO3)4'12H2O (**2**)

∖F∽≕F	- - - _{/ -} (- · - <i>-)</i> / -		
$Cu(1)-O(1)$	2.014(4)	$Cu(3)-N(8)$	1.893(5)
$Cu(1)-O(4)$	2.240(4)	$Cu(3)-N(15)$	1.972(5)
$Cu(1)-N(1)$	2.037(6)	$Fe(1)-O(3)$	2.004(5)
$Cu(1)-N(3)$	1.907(5)	$Fe(1)-O(4)$	2.002(4)
$Cu(1)-N(20)$	1.986(5)	$Fe(1)-N(11)$	2.162(6)
$Cu(2)-O(1)$	2.233(4)	$Fe(1)-N(13)$	2.022(6)
$Cu(2)-O(2)$	2.007(4)	$Fe(1)-N(16)$	2.139(6)
$Cu(2)-O(5)$	2.004(5)	$Fe(1)-N(18)$	2.019(5)
$Cu(2)-N(5)$	1.977(6)	$Cu(1)-Cu(2)$	3.976(3)
$Cu(2)-N(10)$	1.959(5)	$Cu(2)-Cu(3)$	3.917(3)
$Cu(3)-O(2)$	2.135(4)	$Cu(3)-Fe(1)$	3.902(2)
$Cu(3)-O(3)$	2.234(4)	$Cu(1)-Fe(1)$	3.923(3)
$Cu(3)-N(6)$	2.059(5)		
$O(1) - Cu(1) - O(4)$	97.2(2)	$O(4) - Fe(1) - N(18)$	75.2(2)
$O(3)$ -Cu(3)-N(15)	78.1(2)	$O(1) - Cu(2) - N(10)$	106.3(2)
$O(1) - Cu(1) - N(1)$	159.3(2)	$N(11) - Fe(1) - N(13)$	74.3(2)
$N(6)-Cu(3)-N(8)$	79.8(2)	$O(2) - Cu(2) - O(5)$	163.2(2)
$O(1) - Cu(1) - N(3)$	79.4(2)	$N(11) - Fe(1) - N(16)$	95.1(2)
$N(6)-Cu(3)-N(15)$	97.6(2)	$O(2) - Cu(2) - N(5)$	97.8(2)
$O(1) - Cu(1) - N(20)$	100.5(2)	$N(11) - Fe(1) - N(18)$	96.5(2)
$N(8)-Cu(3)-N(15)$	177.4(2)	$O(2)$ - $Cu(2)$ - $N(10)$	83.1(2)
$O(4)$ -Cu(1)-N(1)	89.8(2)	$N(13) - Fe(1) - N(16)$	104.8(2)
$O(3)$ -Fe (1) -O (4)	93.5(2)	$O(5) - Cu(2) - N(5)$	87.4(2)
$O(4) - Cu(1) - N(3)$	110.5(2)	$N(13) - Fe(1) - N(18)$	170.8(2)
$O(3)$ -Fe (1) -N (11)	149.1(2)	$O(5) - Cu(2) - N(10)$	90.3(2)
$O(4)$ –Cu(1)–N(20)	77.9(2)	$N(16) - Fe(1) - N(18)$	74.8(2)
$O(3)$ -Fe (1) -N (13)	74.8(2)	$N(5)-Cu(2)-N(10)$	174.8(2)
$N(1) - Cu(1) - N(3)$	79.9(2)	$O(2) - Cu(3) - O(3)$	90.6(2)
$O(3)$ -Fe (1) -N (16)	93.5(2)	$O(2) - Cu(3) - N(6)$	157.4(2)
$N(1) - Cu(1) - N(20)$	100.0(2)	$O(2) - Cu(3) - N(8)$	77.6(2)
$O(3)$ -Fe (1) -N (18)	114.3(2)	$O(2)$ –Cu(3)–N(15)	105.0(2)
$N(3)-Cu(1)-N(20)$	171.6(2)	$O(3) - Cu(3) - N(6)$	94.0(2)
$O(4)$ -Fe (1) -N (11)	94.0(2)	$O(3) - Cu(3) - N(8)$	102.3(2)
$O(1)$ – $Cu(2)$ – $O(2)$	99.0(2)	$Cu(1)-O(1)-Cu(2)$	138.8(2)
$O(4)$ -Fe (1) -N (13)	105.7(2)	$Cu(2)-O(2)-Cu(3)$	142.0(2)
$O(1) - Cu(2) - O(5)$	97.6(2)	$Cu(3)-O(3)-Fe(1)$	134.0(2)
$O(4)$ -Fe (1) -N (16)	149.4(2)	$Cu(1)-O(4)-Fe(1)$	135.2(2)
$O(1) - Cu(2) - N(5)$	78.6(2)		

from bidentate nitrate $N(21)$ (Cu(2)-O(5) 2.004(5) Å, Cu(2)- $O(6)$ 2.685(5) Å) with short and long contacts, respectively, and the dimer interaction occurs as a result of weak $Cu(3)$ $O(6)$ $(2.709(5)$ Å) bridging contacts. The iron center is coordinated to two ligands via contiguous NNO donor segments, generating a cis -N₄O₂ chromophore. Cu(1), Cu(2), and Cu(3) have N_3O_2 , N_2O_4 , and N_3O_3 chromophores, respectively. The equatorial planes of $Cu(2)$ and $Cu(3)$ are connected via $O(2)$ with a short $(Cu(2)-O(2)$ 2.007(4) Å) and a longer $(Cu(3)$ - $O(2)$ 2.135(4) Å) contact. Cu(2) and Cu(1) are connected through O(1) by a long $(2.233(4)$ Å) and a short $(2.014(4)$ Å) connection, respectively, and $Cu(1)$ and $Cu(3)$ are connected to Fe(1) via $O(4)$ and $O(3)$ with long Cu–O contacts (2.234(4) and 2.240(4) Å, respectively). This sets up orthogonal connections between $Cu(1)$ and $Cu(3)$ and Fe(1), and an equatorial connection between $Cu(2)$ and $Cu(3)$ via the oxygen bridges. The Cu₃FeO₄ framework has a distorted boat shape (Figure 3) with the four metals forming a slightly twisted square. Metalmetal distances are quite long $(3.90-3.98 \text{ Å})$, and oxygen bridge angles are large $(134-142^{\circ})$.

A preliminary X-ray structural study on **3** revealed the same pseudosquare Cu₃Fe gridlike arrangement with no evidence for dimer association. The equivalent coordination sites on Cu(2) and $Cu(3)$ are occupied by water molecules.²⁴ Two water molecules are lost on vacuum-drying (see Experimental Section).

Synthesis. Repeated syntheses of **2** and **3** produce the same compounds with no evidence of other mixed-metal clusters with different combinations of copper and iron centers. Similar M_4O_4 , oxygen-bridged square $M(II)_4$ complexes ($M = Mn(II)$, Co(II),

Figure 3. Core structure of **2**.

Ni(II), Cu(II))^{23,24} and 2:2 mixed-metal (Fe(III)₂M(II)₂ (M = Mn(II), Co(II), Ni(II)) derivatives of poap have also been prepared, with the heteronuclear complexes produced in the same way by reaction of 1 with the appropriate metal salt.²⁴ It is of interest to note that only copper produces a 3:1 derivative. The iron remains coordinated to three original donors (NNO) of one ligand, but unexpectedly a second ligand also binds to this six-coordinate center with a comparable bonding arrangement, generating a *cis*-N₄O₂ chromophore. This second ligand to iron, and the involvement of two other iron-free ligands, must have resulted from partial decomplexation of **1** during the reaction with $Cu(CIO₄)₂$ and from significant molecular rearrangement prior to the formation of **2** and **3**, which are clearly the thermodynamically favored products. It is perhaps significant that there is no evidence for the formation of any $Cu₄$ cluster in these reactions and that no tetranuclear Fe(III) complexes of poap or related ligands have been produced so far.

Magnetic Properties. The variable temperature magnetic properties of a powdered sample of **2** are most unusual, with a room-temperature magnetic moment (μ_{mol}) of 6.68 μ_{B} , dropping to a minimum value of $6.38 \mu_B$ at 35 K, followed by a sharp rise at lower temperatures with a value of 7.20 μ _B at 2.0 K (Figure 4). The initial drop is consistent with intramolecular antiferromagnetic exchange and is reasonably associated with the equatorial $Cu(2)-Cu(3)$ bridging connection and the large oxygen bridge angle $(Cu(2)-O(1)-Cu(3))$; 142.0°),²⁵ despite the rather long Cu(3)-O(2) contact (2.135(4) Å). All other oxygen connections involving copper are orthogonal and so would not be expected to cause significant antiferromagnetic coupling. The pronounced rise in moment below 30 K indicates the presence of an intramolecular ferromagnetic term, and this is reasonably assumed to be associated with the $Cu(1)-O(4)-Fe(1)$ connection because at low temperature the $Cu(2)-Cu(3)$ interaction would lead to dominant occupation of a singlet ground-state term. Given this situation, a reasonable model would involve two effectively "isolated" dinuclear halves $(Cu(2)-Cu(3))$ and $Fe(1)-Cu(1)$). The variable temperature magnetic data were therefore fitted to an exchange equation derived from the sum of two dinuclear components based on the spin Hamiltonians $H = -J_1 S_{Cu2} S_{Cu3}$ and $H = -J_2 S_{Fe1} S_{Cu1}$, with corrections for paramagnetic impurity (ρ) , TIP, and intermolecular coupling (*θ*). An excellent fit was obtained, and Figure 4 shows the experimental and calculated μ_{mol} values for $g_{\text{ave}} = 2.04(1), J_1$ $= -54.0(2)$ cm⁻¹, $J_2 = 0.8(1)$ cm⁻¹, $\theta = 0.6$ K, $\rho = 0.03$, and $TIP = 0.00016$ cm³ mol⁻¹. These parameters are consistent with the structure. The moderately large negative J_1 value is associated with the equatorial $Cu(2)-O(2)-Cu(3)$ connection, due to direct copper magnetic orbital overlap via the oxygen

Figure 4. Variable temperature magnetic data for **2**. Solid line was calculated using $g_{ave} = 2.04(1)$, $J_1 = -54.0(2)$ cm⁻¹, $J_2 = 0.8(1)$ cm⁻¹, $\theta = 0.6$ K $\rho = 0.03$ and TIP = 0.000.16 cm³ mol⁻¹ $\theta = 0.6$ K, $\rho = 0.03$, and TIP = 0.000 16 cm³ mol⁻¹.

bridge, while the small positive J_2 value indicates the presence of weak ferromagnetic coupling between $Cu(1)$ and $Fe(1)$, consistent with the orthogonal bridge. The small positive Weisslike correction (θ) indicates a weak intermolecular association, which is reasonably associated with the orthogonal connection between the two dinuclear halves. The dimer association via O(6) is likely to be a much weaker intermolecular component.

The variable temperature magnetic data were also fitted to a complete exchange model based on a spin Hamiltonian $(H =$ $-J_1S_{Cu2}S_{Cu3} - J_2S_{Fe1}S_{Cu1} - J_3S_{Fe1}S_{Cu3} - J_4S_{Cu1}S_{Cu2}$ with four different J values. The fit required that J_3 and J_4 be set close to zero and was dominated by variations in J_1 and J_2 . To avoid overparametrizing the fit, J_3 and J_4 were set to zero, and a good fit of the data was obtained with $g = 2.04$, $J_1 = -61.5$ cm⁻¹, $J_2 = 1.1$ cm⁻¹, and TIP = 0.000 150 cm³ mol⁻¹. This result is entirely consistent with the previous analysis and strongly supports the simplified, isolated dimer model. The magnetic

Figure 5. *M/H* data for **2** (\bullet); theoretical line using $g = 2.04$, $T = 2$ K $(-)$.

models suggest an $S = 3$ spin ground state at low temperature, in agreement with the observed moments below 30 K. A magnetization (*M*/*H*) study was carried out at 2 K in the field range $0-50000$ Oe (Figure 5). Experimental data (\bullet) were compared with the theoretical Brillouin function $(-)$ calculated at 2 K for $g = 2.04$ and $S = \frac{6}{2}$, clearly confirming the $S = 3$ ground state.

Acknowledgment. This research was supported by NSERC (Natural Sciences and Engineering Research Council of Canada) and EPSRC (U.K.). We thank Dr. R. McDonald (University of Alberta) for structural data on compound **2**.

Supporting Information Available: X-ray crystallographic files in CIF format for **1** and **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC000923V