Syntheses, Structural Determination, and Electrochemistry of Ru₂(Fap)₄Cl and Ru₂(Fap)₄(NO)Cl

John L. Bear,* Julien Wellhoff, Guy Royal,[†] Eric Van Caemelbecke,[‡] Sonia Eapen, and Karl M. Kadish*

Department of Chemistry, University of Houston, Houston, Texas 77204-5641

Received November 20, 2000

Ru₂(Fap)₄Cl and Ru₂(Fap)₄(NO)Cl, where Fap is the 2-(2-fluoroanilino)pyridinate anion, were synthesized, and their structural, electrochemical, and spectroscopic properties were characterized. Ru₂(Fap)₄Cl, which was obtained by reaction between Ru₂(O₂CCH₃)₄Cl and molten HFap, crystallizes in the monoclinic space group $P_{21/c}$, with a = 11.2365(4) Å, b = 19.9298(8) Å, c = 19.0368(7) Å, $\beta = 90.905(1)^{\circ}$, and Z = 4. The presence of three unpaired electrons on the Ru₂⁵⁺ core and the 2.2862(3) Å Ru–Ru bond length for Ru₂(Fap)₄Cl and NO gas yields Ru₂(Fap)₄(NO)Cl, which crystallizes in the orthorhombic space group *Pbca*, with a = 10.0468(6) Å, b = 18.8091-(10) Å, c = 41.7615(23) Å, and Z = 8. The Ru–Ru bond length of Ru₂(Fap)₄(NO)Cl is 2.4203(8) Å, while its N–O bond length and Ru–N–O bond angle are 1.164(8) Å and $155.8(6)^{\circ}$, respectively. Ru₂(Fap)₄(NO)Cl can be formulated as a formal Ru₂^{I,II}(NO⁺) complex with a linear Ru–N–O group, and the proposed electronic configuration for this compound is $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^3(\delta^*)^1$. The binding of NO to Ru₂(Fap)₄Cl leads to some structural changes of the Ru₂(Fap)₄ framework and a stabilization of the lower oxidation states of the diruthenium unit. Also, IR spectroelectrochemical studies of Ru₂(Fap)₄(NO)Cl show that NO remains bound to the complex upon reduction and that the first reduction involves the addition of an electron on the diruthenium core and not on the NO axial ligand.

Introduction

Nitric oxide is now known to play an important role in many biological functions;^{1–5} therefore, the use of metallonitrosyl complexes as agents potentially capable of releasing or removing NO has become a very active area of research.^{6,7}

Several mononuclear ruthenium nitrosyl complexes have been reported,^{8–15} but the number of diruthenium nitrosyl complexes

[†] Present address: Laboratoire d'Electrochimie Organique et de Photochimie Rédox (LEOPR), UMR CNRS 5630, Université Joseph Fourier Grenoble I, BP 53, 38041, Grenoble Cedex 9, France.

- (1) Solomon, H. S. Science 1992, 257, 494.
- (2) Zhang, J.; Dawson, V. L.; Dawson, T. M.; Snyder, S. H. Science 1994, 263, 687.
- (3) Bredt, D. S.; Hwang, P. M.; Gratt, C. E.; Lowenstein, C.; Reed, R. R.; Snyder, S. H. Science 1991, 351, 714.
- (4) White, K. A.; Marletta, M. A. Biochemistry 1992, 31, 6627.
- (5) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258.
- (6) Davies, N. A.; Wilson, M. T.; Slade, E.; Fricker, S. P.; Murrer, B. A.; Powell, N. A.; Henderson, G. R. Chem. Commun. 1997, 47.
- (7) Legzdins, P.; Retting, S. J.; Sayers, S. F. J. Am. Chem. Soc. 1994, 116, 105.
- (8) Shiu, K.-B.; Yang, L.-T.; Jean, S.-W.; Li, C.-H.; Wu, R.-R.; Wang, J.-C.; Liou, L.-S.; Chiang, M. Y. *Inorg. Chem.* **1996**, *35*, 7845.
- (9) Gomes, M. G.; Davanzo, C. U.; Silva, S. C.; Lopes, L. G.; Santos, P. S.; Franco, D. W. J. Chem. Soc., Dalton Trans. 1998, 601.
- (10) Zarhoule, R.; Duc, G.; Deloume, J. Inorg. Chim. Acta 1989, 160, 59.
- (11) Nagao, H.; Nishimura, H.; Funato, H.; Ichikawa, Y.; Howell, F. S.; Mukaida, M.; Kakihana, H. *Inorg. Chem.* **1989**, 28, 3955.
- (12) Kadish, K. M.; Adamian, V. A.; Van Caemelbecke, E.; Tan, Z.; Tagliatesta, P.; Bianco, P.; Boschi, T.; Yi, G.; Khan, M. A.; Richter-Addo, G. B. *Inorg. Chem.* **1996**, *35*, 1343.
- (13) Bohle, D. S.; Hung, C.; Powell, A. K.; Smith, B. D.; Wocadlo, S. Inorg. Chem. 1997, 36, 1992.
- (14) Marianda, K. M.; Bu, X.; Lorkovic, I.; Ford, P. C. Inorg. Chem. 1997, 36, 4838.
- (15) Hodge, S. J.; Wang, L.; Khan, M. A.; Young, V. G., Jr.; Richter-Addo, G. B. Chem. Commun. (Cambridge) 1996, 2283.

is rather scarce in the literature, and to our knowledge, $Ru_2(O_2-CC_2H_5)_4(NO)_2$ and $Ru_2(O_2CCF_3)_4(NO)_2$ are the only two examples of diruthenium metal—metal bonded complexes with NO axial ligands that have been structurally characterized to date.¹⁶ These compounds have been described as formal $Ru_2^{I,I}$ - $(NO^+)_2$ complexes, and it is of interest to examine whether the electronic distribution of the Ru_2 –NO unit varies as a function of the basicity of the bridging ligand.

The present study reports the synthesis of Ru₂(Fap)₄(NO)Cl, where Fap is the 2-(2-fluoroanilino)pyridinate anion. This compound contains a more basic bridging ligand than that of the previously characterized diruthenium nitrosyl complexes and possesses one rather than two NO axial ligands. The newly synthesized compound is characterized in terms of its structural, electrochemical, and spectroscopic properties, and these data are compared to those of the parent compound, Ru₂(Fap)₄Cl, which is also structurally characterized in this paper.

Experimental Section

Chemicals. Ru₂(O₂CCH₃)₄Cl was prepared according to a method previously published in the literature.¹⁷ Tetra-*n*-butylammonium perchlorate (TBAP) was purchased from Fluka Chemika Co., recrystallized from ethyl alcohol, and dried under vacuum at 40 °C for at least 1 week prior to use. 2-Bromopyridine, 2-fluoroaniline, lithium chloride, and ruthenium chloride hydrate (RuCl₃•3H₂O) were purchased from Aldrich and used as received. Silica gel (Merck, 230–400 mesh, 60 Å) and aluminum oxide (neutral, 150 mesh, 58 Å) were purchased from Aldrich and used for column chromatography. Ultrahigh-purity argon and nitric oxide were purchased from Matheson Trigas Co. Nitric oxide was first passed through anhydrous calcium sulfate and then through

[‡] Present address: Houston Baptist University, 7502 Fondren Road, Houston, Texas 77074-3298.

⁽¹⁶⁾ Lindsay, A. J.; Wilkinson, G.; Motevalli, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 2723.

⁽¹⁷⁾ Stephenson, T. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1966, 28, 2285.

potassium hydroxide pellets and a cold trap (dry ice/acetone, -78 °C) to remove traces of water and higher nitrogen oxides. GC grade dichloromethane (CH₂Cl₂) was distilled over phosphorus pentoxide (P₂O₅) and stored over activated 3 Å molecular sieves before use. GC grade tetrahydrofuran (THF) was first distilled from calcium hydride (CaH₂) and then from sodium/benzophenone. Hexane (95% min, Aldrich), absolute ethanol (Mc Cormick, Inc.), acetone (GC grade, EM Science), ethanol (GC grade, EM Science), and acetic acid (GR, EM Science) were all used without purification.

Instrumentation. Cyclic voltammetry was carried out using an EG&G Princeton Applied Research (PAR) model 263 potentiostat/ galvanostat. A conventional three-electrode cell was used and consisted of a glassy carbon working electrode (3.0 mm diameter), a platinum counter electrode, and a homemade saturated calomel reference electrode (SCE). The SCE was separated from the solution by a fritted glass bridge of low porosity that contained the solvent/supporting electrolyte mixture. An "H" type cell with two compartments separated by a fritted glass was used for controlled potential bulk electrolysis, and the working and counter electrodes were made from platinum gauze. Argon was used to deoxygenate the solutions for 5 min before carrying out any electrochemical experiments, and a positive argon pressure was maintained above the solution throughout the experiment. Potentials are reported vs the SCE, but measurements are also referenced to the ferrocene/ferrocenium (Fc/Fc⁺) couple. The oxidation of ferrocene in CH₂Cl₂, 0.1 M TBAP was located at $E_{1/2} = 0.49$ V vs SCE under our experimental conditions.

UV-visible spectra were recorded on a Hewlett-Packard model 8453 diode array spectrophotometer. Thin-layer FTIR spectroelectrochemical measurements were carried out with a FTIR Nicolet 550 Magna IR spectrometer using a specially constructed light-transparent FTIR spectroelectrochemical cell.¹⁸ ¹H and ¹³C NMR measurements were recorded at room temperature on a General Electric QE-300 Plus spectrometer and were referenced to tetramethylsilane (TMS). ESR spectra were recorded on a Bruker ER 100E spectrometer. The g values were measured with respect to diphenylpicrylhydrazyl (DPPH: g = 2.0036 ± 0.0003). Magnetic susceptibilities were measured according to the Evans method¹⁹⁻²² on a General Electric QE-300 FT NMR spectrometer in CD₂Cl₂ with TMS as the internal reference compound. Mass spectra were recorded on a Finnigan TSQ 700 instrument at the University of Texas, Austin. A standard fast atom bombardment was used, and *m*-nitrobenzyl alcohol (NBA) was used as the liquid matrix. Elemental analysis was carried out by Atlantic Microlab, Inc., Norcross Georgia.

Synthesis of HFap. A mixture of 2-bromopyridine (20.53 g, 0.130 mol) and 2-fluoroaniline (29.02 g, 0.261 mol) was stirred under argon at 150 °C for 6 h in THF. During this time, the solution turned from colorless to light brown. After the solution was cooled to room temperature, a total of 100 mL of 10% NaOH was added and the unreacted starting materials were steam-distilled using water as an internal steam source. A light-yellow solid precipitated and was extracted with dichloromethane. The organic phase was dried over MgSO₄, and the solvent was evaporated under vacuum. The light-yellow residue was then twice recrystallized in hexane to give pure white crystals in an 83% yield; mp, 83-85 °C. Mass spectral data [m/e, (fragment)]: 188 [HFap]⁺, 169 [Hap]⁺. Elemental analysis (C11H9N2F): C, 70.20; H, 4.82; N, 14.88. Found: C, 70.21; H, 4.80; N, 14.86. ¹H NMR (in CD₂Cl₂): δ 8.23 (dd, 1H), 8.11(td, 1H), 7.55-(td, 1H), 7.13(m, 2H), 6.99(m, 1H), 6.80(m, 3H) ppm. (Key: t, triplet; td, triplet of doublets; dd, doublet of doublets; m, multiplet). ¹³C NMR (in CD₂Cl₂): δ 109.4, 115.0, 115.3, 115.4, 121.3, 122.4, 122.5, 124.3, 124.4, 129.0, 129.2, 137.6, 148.0, 152.1, 155.3, 155.6 ppm.

Synthesis of $Ru_2(Fap)_4Cl$. A mixture of $Ru_2(O_2CCH_3)_4Cl$ (0.85 g, 1.8 mmol) and HFap (4.90 g, 26.0 mmol) was heated and stirred under argon at 100 °C for 2 h in a sidearm flask equipped with a condenser. At this temperature, the HFap ligand was in the molten state. The dark-

Table 1. Data Collection and Processing Parameters for $Ru_2(Fap)_4Cl$ and $Ru_2(Fap)_4(NO)Cl$

Ru ₂ (Fap) ₄ Cl		Ru2(Fap)4(NO)Cl	
space group	$P2_1/c$ (monoclinic)	Pbca (orthorhombic)	
a (Å)	11.2365(4)	10.0468(6)	
b (Å)	19.9298(8)	18.8091(10)	
c (Å)	19.0368(7)	41.7615(23)	
β (deg)	90.905(1)	90.0	
$V(Å^3)$	4262.6(3)	7891.7(8)	
formula	$C_{44}H_{32}N_8F_4ClRu_2\cdot CH_2Cl_2$	C44H32N9OF4ClRu2	
fw (g/mol)	1071.29	1016.38	
Ζ	4	8	
ρ (g/cm ³)	1.669	1.711	
$\mu ({\rm cm}^{-1})$	9.59	9.02	
λ (Mo K α) (Å)	0.710 73	0.710 73	
collection range (deg)	$3.0 \le 2\theta \le 50.0$	$2.0 \le 2\theta \le 46.6$	
temp (°C)	-50(2)	50(2)	
$R(F_0)^a$	0.0229	0.0456	
$R_{\rm w}(F_{\rm o})^b$	0.0587	0.1055	
${}^{a}R(F_{o}) = \sum F_{o} $ $\sum w F_{o} ^{2}]^{1/2}.$	$- F_{\rm c} /\sum F_{\rm o} . {}^{b} R_{\rm w}(F_{\rm o}) =$	$\sum w(F_{\rm o} - F_{\rm c})^2/$	

green solid that formed after cooling the flask to room temperature was dissolved in CH2Cl2 (10 mL), and the solution was filtered under vacuum to remove unreacted Ru₂(O₂CCH₃)₄Cl. The solvent was then evaporated under an air stream, and the excess ligand was sublimed under vacuum at 120 °C. The residue was purified by column chromatography on silica gel, eluting with acetone/hexane (4:6) to give Ru₂(Fap)₄Cl as a dark-green solid (yield: 53%). Mass spectral data [m/e, (fragment)]: 987 $[Ru_2(Fap)_4C1]^+$, 952 $[Ru_2(Fap)_4]^+$, 800 $[Ru_2(Fap)_3^ Cl]^+$, 765 $[Ru_2(Fap)_3]^+$. Elemental analysis $(C_{44}H_{32}N_8F_4Ru_2Cl)$: C, 53.58; H, 3.27; N, 11.36. Found: C, 54.36; H, 3.44; N, 11.27. UVvis spectrum in CH₂Cl₂ [λ , nm]: 428, 463, 750 (broad). Infrared spectrum (KBr pellet): 1603 (s), 1490 (s), 1467 (s), 1429 (s), 1356 (m), 1291 (m), 1253 (w), 1241 (m), 1197 (w), 1158 (w), 1117 (w), 1097 (m), 1033 (w), 1017 (w), 936 (w), 886 (m), 848 (m), 795 (w), 753 (s), 734 (m), 538 (w), 526 (w) cm⁻¹ (s, strong; m, medium; w, weak).

Synthesis of Ru₂(Fap)₄(NO)Cl. In a Schlenk flask, a stirred solution of Ru₂(Fap)₄Cl (0.110 g, 0.11 mmol) in dichloromethane (20 mL) was saturated with argon for 15 min. Nitric oxide was passed through the solution for 10 min whereupon the color of the solution changed from green to dark red. Argon was then bubbled through the solution (during this time the solution turned from red to blue) to remove unreacted NO and to concentrate the compound in a total volume of approximately 1 mL, after which the compound was precipitated at -20 °C by addition of cold hexane (5 mL). The resulting dark-blue solid was washed twice with cold hexane (6 mL) and purified by column chromatography on alumina, eluting with dichloromethane/methanol (9:1) to give Ru₂(Fap)₄-(NO)Cl as a green-blue solid (yield, 48%). Mass spectral data [m/e, (fragment)]: 982 [Ru₂(Fap)₄(NO)]⁺, 951 [Ru₂(Fap)₄]⁺, 765 [Ru₂- $(Fap)_3$ ⁺. UV-vis spectrum in CH₂Cl₂ [λ , nm]: 452, 687 (broad). Infrared spectrum (KBr pellet): 1740 (m), 1601 (s), 1487 (s), 1469 (s), 1426 (s), 1349 (w), 1289 (m), 1259 (w), 1237 (m), 1191 (m), 1162 (w), 1119 (w), 1099 (m), 1033 (w), 1017 (w), 939 (w), 883 (m), 847 (m), 794 (w), 758 (s), 731 (m) cm⁻¹ (s, strong; m, medium; w, weak).

X-ray Crystallography of Ru₂(Fap)₄Cl and Ru₂(Fap)₄(NO)Cl. Large crystalline blocks of Ru₂(Fap)₄Cl and Ru₂(Fap)₄(NO)Cl were obtained by very slow evaporation of a CH₂Cl₂/hexane (1:3) solution of the compound at ambient temperature. A single crystal of Ru₂(Fap)₄-Cl (a dark-green block with approximate dimensions of 0.28 mm × 0.24 mm × 0.24 mm) and a single crystal of Ru₂(Fap)₄(NO)Cl (a green thin plate with approximate dimensions of 0.20 mm × 0.18 mm × 0.05 mm) were mounted in turn in a random orientation on a Nicolet R3m/V automatic diffractomer. The samples were placed in a stream of dry nitrogen gas at -50 °C. The radiation used was Mo K α monochromatized by a highly ordered graphite crystal. Final cell constants as well as other information pertinent to data collection and structure refinement of both crystals are listed in Table 1. The Laue symmetry was determined to be 2/m for Ru₂(Fap)₄(NO)Cl and *mmm* for Ru₂(Fap)₄(NO)Cl. Investigation of the systematic absences unambigu-

⁽¹⁸⁾ Kadish, K. M.; Mu, X. H.; Lin, X. Q. Electroanalysis 1989, 1, 35.

⁽¹⁹⁾ Evan, D. F. J. Chem. Soc. 1959, 2003.

⁽²⁰⁾ Live, D. H.; Chan, S. I. Anal. Chem. 1970, 42, 791.
(21) Ostfeld, D.; Cohen, I. A. J. Chem. Educ. 1972, 49, 829.

 ⁽²²⁾ Schubert, E. M. J. Chem. Educ. 1992, 69, 62.

ously showed the space group to be $P2_1/c$ for Ru₂(Fap)₄Cl and *Pbca* for Ru₂(Fap)₄(NO)Cl. A hemisphere of data (1271 frames at 5 cm detector distance) was collected using a narrow-frame method with scan widths of 0.30° in ω and an exposure time of 35 s/frame. The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability, and the maximum correction on *I* was <1%. The data were integrated using the Siemens SAINT program, with the intensities corrected for Lorentz factor, polarization, air absorption, and absorption due to variation in the path length through the detector face plate. A Ψ -scan absorption correction based on the entire data set was applied. Redundant reflections were averaged. Final cell constants were refined using 7246 reflections having $I > 10 \sigma(I)$ for Ru₂(Fap)₄Cl and 6327 reflections having $I > 10 \sigma(I)$ for Ru₂(Fap)₄Cl.

Results and Discussion

Synthesis. $Ru_2(Fap)_4Cl$ was prepared by reacting $Ru_2(O_2-CCH_3)_4Cl$ with an excess of molten HFap ligand (14 equiv). A large excess of ligand is necessary to obtain a good yield because molten HFap plays the role of both solvent and starting material. This preparative route is particularly useful when the replaceable hydrogen is acidic enough to undergo an exchange with the acetate-bridging ligands of the starting material.²³⁻²⁵

Ru₂(Fap)₄(NO)Cl was prepared by passing NO gas through a solution of Ru₂(Fap)₄Cl. This method is the most widely used to synthesize nitrosyl complexes.²⁶ However, because NO is very reactive toward oxygen or water, even in trace amounts, the reaction must be carried out under strictly anaerobic and anhydrous conditions. The utilized glassware was therefore dried in an oven overnight at 120 °C, and any trace of air in the flask was replaced by ultrahigh purity argon using a Schlenk line.

Molecular Structures. Crystal structures of $Ru_2(Fap)_4(Cl and Ru_2(Fap)_4(NO)Cl$ are shown in Figure 1, and selected bond lengths, bond angles, and torsion angles are listed in Tables 2 and 3. The coordinations of Ru1 and Ru2 in $Ru_2(Fap)_4Cl$ are essentially octahedral and square pyramidal, respectively, with four Fap nitrogen atoms forming the equatorial planes. One ruthenium atom, Ru1, is coordinated to the Cl^- axial ligand and to three pyridyl and one anilino nitrogen atoms, while the other, Ru2, is coordinated to three another and one pyridyl nitrogen atoms. The compound therefore adopts a (3,1) isomeric conformation, which contrasts with the isomeric distributions of $Ru_2(ap)_4Cl$ and $Ru_2(F_5ap)_4Cl$, where the ap derivative exists only in its (4,0) conformation,²³ and the F₅ap complex has been isolated in the (3,1), (4,0), and (2,2) trans configurations.

The 2.2862(3) Å Ru–Ru bond length of Ru₂(Fap)₄Cl is slightly longer than the 2.275(3) Å Ru–Ru bond of Ru₂(ap)₄-Cl²³ and is within the range of bond lengths expected for other diruthenium(II,III) complexes with this structural type.^{24,25,27} The average 2.049(2) Å Ru–N_a bond length of Ru₂(Fap)₄Cl (N_a = anilino nitrogen, N2, N4, N6, and N8)) is shorter than the average 2.097(2) Å Ru–N_p bond (N_p = pyridyl nitrogen, N1, N3, N5, and N7). A similar trend between the average Ru–N_a and Ru–N_p bond lengths is also observed for Ru₂(Fap)₄(NO)-Cl, and both results are consistent with the fact that the negative charge of the Fap⁻ anionic ligands resides primarily on the amino nitrogen. Also, the average Ru(1)–N bond length of

- (23) Chakravarty, A. R.; Cotton, F. A.; Tocher, D. A. Inorg. Chem. 1985, 24, 172.
- (24) Bear, J. L.; Li, Y.; Han, B.; Van Caemelbecke, E.; Kadish, K. M. Inorg. Chem. 1997, 36, 5449.
- (25) Bear, J. L.; Han, B.; Huang, S.; Kadish, K. M. Inorg. Chem. 1996, 35, 3012.
- (26) Richter-Addo, G. B. *Metal Nitrosyls*; Oxford University Press: Oxford, 1992; p 33.
- (27) Chakravarty, A. R.; Cotton, F. A. Polyhedron 1985, 4, 1957.

Ru₂(Fap)₄(NO)Cl

Figure 1. Thermal ellipsoid plot (40% equiprobability envelopes) of $Ru_2(Fap)_4Cl$ and $Ru_2(Fap)_4(NO)Cl$. H atoms have been omitted for clarity.

Table 2. Selected Bond Lengths (Å) of $Ru_2(Fap)_4Cl$ and $Ru_2(Fap)_4(NO)Cl$

Ru ₂ (Fap) ₄ Cl		Ru ₂ (Fap) ₄ (NO)Cl		
Ru(1)-Ru(2)	2.2862(3)	Ru(1)-Ru(2)	2.4203(8)	
Ru(1)-Cl(1)	2.4611(7)	Ru(1)-Cl(1)	2.5882(19)	
Ru(1) - N(8)	$2.073(2)^{a}$	Ru(1) - N(8)	1.975(6) ^a	
Ru(1) - N(1)	2.100(2)	Ru(1) - N(1)	2.075(6)	
Ru(1) - N(5)	2.102(2)	Ru(1) - N(5)	2.051(6)	
Ru(1) - N(3)	2.120(2)	Ru(1) - N(3)	2.096(6)	
Ru(2) - N(4)	$2.031(2)^{a}$	Ru(2) - N(4)	$2.052(6)^{a}$	
Ru(2) - N(2)	$2.046(2)^{a}$	Ru(2) - N(2)	$2.050(6)^{a}$	
Ru(2) - N(6)	$2.046(2)^{a}$	Ru(2) - N(6)	$2.094(6)^{a}$	
Ru(2) - N(7)	2.064(2)	Ru(2) - N(7)	2.108(6)	
		Ru(2)-NO	1.869(6)	
		O(1)-N(9)	1.164(8)	

^a Ru-N_a (anilino nitrogen) bond lengths.

 $Ru_2(Fap)_4Cl$ is 0.05 Å larger than the average Ru(2)-N bond length, and this elongation can be related to the lack of an axial ligand on the Ru2 atom, which allows the four equatorial ligands to come closer to this Ru atom. In contrast, the average Ru-(1)-N bond length of $Ru_2(Fap)_4(NO)Cl$ is 0.03 Å shorter than the average Ru(2)-N bond.

Inorganic Chemistry, Vol. 40, No. 10, 2001 2285

Table 3. Selected Bond Angles (deg) and Torsion Angles (deg) of Ru₂(Fap)₄Cl and Ru₂(Fap)₄(NO)Cl

Ru ₂ (Fap) ₄ Cl		Ru ₂ (Fap) ₄ (NO)Cl			
Bond Angles					
Ru(2) - Ru(1) - Cl(1)	179.62(2)	Ru(2) - Ru(1) - Cl(1)	178.37(5)		
N(6) - Ru(2) - Ru(1)	90.33(6)	N(6) - Ru(2) - Ru(1)	83.92(16)		
N(4) - Ru(2) - Ru(1)	90.88(6)	N(4) - Ru(2) - Ru(1)	87.40(16)		
N(2) - Ru(2) - Ru(1)	89.47(6)	N(2) - Ru(2) - Ru(1)	86.89(16)		
N(7) - Ru(2) - Ru(1)	90.19(6)	N(7) - Ru(2) - Ru(1)	83.44(16)		
N(8) - Ru(1) - Ru(2)	88.46(6)	N(8) - Ru(1) - Ru(2)	89.94(16)		
N(1) - Ru(1) - Ru(2)	88.92(6)	N(1) - Ru(1) - Ru(2)	87.68(16)		
N(5) - Ru(1) - Ru(2)	87.89(6)	N(5) - Ru(1) - Ru(2)	88.39(16)		
N(3) - Ru(1) - Ru(2)	87.11(6)	N(3) - Ru(1) - Ru(2)	85.99(16)		
., ., .,		O(1) - N(9) - Ru(2)	155.8(6)		
		N(9) - Ru(2) - Ru(1)	169.49(19)		
Torsion Angles					
$N(1) = P_{u}(1) = P_{u}(2) = N(2)$ 17 58(8) $N(1) = P_{u}(1) = P_{u}(2) = N(2)$ 18 8(2)					
N(3) = Ru(1) = Ru(2) = N(3)	J(A) = 17.50(0)	N(3) - Ru(1) - Ru(2) - Ru(2) - Ru(3)	N(4) 217(2)		
N(5) Ru(1) Ru(2) P	10.03(0)	N(5) Ru(1) Ru(2)	N(4) = 21.7(2) N(6) = 24.5(2)		
N(5) - Ku(1) - Ku(2) - N	N(0) = 18.4/(8)	1 N(5) - Ku(1) - Ru(2) - Ku(2) - Ku(1N(0) 24.5(2)		
N(8) - Ru(1) - Ru(2) - N	J(7) 15.86(8) $N(8) - Ru(1) - Ru(2) -$	$\cdot N(7) 22.6(2)$		

The coordination of each ruthenium atom in Ru₂(Fap)₄(NO)-Cl is essentially octahedral with four Fap nitrogen atoms forming the equatorial planes. The 2.4203(8) Å Ru-Ru bond length in Ru₂(Fap)₄(NO)Cl is longer than the 2.2862(3) Å Ru-Ru bond of Ru₂(Fap)₄Cl, thus suggesting that the bond order decreases upon going from Ru₂(Fap)₄Cl to Ru₂(Fap)₄(NO)Cl. An elongation of the Ru-Ru bond is also observed upon addition of NO to the previously investigated diruthenium(II,II) complexes $Ru_2(O_2CR)_4$ (R = C₂H₅ or CF₃),¹⁶ where the Ru-Ru bonds of both $Ru_2(O_2CR)_4(NO)_2$ complexes (R = C_2H_5 or CF₃) are approximately 0.25 Å longer than those of the related Ru₂(O₂-CR)₄ parent complexes. One might therefore expect to see an increase of about 0.125 Å in the Ru-Ru bond for each nitrosyl group bound to the diruthenium core, and this is consistent with the structural data of Ru₂(Fap)₄(NO)Cl and Ru₂(Fap)₄Cl where the Ru-Ru distance in the NO derivative is 0.134 Å longer than that of its parent compound.

Both Ru₂(Fap)₄(NO)Cl and Ru₂(Fap)₄Cl have linear Ru–Ru– Cl angles (178.4° and 179.6°, respectively), but the Ru–Cl bond of Ru₂(Fap)₄(NO)Cl is 0.127 Å longer than that of Ru₂(Fap)₄-Cl. An elongation of the Ru–Cl bond is predicted when a second axial ligand binds trans to the Cl⁻ anion, and an abnormally long Ru–Cl bond distance of 2.705(2) Å has also been reported for Ru₂(hpp)₄Cl₂.²⁸

The Ru-N-O and Ru-Ru-N(O) angles in Ru₂(Fap)₄(NO)-Cl are 155.8° and 169.5°, respectively. The Ru(2)-N(6) and Ru(2)-N(7) bonds in $Ru_2(Fap)_4(NO)Cl$ are on the average 0.05 Å longer than the Ru(2)-N(4) and Ru(2)-N(2) bonds, while the N(6)-Ru(2)-Ru(1) and N(7)-Ru(2)-Ru(1) bond angles are on the average 3.5° smaller than the N(2)-Ru(2)-Ru(1) and N(4)-Ru(2)-Ru(1) bond angles. These structural differences are not observed for Ru₂(Fap)₄Cl maybe because the NO group bends toward the nitrogen atoms N7 and N6, most likely to avoid some steric hindrance with the other anilino groups. The binding of NO to Ru₂(Fap)₄Cl also leads to structural changes of the Ru₂(Fap)₄ framework. The average Ru(2)-N bond distance in Ru₂(Fap)₄(NO)Cl is 0.03 Å larger than the average Ru(2)-N bond distances in Ru₂(Fap)₄Cl, while the average Ru(1)-N bond distance in Ru₂(Fap)₄(NO)Cl is 0.05 Å shorter than the average Ru(1)-N bond distance in Ru₂(Fap)₄-Cl.

In addition, as shown in Table 3, the arrangement of the four equatorial ligands in Ru₂(Fap)₄(NO)Cl leads to large torsion

Figure 2. Cyclic voltammograms of Ru₂(Fap)₄Cl and Ru₂(Fap)₄(NO)-Cl in CH₂Cl₂, 0.1 M TBAP. Scan rate is 0.1 V/s.

angles about the Ru–Ru bond; the N(5)–Ru(1)–Ru(2)–N(6) and N(8)–Ru(1)–Ru(2)–N(7) torsion angles average 23.6°, whereas the N(1)–Ru(1)–Ru(2)–N(2) and N(3)–Ru(1)–Ru-(2)–N(4) angles average 20.3°. These values are on average 4.3° larger than similar torsion angles in Ru₂(Fap)₄Cl and is most likely due to some steric hindrance between the NO axial ligand and the Ru₂(Fap)₄ framework.

Electrochemistry. Cyclic voltammograms of Ru₂(Fap)₄Cl and Ru₂(Fap)₄(NO)Cl in CH₂Cl₂ containing 0.1 M TBAP are shown in Figure 2. Ru₂(Fap)₄Cl exhibits a single reversible oneelectron reduction and two reversible one-electron oxidations. while Ru₂(Fap)₄(NO)Cl is characterized by two reversible oneelectron reductions and a single reversible one-electron oxidation within the potential limit of the solvent. The nitrosyl complex is harder to oxidize by 670 mV and easier to reduce by 740 mV than the parent compound Ru₂(Fap)₄Cl. Similar shifts in potentials have been reported between oxidation or reduction of $Ru_2(O_2CR)_4(NO)_2$ and $Ru_2(O_2CR)_4$ (R = C₂H₅ or CF₃),²⁷ and this can be accounted for by the ability of the NO ligand to accept delocalized π electron density onto its π^* orbital. This back-donation will shift electron density away from the diruthenium core, thus stabilizing the lower oxidation states of the compound.29

Infrared Spectroelectrochemistry. The infrared spectrum of Ru₂(Fap)₄(NO)Cl in CH₂Cl₂, 0.1 M TBAP exhibits a ν_{NO} band at 1740 cm⁻¹, while the diruthenium species produced after controlled-potential reduction at -0.45 V in a thin-layer cell is characterized by a ν_{NO} band at 1669 cm⁻¹ (see Figure 3). The spectral changes upon reduction are reversible, and the IR spectrum of Ru₂(Fap)₄(NO)Cl can be regenerated upon controlled-potential oxidation at 0.20 V in the thin-layer cell. This result indicates that the electroreduced form of Ru₂(Fap)₄(NO)Cl is stable on the experimental time scale and that the NO group remains bound to the complex after reduction.

When Ru₂(Fap)₄(NO)Cl is reduced by one electron, the increased electron density on the ruthenium core leads to an increased back-donation from the π (Ru) to the π *(NO) orbital, thus resulting in a smaller value of ν_{NO} . The shift of 71 cm⁻¹

⁽²⁸⁾ Bear, J. L.; Li, Y.; Han, B.; Kadish, K. M. Inorg. Chem. 1996, 35, 1395.

⁽²⁹⁾ Richter-Addo, G. B. *Metal Nitrosyls*; Oxford University Press: Oxford, 1992; p 18.

Figure 3. Thin-layer FTIR spectra obtained during electrolysis of Ru₂-(Fap)₄(NO)Cl at an applied potential of -0.45 V in CH₂Cl₂, 0.1 M TBAP. The background is the IR spectrum of the compound when no potential is applied to the thin-layer cell.

in ν_{NO} upon going from the neutral to the singly reduced form of Ru₂(Fap)₄(NO)Cl is consistent with a reduction of the diruthenium core because a larger shift of approximately 300 cm⁻¹ would be expected if the addition of the electron occurred on the NO axial ligand.³⁰

Electronic Configuration. The magnetic moment of Ru₂(Fap)₄-Cl, measured by the Evans method, is 3.91 $\mu_{\rm B}$, which corresponds to three unpaired electrons in the compound. This result is consistent with a ground-state electronic configuration of $(\sigma)^2$ - $(\pi)^4(\delta)^2(\pi^*\delta^*)^3$ for the Ru₂⁵⁺ core. The relative ordering and energy difference between the π^* and δ^* orbitals of diruthenium complexes will depend on several parameters, including the diruthenium oxidation state, the type of bridging ligands, and the type and number of axial ligands. Indeed, the δ and δ^* orbitals can both be destabilized via interaction with the filled orbitals of the bridging ligands that are of suitable symmetry. Ru₂(O₂CR₄)Cl, where R is an alkyl group, is known³¹ to have the electronic configuration $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^2(\delta^*)^1$. In addition, structural and spectroscopic studies of Ru₂(admp)₄Cl, where admp is the 2-amino-4,6-dimethylpyridinate anion, have shown that a stepwise substitution of each acetato ligand in Ru₂(O₂-CR)₄Cl by the nitrogen-donor anionic admp ligand results in a destabilization of the δ^* orbital.³² Therefore, one would expect the energy gap between the δ^* and π^* orbitals to increase upon going from Ru₂(O₂CCH₃)₄Cl to Ru₂(Fap)₄Cl. Thus, Ru₂(Fap)₄-Cl has the electronic configuration $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^2(\delta^*)^1$, or $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^3$ if the $\pi^*-\delta^*$ gap becomes very large. The fact that Ru₂(Fap)₄Cl contains three unpaired electrons is not consistent with the electronic configuration $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^3$, and therefore, Ru₂(Fap)₄Cl has the electronic configuration (σ)²- $(\pi)^4(\delta)^2(\pi^*)^2(\delta^*)^1$ with a bond order of 2.5 for the diruthenium unit.

The presence of a linear Ru–N–O group on $Ru_2(Fap)_4(NO)$ -Cl would result in a formal one-electron reduction of the diruthenium core,³³ thus leading to a $Ru_2^{II,II}(NO^+)$ complex with

(32) Cotton, F. A.; Yokochi, A. Inorg. Chem. 1998, 37, 2723.

the electronic configuration $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^3(\delta^*)^1$, while the presence of a bent Ru–N–O group would result in a formal one-electron oxidation of the diruthenium core and a Ru₂^{III,III}-(NO⁻) complex with the electronic configuration $(\sigma)^2(\pi)^4(\delta)^2-(\pi^*)^2$. The NO stretching frequency at 1740 cm⁻¹ may be interpreted in terms of either a linear or a bent Ru–N–O group. However, the X-ray structural data show an elongation of the Ru–Ru bond upon going from Ru₂(Fap)₄Cl (2.2862(3) Å) to Ru₂(Fap)₄(NO)Cl (2.4203(8) Å), and this result is consistent with the electronic configuration $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^3(\delta^*)^1$ and a decreased bond order from 2.5 to 2 upon the addition of NO to Ru₂(Fap)₄Cl.

No ESR signal is observed for Ru₂(Fap)₄(NO)Cl, but the electroreduced form of Ru₂(Fap)₄(NO)Cl exhibits a signal at 123 K characterized by $g_1 = 2.167$ and $g_2 = 1.901$. This ESR spectrum is well-defined and characteristic of a species containing one rather than three unpaired electrons because in the latter case either no signal at all or a broad and ill-resolved ESR spectrum is usually observed.34,35 Furthermore, the signal resembles the ESR spectra^{23,24} of $[Ru_2(Fap)_4(C \equiv CC_6H_5)_2]^-$ and $[Ru_2(dpf)_4(C \equiv CC_6H_5)_2]^-$, two compounds whose electronic ground states have been proposed as $(\pi)^4(\delta)^2(\pi^*)^4(\delta^*)^1$. No ¹⁴N hyperfine splitting is seen in the ESR spectrum of singly reduced Ru₂(Fap)₄(NO)Cl, thus suggesting that the reduction of Ru₂-(Fap)₄(NO)Cl occurs on the diruthenium core and not on the NO ligand.36 A similar result based on IR spectroelectrochemical measurements is also proposed. Overall, the ESR spectrum of the product obtained after reduction of Ru₂(Fap)₄(NO)Cl by one electron is thus consistent with the electronic configuration $(\sigma)^2$ - $(\pi)^4(\delta)^2(\pi^*)^4(\delta^*)^1$, which also agrees with the electronic configuration $(\sigma)^2(\pi)^4(\delta)^2(\pi^*)^3(\delta^*)^1$ proposed for Ru₂(Fap)₄(NO)Cl. Thus, despite a Ru-N-O bond angle of 155.8°, Ru₂(Fap)₄-(NO)Cl may be formulated as a Ru2^{II,II}(NO⁺) complex with a linear Ru–N–O group. $Ru_2(O_2CR)_4(NO)_2$ (R = C₂H₅ or CF₃) compounds have also been proposed to contain linear Ru-N-O groups,¹⁶ and these two compounds have Ru–N–O angles about 3.2° smaller than that of Ru₂(Fap)₄(NO)Cl. The present study shows that Ru₂(Fap)₄(NO)Cl still adopts a linear Ru-N-O group despite the fact that Fap is more basic than O₂CR $(R = C_2H_5 \text{ or } CF_3).$

Summary

 $Ru_2(Fap)_4(NO)Cl$ was synthesized by reaction between the (3,1) isomer of $Ru_2(Fap)_4Cl$ and NO. The binding of an axial NO ligand on $Ru_2(Fap)_4Cl$ results in an increase in the Ru-Ru distance along with some structural changes of the $Ru_2(Fap)_4$ framework. $Ru_2(Fap)_4(NO)Cl$ can be formally described as a diruthenium(II,II) complex with a linear Ru-N-O group. The NO ligand on $Ru_2(Fap)_4(NO)Cl$ stabilizes the lower oxidation states of the diruthenium unit, thus leading to additional reductions as compared to the parent $Ru_2(Fap)_4Cl$ complex.

Acknowledgment. The support of the Robert A. Welch Foundation (J.L.B., Grant E-918; K.M.K., Grant E-680) is gratefully acknowledged. We thank Dr. J. D. Korp for performing the X-ray analyses.

Supporting Information Available: X-ray crystallographic files in CIF format and figures for the structure determination of $Ru_2(Fap)_4$ -Cl and $Ru_2(Fap)_4(NO)$ Cl. This material is available free of charge via the Internet at http://pubs.acs.org.

IC001315I

- (34) Cotton, F. A.; Pedersen, E. Inorg. Chem. 1975, 14, 388.
- (35) Smith, K. M. Porphyrins and Metalloporphyrins; Elsevier Scientific Publishing Co.: Amsterdam, 1975; p 582.
- (36) Kadish, K. M.; Smith, K. M.; Guilard, R. *The Porphyrin Handbook*; Academic Press: Burlington, MA, 2000; Vol. 4, p 225.

⁽³⁰⁾ Callahan, R. W.; Meyer, T. J. Inorg. Chem. 1977, 16, 574.

⁽³¹⁾ Norman, J. G.; Renzoni, G. E.; Case, D. A. J. Am. Chem. Soc. 1979, 101, 5256.

⁽³³⁾ Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley-Interscience: New York, 1997; p 149.