Novel Synthesis of ClF₆⁺ and BrF₆⁺ Salts[†]

Thorsten Schroer[‡] and Karl O. Christe^{*,‡,§}

University of Southern California, Loker Hydrocarbon Research Institute, University Park, Los Angeles, California, 90089, and Air Force Research Laboratory, Edwards Air Force Base, Edwards, California, 93524

Received September 8, 2000

For a compound in a given oxidation state, its oxidizing strength increases from its anion to the neutral parent molecule to its cation. Similarly, an anion is more easily oxidized than its neutral parent molecule, which in turn is more easily oxidized than its cation. This concept was systematically exploited in our search for new superoxidizers. Transition metal fluoride anions were prepared in their highest known oxidation states by high temperature/high pressure fluorinations with elemental fluorine and subsequently converted to their more strongly oxidizing cations by a displacement reaction with a strong Lewis acid. The application of this principle resulted in new syntheses for $ClF_6^+AsF_6^-$ and $BrF_6^+AsF_6^-$ using the highly reactive and thermally unstable NiF_3^+ cation that was prepared from the reaction of the NiF_6^{2-} anion with AsF_5 in anhydrous HF. Attempts to prepare the known KrF⁺ and $ClO_2F_2^+$ cations and the yet unknown XeF₇⁺ cation by the same method were unsuccessful. The results from this and previous studies show that NiF_3^+ is a stronger oxidative fluorinator than PtF_6 , but whether its oxidizing strength exceeds that of KrF⁺ remains unclear. Its failure to oxidize Kr to KrF⁺ might have been due to unfavorable reaction conditions. Its failure to oxidize ClO_2F to $ClO_2F_2^+$, in spite of its favorable oxidizer strength, is attributed to the high Lewis basicity of ClO₂F which results in a rapid displacement reaction of NiF₃⁺ by ClO₂F, thus generating the weaker oxidizer NiF₄ and the more difficult to oxidize substrate ClO₂⁺. Therefore, the general applicability of this approach appears to be limited to substrates that exhibit a weaker Lewis basicity than the neutral transition metal parent molecule. Compared to KrF⁺- or PtF₆-based oxidations, the NiF₃⁺ system offers the advantages of commercially available starting materials and higher yields, but product purification can be more difficult and tedious than for KrF⁺.

Introduction

In complex fluorides, the removal of a fluoride ion from the central atom increases its effective electronegativity. Consequently, the oxidizing power of a compound in a given oxidation state increases in the order anion < neutral molecule < cation, and high oxidation state anions are more stable and can be prepared more easily than the corresponding cations.^{1–4}

The increased accessibility of the anions is well-known and has been exploited for the syntheses of the highest oxidation states of transition metal fluorides.⁵ It is also well-known that the addition of strong Lewis acids to these complex transition metal fluoride anion salts liberates the free parent molecules¹ which, in turn, can form with an excess of Lewis acid the corresponding complex transition metal fluoride cations.

- [§] Air Force Research Laboratory.
- (a) Court, T. L.; Dove, M. F. A. J. Chem. Soc., Chem. Commun. 1971, 726. (b) Court, T. L.; Dove, M. F. A. J. Chem. Soc., Dalton Trans. 1973, 1995.
- (2) Christe, K. O. Inorg. Chem. 1986, 25, 3722.
- (3) Christe, K. O.; Wilson, R. D. Inorg. Chem. 1987, 26, 2554.
- (4) Lucier, G.; Shen, C.; Casteel Jr., W. J.; Chacón, L.; Bartlett, N. J. Fluorine Chem. **1995**, 72, 157.
- (5) (a) Klemm, W.; Huss, E. Z. Anorg. Allg. Chem. **1949**, 253, 221. (b) Bode, H.; Voss, E. Z. Anorg. Allg. Chem. **1956**, 286, 136. (c) Matwiyoff, A.; Asprey, L. B.; Wageman, W. E.; Reisfeld, M. J.; Fukushima, E. Inorg. Chem. **1969**, 8, 750. (d) Henkel, H.; Hoppe, R.; Allen, C. G. J. Inorg. Nucl. Chem. **1969**, 31, 3855. (e) Christe, K. O. Inorg. Chem. **1977**, 16, 2238.

The combination of these two principles, i.e., the ready synthesis of anions at the limits of oxidation by high pressure/ high temperature fluorinations and their subsequent conversion into cations of even higher oxidizing power by acidification, offers the potential for new superoxidizers of unprecedented power.¹⁻⁴ Their power might rival or surpass that of the strongest presently known oxidizer, the KrF⁺ cation.⁶

This approach, however, exhibits a general problem. It arises from the fact that frequently the corresponding neutral parent molecule and cation are thermodynamically unstable tending to decompose rapidly to a lower oxidation state fluoride and elemental fluorine. This property has previously been exploited for the first chemical synthesis of elemental fluorine² and for solid propellant fluorine gas generators.³ Although the principle of generating very powerful new oxidizers by acidification of high oxidation state transition metal fluoride anions had been known for many years,¹⁻³ only few studies have been carried out on the oxidizer strengths of these species. Thus, Bartlett and Žemva were able to oxidize xenon to XeF_6 , RuF_6^- to RuF_6 , and PtF₆⁻ to PtF₆ by using mixtures of NiF₆²⁻ salts and BF₃ or AsF₅ in aHF.^{4,7} Furthermore, mixtures of K₂NiF₆ and BF₃ in aHF were used as a fluorinating reagent in organic chemistry. For example, CH₃CN reacts under these conditions with formation of CF₃CN and CF₃CF₂NF₂.⁸

- (7) Žemva, B.; Lutar, K.; Chacón, L.; Fele-Beuermann, M.; Allman, J.; Shen, C.; Bartlett, N. J. Am. Chem. Soc. 1995, 117, 10025.
- (8) Bartlett, N.; Chambers, D.; Roche, A. J.; Spink, R. C. H.; Chacón, L. Chem. Commun. (Cambridge) 1996, 1049.

 $^{^\}dagger$ This paper is dedicated to the memory of Dr. Donald Pilipovich, a dear friend and former colleague.

[‡] University of Southern California.

⁽⁶⁾ Christe, K. O.; Dixon, D. A. J. Am. Chem. Soc. 1992, 114, 2978.

The goal of this study was the exploration of the oxidizing strength of NiF_3^+ and its comparison with that of KrF^+ and PtF₆. Suitable substrates for these studies were ClF₅, BrF₅, XeF₆, ClO₂F, and Kr.⁶ Until now, ClF₆⁺ salts were only obtainable from the reactions of ClF₅ with KrF⁺ salts⁹ and PtF₆,¹⁰ and BrF₆⁺ salts only from the reaction of BrF₅ with KrF⁺ salts.¹¹

Experimental Section

CAUTION! All substances used in this investigation are strong oxidizers, and contact with moisture, water, or organic materials must be avoided. HF is toxic and can cause severe burns. Protective gear and a face shield must be worn while working with these substances.

Materials and Apparatus. All volatile materials were handled in a stainless steel—Teflon FEP vacuum line.¹² This line and all reaction vessels were passivated with ClF_3 prior to use. All nonvolatile materials were handled in the dry argon atmosphere of a glovebox.

Infrared spectra were recorded in the range 4000–400 cm⁻¹ on a Midac FT-IR model 1720 at a resolution of 1 cm⁻¹. Spectra of solids were obtained by using dry powders pressed between AgCl windows in an Econo press (Barnes Engineering Co.). Raman spectra were recorded in the range 4000–10 cm⁻¹ on a Bruker Equinox 55 FT-RA spectrophotometer using a Nd:YAG laser at 1064 nm. Pyrex melting point tubes that were baked out at 300 °C for 48 h at 10 mTorr vacuum were used as sample containers. ¹⁹F NMR spectra were recorded on a Bruker AM-360 instrument at 339 MHz using neat CCl₃F at room temperature as an external standard. Samples were measured in heat-sealed 3 mm i.d. Teflon FEP tubes (Wilmad Glass Co.).

Literature methods were used for the preparation of $Cs_2NiF_6^{5e}$, ClF_5 ,¹³ ClO_2F ,¹² and XeF_6 .¹⁴ BrF_5 (Matheson) and AsF_5 (Ozark Mahoning) were purified by fractional condensation prior to use. Kr (Matheson) was used without further purification. HF was dried¹⁵ over BiF₅ (Ozark Mahoning) and treated with K₂NiF₆ (Ozark Mahoning) prior to its use.

Reaction of Cs₂NiF₆ with AsF₅ and ClF₅. The reaction was carried out in the apparatus depicted in Figure 1. It consisted of a ${}^{3}/_{4}$ in. FEP trap and two ${}^{1}/_{2}$ in. FEP U-traps that were interconnected by Teflon PFA unions containing Teflon filters (Pall Corp.). The apparatus was closed on both sides by PFA valves that were connected to the stainless steel vacuum line through 1 ft long ${}^{1}/_{4}$ in. FEP tubes.

Cs₂NiF₆ (1.32 mmol) was placed into the ³/₄ in. FEP trap and suspended at -60 °C in ClF₅ (8.32 mmol). Approximately 5 mL of liquid anhydrous HF (aHF) was condensed into the trap at -60 °C. A two-phase system was obtained consisting of a colorless lower phase (ClF₅) and a dark red upper phase of Cs₂NiF₆ dissolved in aHF. AsF₅ (1.32 mmol) was added to the mixture in four equal increments. After the first addition under vigorous stirring at -60 °C, tan-colored NiF₄ was formed. After the second addition and a reaction time of $\frac{1}{2}$ h at -60 to -40 °C, the formation of brown violet Ni(NiF₆) was observed, while the aHF layer was still dark red colored. After the addition of the third and fourth increments of AsF5 and a total reaction time of 14 h at -60 to -10 °C, the aHF layer turned pale yellow and the NiF₄ had disappeared. All volatile compounds were removed in a dynamic vacuum at 25 °C. The dark violet brown residue was suspended in 5 mL of aHF at 25 °C, and the yellow mother liquor was filtered into U-trap I using 1.5 atm of argon pressure. The aHF was distilled back

- (9) Christe, K. O.; Wilson, W. W.; Curtis, E. C. Inorg. Chem. 1983, 22, 3056.
- (10) (a) Roberto, F. Q. Inorg. Nucl. Chem. Lett. 1972, 8, 737. (b) Christe,
 K. O. Inorg. Nucl. Chem. Lett. 1972, 8, 741. (c) Christe, K. O. Inorg.
 Chem. 1973, 12, 1580.
- (11) (a) Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc., Chem. Commun. 1974, 90. (b) Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1230. (c) Christe, K. O.; Wilson, R. D. Inorg. Chem. 1975, 14, 694.
- (12) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth. 1986, 24, 3.
- (13) Pilipovich, D.; Maya W.; Lawton, E. A.; Bauer, H. F.; Sheehan, D. F.; Ogimachi, N. N.; Wilson, R. D.; Gunderloy, F. C.; Bedwell, V. E. *Inorg. Chem.* **1967**, *6*, 1918.
- (14) Malm, J. G.; Schreiner, F.; Osborne, D. W. Inorg. Nucl. Chem. Lett. 1965, 1, 97.
- (15) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71.

Figure 1. FEP/PFA reaction vessel.

into the 3/4 in. trap cooled to -196 °C under a dynamic vacuum. The residue was stirred with the aHF at 25 °C, and the HF solution was filtered again into U-trap I. This washing procedure was repeated twice. U-trap I containing the aHF solution and U-trap II were cooled with dry ice until a white solid precipitated from the solution in U-trap I. The yellow mother liquor was filtered at -78 °C into U-trap II using 1.5 atm of argon pressure. Using the above-mentioned method, the white precipitate was washed twice with aHF at -78 °C until the washing solution was only pale yellow in color. The aHF solvent in U-trap II was pumped off, and the solids in the three traps were dried in a dynamic vacuum for 12 h at 25 °C.

Based on its color and Raman spectrum, the brown violet residue (800 mg) in the ${}^{3}_{/4}$ in. FEP trap consisted of mainly CsAsF₆ (Raman, cm⁻¹ (int): $\nu_{1}(AsF_{6}^{-}) = 682$ (100); $\nu_{2}(AsF_{6}^{-}) = 584$ (27); $\nu_{5}(AsF_{6}^{-}) = 373$ (44)) and some Ni(NiF₆).

The pale yellow solid (200 mg) in U-trap I was mainly $ClF_6AsF_6^{10b}$ with $ClF_4AsF_6^{16}$ as an impurity (¹⁹F NMR, ³⁵ClF₆⁺ = 385.4 ppm (6 F, q (1:1:1:1), ¹J¹⁹F₁, ³⁵Cl = 338 Hz); ³⁷ClF₆⁺ = 385.3 ppm (6 F, q (1:1:1:1), ¹J¹⁹F₁, ³⁷Cl = 284 Hz); ClF₄⁺ = 273.3 ppm (4F, m); Raman, cm⁻¹ (int): $v_1(ClF_4^+) = 817$ (6); $v_1(ClF_6^+) + v_1(AsF_6^-) = 688.2$ (100); $v_2(ClF_6^+) =$ = 635 (11); $v_2(AsF_6^-) = 575$ (15); $v_2(ClF_4^+) = 569$ (4); $v_5(ClF_6^+) =$ = 519 (25); $v_5(AsF_6^-) = 372$ (35)). According to the ¹⁹F NMR data the composition of the product was ClF_6AsF_6 (0.52 mmol) and ClF_4AsF_6 (0.07 mmol).

The yellow residue (228 mg) in U-trap II consisted mainly of Ni-(AsF₆)₂ (vibrations for $C_{4\nu}$ distorted AsF₆⁻ in Ni(AsF₆)₂¹⁷ Raman, cm⁻¹ (int), $\nu_1 = 706$ (41.2); $\nu_5 = 370$ (10); IR, cm⁻¹ (int), $\nu_8 = 767$ (vs); $\nu_1 = 706$ (m); $\nu_2 = 613$ (vs); the presence of Ni²⁺ was supported by the formation of a red-colored complex with an aqueous solution of dimethylglyoxime).

The reaction was repeated with $Cs_2NiF_6 = 2.367$ mmol, $AsF_5 = 11.836$ mmol, and $ClF_5 = 35.508$ mmol at room temperature. After the suspension was stirred for 2 days at room temperature, all the NiF_6^{2-} salt was reduced to $Ni(AsF_6)_2$. However, on the outer wall of the FEP reaction trap a yellow film was noted that probably resulted from the plasticization of the Teflon by the reagents and their subsequent hydrolysis. After removing all volatiles at 25 °C, the yellow solid residue was worked up as described above. In contrast to the reaction carried out at -10 °C, the main product isolated was ClF_2OAsF_6 .¹⁸

⁽¹⁶⁾ Christe, K. O.; Sawodny, W. Inorg. Chem. 1973, 12, 2879.

⁽¹⁷⁾ Frlec, B.; Gantar, D. J. Fluorine Chem. 1982, 19, 485.

^{(18) (}a) Christe, K. O.; Curtis, E. C.; Schack, C. J. *Inorg. Chem.* **1972**, *11*, 2212. (b) Christe, K. O.; Hon, J. F.; Pilipovich, D. *Inorg. Chem.* **1973**, *12*, 84.

ClF₂OAsF₆: ¹⁹F NMR, ClF₂O⁺ = 278.4 ppm (2 F, s); Raman, cm⁻¹ (int): ν_1 (ClF₂O⁺) = 1330 (24); ν_2 (ClF₂O⁺) = 759 (40); ν_1 (AsF₆⁻) = 675 (100); ν_2 (AsF₆⁻) = 563 (13); ν_3 (ClF₂O⁺) = 510 (29); ν_5 (AsF₆⁻) = 370 (57).

Reaction of Cs₂NiF₆ with AsF₅ and BrF₅. The reaction was carried out in a ${}^{3}_{/4}$ in. FEP tube, which was heat sealed at one end and connected to a PFA T-piece at the other end. The leg of the T-piece, which formed a 90° angle to the FEP trap, was closed by a PFA valve, while the third leg was closed by a PFA stopper.

 Cs_2NiF_6 (1.482 mmol) was suspended in BrF₅ (35.529 mmol) at 25 °C. The suspension was frozen at -196 °C, and AsF₅ (8.894 mmol) was added. The mixture was warmed to 25 °C, and colorless BrF₄AsF₆ formed at the wall of the FEP tube. After the suspension was stirred for 5 min, it was frozen again at -196 °C and aHF (39.180 mmol) was condensed into the reaction vessel. Thawing the mixture and stirring vigorously at 25 °C resulted in the formation of a brown violet solid. The suspension was stirred for 12 h at 25 °C. After this time it consisted of yellow mother liquor and a white solid. All volatiles were removed in a dynamic vacuum (12 h at 25 °C), leaving behind 2049 mg of a pale yellow residue.

This residue was suspended in approximately 3 mL of aHF at -20°C. The yellow mother liquor was siphoned off into a 1/2 in. FEP tube that also contained a PFA T-piece, as described above. For the siphoning step, the PFA stoppers on both reactors were replaced by PFA stoppers, which contained two small holes. Through one of the holes in each Teflon stopper, a small FEP tube (1 mm o.d.) had been pulled, creating a leak-tight connection between the two vessels. During the whole operation a slow nitrogen flow was passed through the FEP reactors. The mother liquor was then pneumatically transferred from one tube into the other by closing the second hole of the Teflon stopper of the reactor that contained the undissolved solid and the mother liquor. After the transfer of the mother liquor both reactors were immediately evacuated and all volatile material was pumped off. This extraction process was repeated two more times until the color of the mother liquor was only pale yellow. According to its Raman and ¹⁹F NMR spectra, this residue (1103 mg) consisted of mainly CsAsF₆ and some BrF₆AsF₆.

The yellow solid obtained from the evaporation of the mother liquor was washed three times with aHF at -78 °C, using the above-described technique. The washings were collected in a second $^{1/_{2}}$ in. FEP tube. The reaction product (180 mg), insoluble in aHF at -78 °C, consisted of BrF₆AsF₆, containing a very small amount of Ni(AsF₆)₂ as impurity. The yellow product (394 mg) obtained from the evaporation of the washing solutions was Ni(AsF₆)₂.

 $\begin{array}{l} {\rm Br} F_6{\rm As} F_{6^{:11}} \ ^{19}{\rm F} \ {\rm NMR}, \ {\rm Br} F_6^+ = 337.2 \ {\rm ppm} \ (6 \ {\rm F}, \ 2 \ {\rm q} \ (1:1:1:1), \\ {\rm }^{1} J^{_{19}}{\rm _{F}}, {\rm }^{79}{\rm _{Br}} = 1578 \ {\rm Hz}; \ ^{1} J^{_{19}}{\rm _{F}}, {\rm }^{81}{\rm _{Br}} = 1700 \ {\rm Hz}); \ {\rm Raman}, \ {\rm cm}^{-1} \ ({\rm int}), \ \nu_1({\rm As} F_6^-) \\ = 686 \ (100); \ \nu_2({\rm Br} F_6^+) = 673 \ (14); \ \nu_1({\rm Br} F_6^+) = 662 \ (37); \ \nu_2({\rm As} F_6^-) \\ = 574 \ (29); \ \nu_5({\rm Br} F_6^+) = 408 \ (22); \ \nu_5({\rm As} F_6^-) = 371 \ (45). \end{array}$

Reaction of Cs₂NiF₆ with AsF₅ and Kr. In a 3 mm i.d. FEP NMR tube, Cs₂NiF₆ (0.08 mmol) was dissolved in ca. 0.3 mL of aHF at -40 °C. The solution was frozen at -196 °C, and AsF₅ (0.241 mmol) was condensed into the tube. The mixture was warmed to -78 °C and pressurized with 2 atm of Kr, and the tube was heat sealed under vacuum at -196 °C. Warming the sample to above -20 °C resulted in the formation of Ni(NiF₆), but there was no ¹⁹F NMR evidence for the formation of KrFAsF₆.

The reaction was repeated in a stainless steel cylinder, using 15 atm of Kr pressure. Again, no evidence for the formation of $KrFAsF_6$ could be obtained.

Reaction of Cs₂NiF₆ with AsF₅ and XeF₆. In the reaction vessel depicted in Figure 1, Cs₂NiF₆ (0.287 mmol) was dissolved in aHF at -78 °C, and then AsF₅ (0.862 mmol) was added at -196 °C. Warming the mixture to -60 °C resulted in the formation of solid tan-colored NiF₄ and the disappearance of the NiF₆²⁻ anion color from the aHF mother liquor. This suspension was frozen at -196 °C, and XeF₆ (0.862 mmol) was added. The mixture was thawed at -60 °C. At this point, NiF₄ dissolved in the aHF under formation of red-colored (XeF₅)₂NiF₆. This result confirms the observations of Žemva et al.⁷ No evidence for the oxidation of XeF₆ to the XeF₇⁺ cation was obtained.

Reaction of Cs₂NiF₆ with AsF₅ and ClO₂F. In a 3 mm i.d. FEP tube, Cs₂NiF₆ (0.128 mmol) was suspended in liquid ClO₂F (5.700 mmol) at -40 °C. The suspension was frozen at -196 °C, and AsF₅

(0.640 mmol) was added. Warming the mixture to -40 °C resulted in the formation of colorless ClO₂AsF₆,¹⁹ but in no apparent reaction of Cs₂NiF₆. At -50 °C, a small amount of aHF was added to this mixture. Immediately, the formation of dark violet Ni(NiF₆) was observed. The sample was warmed to 25 °C, and all volatiles were removed in a dynamic vacuum. The ¹⁹F NMR spectrum of the residue in 0.3 mL of aHF at 25 °C gave no evidence for the formation of ClO₂F₂AsF₆.²⁰

Results and Discussion

Synthesis of ClF₆AsF₆. The ClF₇ and BrF₇ molecules, the parents of the coordinately saturated complex cations ClF₆⁺ and BrF₆⁺, respectively, do not exist. Therefore, the normally facile cation formation by a simple F⁻ abstraction from the parent molecule using a Lewis acid is not possible. Moreover, ClF₅ and BrF₅ are strong oxidizers, and very strong oxidative fluorinators are needed to prepare the corresponding cations. In view of this, it is not surprising that, until now, the formation of the ClF₆⁺ cation had only been achieved by using either KrF⁺ salts⁹ or PtF₆.¹⁰ The oxidation of BrF₅ had only been attained by using the strongest known oxidizer, the KrF⁺ cation. We have now found that ClF₆AsF₆ and BrF₆AsF₆ can be prepared in 40% and 32% yield, respectively, from the corresponding halogen pentafluorides and NiF₃⁺AsF₆⁻ in anhydrous HF solution, as shown in eq 1 where X can be Cl or Br.

$$Cs_{2}NiF_{6} + 5AsF_{5} + XF_{5} \xrightarrow{aHF}_{-60 \text{ to } -10 \text{ °C}} XF_{6}AsF_{6} + Ni(AsF_{6})_{2} + 2CsAsF_{6} \downarrow (1)$$

This rather complex reaction involves several steps. A suspension of Cs_2NiF_6 in ClF_5 forms a two-phase system with aHF at -60 °C. The colorless lower phase consists of ClF_5 , while the dark red upper phase contains the Cs_2NiF_6 dissolved in aHF. The addition of AsF_5 at -60 °C produces at first precipitates of tan-colored NiF₄ and colorless CsAsF₆ and is accompanied by the decolorization of the aHF phase (eq 2).

$$Cs_2NiF_6 + 2AsF_5 \xrightarrow[-60\ \circ C]{aHF} NiF_4 \downarrow + 2CsAsF_6 \downarrow$$
 (2)

Raising the temperature to -10 °C and subsequent addition of more AsF₅ result in a very fast reduction of NiF₄ to brown violet, HF-insoluble NiF₃. The observed oxidation products are ClF₆AsF₆ and possibly some fluorine. Most likely, NiF₄ forms with AsF₅ an HF-soluble NiF₃⁺ salt (eq 3).⁴ This very powerful oxidizer can act as a one-electron oxidizer and removes an electron from the substrate with formation of NiF₃ and the ClF₅⁺ radical cation (eq 4). The latter can react with either NiF₄ or NiF₃ to give the final product ClF₆AsF₆ (eq 5a or 5b).

$$NiF_4 + AsF_5 \xrightarrow{aHF}_{-60 \, ^{\circ}C} NiF_3^{+} + AsF_6^{-}$$
 (3)

$$\operatorname{NiF_3}^+ + \operatorname{AsF_6}^- + \operatorname{ClF_5}^{\operatorname{aHF}} \cdot \operatorname{ClF_5}^+ + \operatorname{AsF_6}^- + \operatorname{NiF_3} \downarrow \quad (4)$$

$${}^{\bullet}\mathrm{ClF}_{5}^{+} + \mathrm{AsF}_{6}^{-} + \mathrm{NiF}_{4} \xrightarrow{\mathrm{aHF}} \mathrm{ClF}_{6}\mathrm{AsF}_{6} + \mathrm{NiF}_{3} \downarrow$$
 (5a)

$$^{\bullet}\mathrm{ClF}_{5}^{+} + \mathrm{AsF}_{6}^{-} + \mathrm{NiF}_{3} \xrightarrow{\mathrm{aHF}} \mathrm{ClF}_{6}\mathrm{AsF}_{6} + \mathrm{NiF}_{2} \downarrow$$
(5b)

This one electron oxidation mechanism is most plausible because it can explain the formation of NiF₃. In addition, it is supported by the known reaction of K_2NiF_6/BF_3 with PtF_6^- salts

⁽¹⁹⁾ Christe, K. O.; Schack, C. J.; Pilipovich, D.; Sawodny, W. Inorg. Chem. 1969, 8, 2489.

⁽²⁰⁾ Christe, K. O.; Wilson, R. D.; Curtis, E. C. Inorg. Chem. 1973, 12, 1358.

under formation of PtF_{6} ,⁴ the decomposition of NiF_4 to NiF_3 and F_2 ,⁷ and the formation mechanism of NF_4 ⁺ salts,²¹ all of which are best described as one electron transfer reactions.

After the fast depletion of free NiF₄, the formed NiF₃, which is only sparingly soluble in aHF, reacts slowly under the formation of Ni(AsF₆)₂ and additional ClF₆AsF₆ at -10 °C. This observation can be rationalized by the known tendency of nickel-(III) fluoride to disproportionate into Ni(II) and Ni(IV), forming Ni(NiF₆) (eq 6).^{1b,7} In the presence of AsF₅, the latter forms aHF-soluble Ni(AsF₆)₂ and more NiF₄ (eq 7) that can reenter the oxidation cycle (eqs 3–5). Since, in each cycle, only half of the NiF₄ is consumed, many such cycles are required until essentially all of the NiF₆^{2–} salt is reduced to Ni(II), thus explaining the slowness of this reaction. The low solubilities of NiF₃ and Ni(NiF₆) in aHF^{7,22} contribute further to the slowness of the reduction reaction.

$$2\mathrm{NiF}_{3} \xrightarrow{\mathrm{aHF}} \mathrm{Ni}(\mathrm{NiF}_{6}) \tag{6}$$

$$\operatorname{Ni}(\operatorname{Ni}F_6) + 2\operatorname{As}F_5 \xrightarrow[-10\,^{\circ}C]{\operatorname{aHF}} \operatorname{Ni}F_4 \downarrow + \operatorname{Ni}(\operatorname{As}F_6)_2$$
(7)

Due to the ability of ClF₅ to plasticize the FEP material of the reactor,²³ the reaction should not be performed at higher temperatures or for a longer reaction time. For example, products derived from chlorine oxides and chlorine oxofluorides were detected on the outer wall of the FEP reaction vessel after the reaction of Cs₂NiF₆ with AsF₅ and ClF₅ had been carried out at room temperature for 2 days. The only nonvolatile product in the reactor which was identified was ClOF₂AsF₆,¹⁸ which might have arisen from hydrolysis with a small amount of adventitious water.²⁴

The use of a stainless steel cylinder instead of a FEP reactor seems to inhibit the formation of ClF_6AsF_6 . This is not surprising because the combination of HF with a strong oxidizer is known to rapidly attack metal. This attack results in the formation of FeNiF₆ as the major product, which is only sparingly soluble in aHF. In contrast to Ni(NiF₆), Fe(NiF₆) is completely stable at room temperature in aHF and exhibits no pronounced fluorinating abilities.²²

The separation of ClF_6AsF_6 from the coproducts CsAsF_6 and $\text{Ni}(\text{AsF}_6)_2$ can be achieved by suspending the product mixture in HF at 25 °C. At this temperature, CsAsF_6 is the most insoluble component and can be filtered off. At -78 °C, ClF_6AsF_6 precipitates out from the mother liquor and is filtered off. The filtrate contains Ni(AsF_6)_2, the most HF-soluble reaction product at this temperature. The isolated yield of ClF_6AsF_6 , 40% based on the limiting reagent $\text{Cs}_2[\text{NiF}_6]$, is higher than that of 11% previously obtained using KrFAsF_6 as the oxidizer.⁹ The observed ¹⁹F NMR and Raman spectra were in good agreement with previous reports.^{10b,18b}

Synthesis of BrF₆AsF₆. The oxidizing power of the system $Cs_2NiF_6/AsF_5/aHF$ is also strong enough to oxidize BrF₅ to BrF_6^+ . In the absence of HF, the only reaction observed at room temperature was the well-known formation of BrF_4AsF_6 .¹⁶ However, the addition of an equimolar amount of HF relative to BrF_5 resulted in an immediate formation of NiF₄ at -78 °C.

- (21) Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1984, 23, 2058.
- (22) Shen, C.; Chacón, L.; Bartlett, N. C. R. Acad. Sci. Paris, t. 2, Ser. II 1999, 557.
- (23) Hensley, W. E.; Walter, R. J.; Chandler, W. T.; Hoffman, N. J. J. Spacecr. Rockets 1979, 7, 174.
- (24) Krasulin, S. V.; Spirin, S. N.; Sokolov, V. B.; Chaivanov B. B. J. Fluorine Chem. 1992, 58, 244.

The solvent HF seems to be essential for this reaction to proceed. Its main function is most likely to solubilize the Cs₂NiF₆. As in the case of ClF₅, raising the temperature to 25 °C resulted in the initial reduction of NiF₄ to NiF₃. Due to the much lower vapor pressure of BrF₅ relative to ClF₅ at room temperature, the plasticizing effect of BrF₅ on the FEP material of the reaction vessel is less pronounced. Therefore, the reaction could be performed at 25 °C and a complete reduction of the NiF₆^{2–} anion to Ni(II) was attained within 12 h. The observed products were BrF₆AsF₆, CsAsF₆, and Ni(AsF₆)₂, as expected for reaction 8.

$$Cs_{2}[NiF_{6}] + 5AsF_{5} + BrF_{5} \xrightarrow{aHF}_{25 \circ C}$$

$$[BrF_{6}][AsF_{6}] + Ni[AsF_{6}]_{2} + 2CsAsF_{6} \downarrow (8)$$

As in the case of $[ClF_6][AsF_6]$, $[BrF_6][AsF_6]$ can be isolated by suspending the reaction products in aHF at 25 °C. Most of the $[BrF_6][AsF_6]$ and all of the Ni[AsF_6]₂ can be removed from the less HF soluble CsAsF₆ by siphoning off the mother liquor at 25 °C. At -78 °C $[BrF_6][AsF_6]$ precipitates from the mother liquor, which now contains only Ni[AsF₆]₂. The yield of $[BrF_6]$ -[AsF₆] based on the limiting reagent Cs₂[NiF₆] was 32%, which compares favorably with that of less than 20% previously reported for the KrF⁺ reaction.^{11b} The observed NMR and Raman spectra were in good agreement with the previous reports.¹¹

Reactions of Cs₂NiF₆/AsF₅ with Kr, XeF₆, and ClO₂F. The successful syntheses of ClF₆AsF₆ and BrF₆AsF₆ from Cs₂NiF₆ and AsF₅ in aHF suggested the further investigation of the oxidizing strength and preparative scope of this system. For this purpose, Kr, XeF₆, and ClOF₂ were chosen as the substrates. Based on the F⁺ detachment energies of KrF⁺ and XeF₇⁺ (115.9 and 116.7 kcal mol⁻¹, respectively),⁶ the oxidation of Kr and XeF₆ should be more difficult than that of BrF₅ (F⁺ detachment energy of BrF₆⁺: 140.8 kcal mol⁻¹).⁶ However, ClO₂F (F⁺ detachment energy of ClO₂F₂⁺: 161.0 kcal mol⁻¹)⁶ should be oxidized more easily than BrF₅.

KrF⁺ salts are the most powerful oxidative fluorinators known today. However, KrF⁺ salts are rarely used, because KrF₂ is difficult to prepare. The three most widely used methods are (1) electrical discharge of gaseous mixtures of krypton and fluorine at low temperatures and pressures;²⁵ (2) irradiation of fluorine/krypton mixtures by UV or sunlight;^{26,27} and (3) the hot wire method.²⁸ The successful oxidation of Kr. using the system Cs₂NiF₆/AsF₅/HF, would provide a convenient and safe synthesis for KrF⁺ and would reveal whether this system surpasses the oxidizing strength of KrF+. However, so far KrF+ could not be prepared from Cs₂NiF₆ and AsF₅ in aHF. Reasons for this failure might be either an insufficient oxidizing power of this system or the poor solubility of Kr in HF. An increase of the Kr concentration in aHF can be attained by increasing the Kr pressure. However, the maximum Kr pressure which can be used in the FEP reactors was 5 atm. Working under a higher Kr pressure made it necessary to carry out the reaction in stainless steel cylinders. This was not practical, due to the attack of the metal cylinder by the HF/strong oxidizer mixture with formation of transition metal hexafluoronickelates(IV) and Fe(AsF₆)₂.

- (25) Schreiner, F.; Malm, J. G.; Hindman, J. C. J. Am. Chem. Soc. 1965, 87, 25.
- (26) Streng, L. V.; Streng, A. G. Inorg. Chem. 1966, 5, 329.
- (27) Slivnik, J.; Šmalc, A.; Lutar, K.; Žemva, B.; Flec, B. J. Fluorine Chem. 1975, 5, 273.
- (28) Bezmel'nitsyn, V. N.; Legasov, V. A.; Chaivanov, B. B. Dokl. Akad. Nauk SSSR 1977, 235, 96.

Also, it was not possible to oxidize XeF₆ to XeF₇⁺ using Cs₂NiF₆/AsF₅ as the oxidizer in aHF. The reason that XeF₆ is not oxidized might be either its high Lewis basicity or an insufficient oxidizer strength of NiF₃⁺. Even if NiF₃⁺ is a strong enough reagent to oxidize XeF₆ to XeF₇⁺, the high Lewis basicity of XeF₆ could prevent the desired reaction by rapidly converting the strong oxidizer NiF₄ back to the more weakly oxidizing NiF₆²⁻ anion, while forming the harder to oxidize XeF₅⁺ cation. This interpretation is experimentally supported by the observation that, when XeF₆ is added to a freshly prepared suspension of NiF₄ in aHF at -60 °C, the tan-colored NiF₄ vanishes and the aHF-soluble, red-colored (XeF₅)₂NiF₆ salt is formed (eq 9). Reaction 9 was previously used by Zemva

$$\operatorname{NiF}_{4} + 2\operatorname{XeF}_{6} \xrightarrow[-60\,^{\circ}\mathrm{C}]{} (\operatorname{XeF}_{5})_{2}\operatorname{NiF}_{6}$$
(9)

et al. to verify the formation of NiF₄.⁷ Although excess AsF₅ could be used to regenerate NiF₄ or the NiF₃⁺ cation, the simultaneous formation of XeF₅AsF₆ would convert XeF₆ into the more difficult to oxidize XeF₅⁺ cation. Therefore, the observed reaction products of our reaction are best described by the following equations:

$$Cs_{2}NiF_{6} + 2AsF_{5} \xrightarrow{aHF} NiF_{4} + 2CsAsF_{6} \downarrow \xrightarrow{+AsF_{5}} -2CsAsF_{6}$$
$$NiF_{3}^{+}AsF_{6}^{-} \xrightarrow{+XeF_{6}} NiF_{4} + XeF_{5}AsF_{6} \xrightarrow{+2XeF_{6}} -XeF_{5}AsF_{6}$$
$$(XeF_{5})_{2}NiF_{6} (10)$$

The problems associated with strongly basic substrates were confirmed by the reaction of ClO₂F with Cs₂NiF₆ and AsF₅ in aHF. Although the oxidation of ClO_2F to the $ClO_2F_2^+$ cation (F⁺ detachment energy of $ClO_2F_2^+$: 161.0 kcal mol⁻¹)⁶ should be easier than that of ClF_5 to the ClF_6^+ cation (F⁺ detachment energy of ClF_6^+ : 147.3 kcal mol⁻¹),⁶ the formation of the $ClO_2F_2^+$ cation was not observed in this reaction. By analogy with XeF₆, the strongly basic ClO₂F substrate forms with AsF₅ a stable ClO₂AsF₆ salt that has no dissociation pressure at room temperature.¹⁹ Under the described reaction conditions, all of the ClO₂F is rapidly transformed to ClO₂AsF₆, which is much harder to oxidize than ClO₂F. Contrary to the reaction of ClO₂F with PtF_6 , ^{10b,c} the formation of small amounts of the ClF_6^+ cation as a side product was not observed. This indicates that under these conditions the ClO₂⁺ cation neither is oxidized nor undergoes significant oxygen fluorine exchange.

Relative Oxidizing Strength of NiF₃⁺. Until now ClF₆⁺ salts were only obtainable from the reaction of ClF₅ with KrF⁺ salts⁹ or PtF₆,¹⁰ and BrF₆⁺ salts only from the reaction of BrF₅ with KrF⁺ salts.¹¹ Both ClF₆AsF₆ and BrF₆AsF₆ can be synthesized using NiF₃⁺ salts in aHF. According to these results, the NiF₃⁺ system is a stronger oxidizer than PtF₆, because PtF₆ is capable of oxidizing only ClF₅ but not BrF₅.²¹ This conclusion agrees with the observation that an aHF solution of K₂NiF₆, acidified with BF₃, oxidizes the PtF₆⁻ anion to PtF₆.⁴

A comparison of the oxidizing strengths of NiF_3^+ and KrF^+ is more complicated. Both compounds can oxidize ClF_5 and BrF_5 and, hence, are stronger than PtF_6 , which can oxidize only ClF₅. Although both NiF₃⁺ and KrF⁺ are expected to oxidize the PtF₆⁻ anion to PtF₆, the observed reactions are quite different. Whereas NiF₃⁺ can act as a one-electron oxidizer toward PtF₆, resulting in stable NiF₃ or Ni(NiF₆) and PtF₆ (eq 11), KrF⁺ behaves as an oxidative fluorinator, oxidizing a $\delta^$ polarized fluoride ligand of PtF₆⁻ to F₂ (eq 12).

$$2\mathrm{NiF}_{3}^{+} + 2\mathrm{PtF}_{6}^{-} \xrightarrow{\mathrm{aHF}} \mathrm{Ni}(\mathrm{NiF}_{6}) + 2\mathrm{PtF}_{6}$$
(11)

$$\operatorname{KrF}^{+} + \operatorname{PtF}_{6}^{-} \xrightarrow{\operatorname{aHF}} \operatorname{Kr} + \operatorname{PtF}_{5} + \operatorname{F}_{2}$$
 (12)

Contrary to NiF₃⁺, which requires only one electron to form stable NiF₃ or Ni(NiF₆) and, therefore, can act also as a good one-electron oxidizer, KrF⁺ is not a good one-electron oxidizer, because the resulting reduction product, the KrF radical, is unstable and its likely decomposition product, the F radical, is equally unstable. KrF⁺ tends either to act as a positive-fluorine transfer reagent or to attack a negatively polarized fluorine ligand under F₂ elimination. Therefore, the chemical characteristics of NiF₃⁺ and KrF⁺ can be quite different and, in this case, do not permit a direct comparison of their relative oxidizer strengths. Consequently, it cannot be decided, on the basis of the available information, whether NiF_3^+ or KrF^+ is the stronger oxidizer. The failure to oxidize Kr with NiF3⁺ to KrF⁺ may have been due entirely to unfavorable reaction conditions and does not necessarily imply that KrF⁺ is a stronger oxidizer than NiF_3^+ .

Advantages and Disadvantages of NiF₃⁺. Compared to PtF₆, the NiF₃⁺-based system offers advantages and disadvantages. On the one hand, the required K₂(NiF₆), AsF₅, and HF starting materials are commercially available, and the reaction products are easier to separate than the 1:1 mixture of $ClF_6^+PtF_6^-$ and $ClF_4^+PtF_6^-$, obtained from the ClF_5/PtF_6 reaction.²¹ On the other hand, PtF₆ can also oxidize strongly basic substrates, such as ClO_2F ,²⁹ which NiF₃⁺ cannot.

Compared to KrF⁺, the NiF₃⁺-based system again offers the advantages of commercially available starting materials and higher yields, 40% for ClF₆⁺ and 32% for BrF₆⁺, compared to 11%^{10c} and <20%^{11b} with KrF⁺. However, product isolation and purification is more cumbersome and the final product purity is inferior.

Conclusions

According to these results, the system $Cs_2NiF_6/AsF_5/HF$ should be capable of oxidizing all compounds that have a higher F^+ attachment energy than BrF₅, provided that the substrate exhibits a lower Lewis basicity than NiF₄. Therefore, a successful oxidation is a function not only of the oxidizing strength but also of the relative Lewis acidities/basicities of all components, because the oxidizing strengths vary significantly from the cation to the neutral parent molecule to the anion.

Acknowledgment. We thank the National Science Foundation and the Air Force Office of Scientific Research for financial support of this work. T.S. is indebted to the Alexander von Humboldt Foundation for a Feodor-Lynen Fellowship and to Prof. G. Olah for his kind support.

IC001024+

⁽²⁹⁾ Christe, K. O. Inorg. Nucl. Chem. Lett. 1972, 8, 453.