Er7Ni2Te2: The Most Rare-Earth Metal-Rich Ternary Chalcogenide

Fanqin Meng and Timothy Hughbanks*

Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012

*Recei*V*ed January 3, 2001*

Synthetic exploration of metal-rich chalcogenides of group IV and V early transition metals incorporating the Brewer-Wengert concept of polar intermetallic bonding¹ has provided a great variety of new chemistry. Recent extension of this research to the electron-poorer rare-earth metal systems has produced $Sc_5Ni_2Te_2^2 Sc_6MTe_2$ (M = Mn, Fe, Co, Ni, Pd),³ Dy₆MTe₂ (M $=$ Fe, Co, Ni),⁴ Y₅M₂Te₂ (M = Fe, Co, Ni),⁵ R₅M₂Te₂ (R = Gd, Dy, Er, $M = Co$, Ni),⁶ and R₆MTe₂ (R = Gd, Er, M = Co, Ni, Ru).⁷ The new compound $Er_7Ni_2Te_2$ reported here represents the most metal-rich of the ternary rare-earth chalcogenides. Rareearth elements and many of their compounds exhibit a range of fascinating physical properties originating from localized 4f electrons. The magnetic properties of rare-earth systems have received extensive attention due to their technological importance and scientific challenges. Magnetic properties of the title compound were measured and analyzed in this report.

 $Er₃Ni$ and NiTe₂ were prepared by direct reaction of stoichiometric elements (Er foil, Ames Lab 99.99%; Te powder, Alfa 99.99%; Ni powder, Alfa 99.95%) via arc melting and solid-state reactions in sealed silica tubes, respectively. Appropriate ratios of Er, Er₃Ni, and NiTe₂ were wrapped in molybdenum foil, which was sealed in flame-baked silica tube under vacuum. This vessel was heated between 800 and 1100 °C for 7 days; the product contained $Er_7Ni_2Te_2$ in 80-90% yield, with ErTe as the only other observable phase in a Guinier powder diffraction pattern. The target compound is also accessible in quantitative yield by heating the above vessel at 850 °C for 4 weeks or by using molybdenum foil within a niobium tube as the reaction container. Black rods suitable for single-crystal X-ray studies were obtained, and the compound was found to adopt a new structure type with space group *Imm*2 (No. 44). Synthesis of the cobalt analogue afforded an isostructural compound in high yield.

The structure⁸ of Er₇Ni₂Te₂, projected along the [010] direction, is shown in Figure 1. The basic structural unit is a distorted, Nicentered, tricapped trigonal prism (TTP) of Er that is fused with like prisms by sharing the Er_3 triangular bases to form an infinite $[(Er_{3/2}Er_{3/2}Er_{3/2})Ni]_{\infty}$ chain that propagates along the *b* axis. These infinite chains are condensed to form corrugated layers across the *bc* plane by sharing Er zigzag chains, which are composed of capping Er atoms on one TTP and inner Er on the adjacent TTP

- (1) Brewer, L.; Wengart, P. R. *Metall. Trans.* **1973**, *4*, 2674.
- (2) Maggard, P. A.; Corbett, J. D. *Inorg. Chem.* **¹⁹⁹⁹**, *³⁸*, 1945-50.
- (3) Maggard, P. A.; Corbett, J. D. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 4143-6. (4) Bestaoui, N.; Herle, P. S.; Corbett, J. D. *J. Solid State Chem.* **2000**, *155*,
- 9–14<mark>.</mark>
Magg
- (5) Maggard, P. A.; Corbett, J. D. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 10740-1.
- (6) Meng, F.; Hughbanks, T. Unpublished results.
- (7) Meng, F.; Hughbanks, T. Unpublished results.
- (8) Single-crystal $(0.27 \times 0.03 \times 0.02 \text{ mm})$ data of Er₇Ni₂Te₂ were collected at 110 K on a Bruker SMART CCD diffractometer, which indicated a body-centered orthorhombic cell. A total of 1823 reflections ($5^{\circ} < 2\theta$) body-centered orthorhombic cell. A total of 1823 reflections ($5^{\circ} < 2\theta \le 58^{\circ}$) were collected, of which 770 were unique ($R_{int} = 0.0995$). The structure was refined in the orthorhombic space group $Imm2$ (No 44 Z) structure was refined in the orthorhombic space group *Imm*2 (No. 44, *Z* (2) , lattice parameters $a = 15.345(3)$ Å, $\hat{b} = 3.8377(8)$ Å, $c = 9.438-$ (2) Å. Direct methods were used to locate all the atoms, and anisotropic refinement converged to $R1 = 0.0424$, wR2 = 0.0994.

Figure 1. Approximate [010] projection of the Er₇Ni₂Te₂ structure. Er and Ni atoms are shown as dark circles with and without bonds, respectively. Te are open circles. Er-Te and Er-Ni bonds are not shown for clarity. Circled regions **1** and **2** are depicted below.

(**1**). Finally, vertex condensation forms links between individual layers that result in the overall 3-D structure (**2**). Tellurium atoms reside between the metal-metal bonded layers, on *bc* planes.

This work is placed in context by examining the structural relationship between $Er_7Ni_2Te_2$ and three other structures: Zr_6 -CoAl₂-type (e.g., $Zr_6MTe_2^9$, $Sc_6MTe_2^3$, $Gd_6MTe_2^7$), $Hf_5FeTe_3^1$ ¹⁰ and Zr3Fe.11 All four structures can be constructed using centered TTPs as fundamental building blocks, but following different

- (10) Abdon, R. L.; Hughbanks, T. *J. Am. Chem. Soc.* **¹⁹⁹⁵**, *¹¹⁷*, 10035-40. (11) Malakhova, T. O.; Alekseyeva, Z. M. *J. Less-Common Met.* **1981**, *81*,
- $293 300$.

10.1021/ic010009h CCC: \$20.00 © 2001 American Chemical Society Published on Web 04/27/2001

^{*} To whom correspondence should be addressed.

⁽⁹⁾ Wang, C.; Hughbanks, T. *Inorg. Chem.* **¹⁹⁹⁶**, *³⁵*, 6987-94.

Figure 2. Arrangements of TTPs into (a) single chains in the Zr_6CoAl_2 structure, (b) double chains in the Hf_5FeTe_3 structure, (c) layers in the $Er_7Ni_2Te_2$ structure, and (d) a 3-D network in the Zr_3Fe structure. Early transition metals are shown as larger circles, and late transition metals are smaller. Some metal-metal bonds are omitted for clarity.

condensation schemes (Figure 2). In the Zr_6CoAl_2 -type structure, bonding between the capping and apical atoms of adjacent TTPs interconnects single TTP chains. In the Hf_5FeTe_3 structure, double chains are formed by edge condensation of single chains, and the so-formed double chains are stitched together into a 3-D network by forming longer bonds between the capping atoms not involved in condensation. As described previously, formation of condensed intermetallic layers becomes characteristic in the $Er_7Ni_2Te_2$ structure. Successive layers are shifted relative to one another along the *c* direction and are linked together by sharing capping atoms such that Te atoms are accommodated at two chemically inequivalent sites between the layers. A similar but more symmetrical layer architecture is found in the structure of Zr3Fe, which in turn is closely related to hexagonal-close-packing metals. Adjacent layers in the $Zr₃Fe$ structure stack vertically in Figure 2d, sharing one Zr atom in every TTP unit. This 3-D network is even more condensed due to the formation of extensive Zr-Zr bonds between the layers.

Electronic band structure calculations for $Er_7Ni_2Te_2$ were performed with the extended Hückel method¹² using the YAeHMOP package.¹³ The Fermi level intersects a prominent conduction band having mainly Er 5d and 6s character, indicating that this material is a metallic conductor, as expected. The majority of the Ni 3d states lie at lower energies, consistent with significant polarity of the Er-Ni bonds. COOP (crystal orbital overlap population) calculations indicate Er-Ni that bonding is optimized in that the Fermi level is at the crossover of the Er-Ni bonding and antibonding states. Er-Er bonding appears to impose weaker constraints on the structure because shorter Er-Er bonds do not always possess higher overlap populations. This treatment agrees well with the previous structural description. The persistence of the late-transition-metal-centered TTP unit in various intermetallic compounds is a result of the strong heterometallic bonding. With increasing late-transition-metal contents, TTP units link together to form single chains, then double chains, then layers or 3-D networks by angular distortion of the bonds between the early transition or rare-earth metals.

Figure 3. The ac susceptibility of polycrystalline $Er_7Ni_2Te_2$. Inset: temperature dependence of $\chi_{\rm m}$ and $\chi_{\rm m}^{-1}$.

Magnetic measurements on a polycrystalline sample (12.74 mg) were carried out with the use of a Quantum Design (model MPMS-5) SQUID magnetometer. Temperature-dependent susceptibility data were collected from 2 to 300 K at a field of 1000 G. The magnetic susceptibility data (*ø*) were corrected for the paramagnetic impurity (ErTe) contribution,¹² for sample holder contribution, and for the intrinsic diamagnetic contribution;¹⁵ temperature independent paramagnetism was found to be negligible within the experimental error.

Between 100 and 300 K, χ is fit with the Curie-Weiss
pression $\gamma = C/(T - \theta)$: a γ^{-1} versus T plot (Figure 3, inset) expression, $\chi = C/(T - \theta)$; a χ^{-1} versus *T* plot (Figure 3, inset)
gave $C = 10.6 + 0.2$ and $\theta = 4.1(4)$ K. The effective moment gave $C = 10.6 \pm 0.2$ and $\theta = 4.1(4)$ K. The effective moment, $\mu_{\text{eff}} \simeq \sqrt{8C}$, was 9.21 \pm 0.09 μ_{B} , to be compared with 9.58 μ_{B} calculated for free Er^{3+} (⁴I_{15/2}). Reported μ_{eff} values for Er_2Te_3 ,¹⁴ ErTe,¹⁴ and Er metal¹⁶ are 9.50 \pm 0.14, 9.35 \pm 0.14, and 8.98 \pm 0.18 μ _B, respectively. The more numerous the Er-Er bonds, the lower the observed μ_{eff} . The effective moment for Er₇Ni₂Te₂ is at the expected place in this series.

An ac susceptibility measurement demonstrates an ordering transition at $T_c = 16.5$ K (Figure 3). Ordering in Er₇Ni₂Te₂ and in Er metal ($T_c = 18$ K) can be attributed to the RKKY exchange interaction between the Er moments, which is indirect in nature and is mediated through itinerant conduction electrons.17-¹⁹ This is the first metal-rich rare-earth chalcogenide for which a magnetic transition has been observed.

Acknowledgment. This work was supported by Texas Advanced Technology Program (Grant 010366-00386-1997). The CCD equipped diffractometer and SQUID magnetometer were acquired with NSF grants (CHE9807975 and CHE9974899). We thank Dr. Xiaobing Xie and Dr. Jiang-gao Mao are acknowledged for help with crystal structure refinement, and Mr. Bradley Smucker for help with the magnetic measurements.

Supporting Information Available: X-ray crystallographic files for $Er_7Ni_2Te_2$ in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC010009H

- (14) Hoggins, J.; Steinfink, H. *Inorg. Chem.* **¹⁹⁶⁸**, *⁷*, 826-8.
- (15) Boudreaux, E. A., Mulay, L. N., Eds. *Theory and Applications of Molecular Paramagnetism*; John Wiley & Sons: New York, 1976.
- (16) McEwen, K. A. In *Magnetic and transport properties of the rare earths*; Gschneidner, K. A., Eyring, L. R., Eds.; *Handbook on the Physics and Chemistry of Rare Earths*, Vol.1; North-Holland: Amsterdam, New York, Oxford, 1978; p 427.
- (17) Ruderman, M. A.; Kittel, C. *Phys. Re*V*.* **¹⁹⁵⁴**, *⁹⁶*, 99.
- (18) Kasuya, T. *Prog. Theor. Phys. (Kyoto)* **1956**, *16*, 45.
- (19) Yosida, K. *Phys. Re*V*.* **¹⁹⁵⁷**, *¹⁰⁶*, 893.

⁽¹²⁾ Hoffmann, R. *J. Chem. Phys.* **¹⁹⁶³**, *³⁹*, 1397-412.

⁽¹³⁾ Landrum, G. A. *YAeHMOP: Yet Another Extended Hückel Molecular Orbital Package.* YAeHMOP is available on the web: http:// overlap.chem.cornell.edu:8080/yaehmop.html.