$[{ReH_2(PMePh_2)_2}_2(\mu-H)_3]^-$: The First Member of a New Class of Anionic Polyhydride Dimers $[Re_2H_7L_4]^-$

Justin G. Hinman, Kamaluddin Abdur-Rashid, Alan J. Lough, and Robert H. Morris*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada

Received January 10, 2001

A variety of monomeric, anionic rhenium hydride salts are known, and they have been conveniently synthesized by the deprotonation of neutral polyhydride complexes by use of a strong base, such as KH.¹⁻⁴ The anionic complexes are of interest as they have been shown to display a wide range of basicities⁴ and, in the presence of a hydrogen bond donor source, they have also been shown to form extended structures held together by protonic-hydridic bonds5,6 (also referred to as dihydrogen bonds⁷). To date, the only examples of anionic dirhenium polyhydride complexes (greater than two hydrides⁸) reported are $[(H)_6 \text{Re}(\mu-H)_3 \text{Re}(CH_3 C(CH_2 P(C_6 H_5)_2)_3)]^{-9,10}$ and $[(CO)_3 \text{Re}(\mu-H_5)_2 P(C_6 H_5)_2)_3]^{-9,10}$ H)₃Re(CO)₃]^{-.11} The former unsymmetrical dimer was prepared by the reaction of ReH9²⁻ with triphos and was shown to contain three bridging hydrides. A few heteronuclear dimers are also known: $[(H)_3(PPh_3)_2Re(\mu-H)_3M(CO)_3)]^-$, M = Cr, Mo, W^{12,13} and $[(H)_3(PPh_3)_2Re(\mu-H)_3U(C_5Me_5)_2Cl)]^{-14}$ Here we report the synthesis and characterization of [K(Q)][{Re₂H₂(PMePh₂)₂}₂(µ- H_{3} (Q = 18-crown-6 or 1,10-diaza-18-crown-6), the first members of a novel series of anionic dirhenium polyhydride salts of the form $[{Re_2H_2(L)_2}_2(\mu-H)_3]^{-15}$ These have been prepared by a one step deprotonation reaction of the neutral conjugate acid ${\rm ReH}_{2}(L)_{2}$ (μ -H)₄, using KH in the presence of the appropriate crown ether (Scheme 1).

The neutral rhenium polyhydride dimeric precursors (1) are well known and can be conveniently prepared by elimination of H_2 from the monomeric heptahydride complexes, $ReH_7(L)_2$ (L = PPh₃, PMePh₂, PEtPh₂).^{16,17} An alternative preparation involves hydride addition to $\text{Re}_2\text{Cl}_4(L)_4$ (L = PMe₃, PEt₃, PⁿPr₃, PMePh₂,

- (3) Alvarez, D.; Lundquist, E. G.; Ziller, J. W.; Evans, W. J.; Caulton, K. G. J. Am. Chem. Soc. 1989, 111, 8392.
- (4) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.; Morris, R. H. J. Am. Chem. Soc. 2000, 122, 9155.
- (5) Abdur-Rashid, K.; Lough, A. J.; Morris, R. H. Can. J. Chem. 2001, in press.
- (6) Abdur-Rashid, K.; Gusev, D. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 1998, 120, 11826.
- (7) Crabtree, R. H.; Siegbahn, P. E. M.; Eisenstein, O.; Rheingold, A. L. Acc. Chem. Res. 1996, 29, 348.
- (8) Hlatky, G. G.; Crabtree, R. H. Coord. Chem. Rev. 1985, 65, 1.
- (9) Ginsberg, A. P.; Abrahams, S. C.; Marsh, P.; Ataka, K.; Sprinkle, C. R. J. Chem. Soc., Chem. Commun. 1984, 1321.
- (10) Abrahams, S. C.; Ginsberg, A. P.; Koetzle, T. F.; Marsh, P.; Sprinkle, C. R. Inorg. Chem. 1986, 25, 2500.
- (11) Ginsberg, A. P.; Hawkes, M. J. J. Am. Chem. Soc. 1968, 90, 5930.
- (12) Freeman, J. W.; Arif, A. M.; Ernst, R. D. Inorg. Chim. Acta 1995, 240,
- (13) Drabnis, M. H.; Bau, R.; Mason, S. A.; Freeman, J. W.; Ernst, R. D. Eur. J. Inorg. Chem. 1998, 851.
- (14) Cendrowski-Guillaume, S. M.; Ephritikhine, M. J. Chem. Soc., Dalton Trans. 1996, 1487.
- (15) Hinman, J. G.; Roesche, A.; Morris, R. H., manuscript in preparation.
- (16) Chatt, J.; Coffey, R. S. J. Chem. Soc. A 1969, 1963.
 (17) Bau, R.; Carroll, W. E.; Teller, R. G.; Koetzle, T. F. J. Am. Chem. Soc. 1977, 99, 3872.

Scheme 1

PEtPh₂, and PMe₂Ph) complexes.^{18,19} In this study, {ReH₂(PMe- $Ph_{2}_{2}_{2}(\mu-H)_{4}$ is conveniently prepared by a two step process.²⁰ The first step is the addition of hydride to $\text{ReCl}_4(\text{PMePh}_2)_2$,²¹ by use of LiAlH₄, to form ReH₇(PMePh₂)₂. The second step is similar to the one reported by Chatt and Coffey,16 and it involves heating ReH₇(PMePh₂)₂ to 68 °C under Ar in an EtOH/THF (3:1) solution to convert it to the ${\text{ReH}_2(\text{PMePh}_2)_2}_2(\mu-\text{H})_4$ complex.

The neutral dimer reacts with 1 equiv of KH in the presence of a crown-ether in THF to yield [K(Q)][{ReH₂(PMePh₂)₂}₂(µ-H)₃] (2) as a red, air-sensitive, crystalline salt.²² The ¹H NMR spectrum of the salt at room temperature shows a characteristically broad singlet at -8.42 ppm due to a rapid exchange of terminal and bridging hydrides. A singlet in the ${}^{31}P{}^{1}H$ NMR spectrum at 19.03 ppm is consistent with four equivalent phosphines. The variable temperature ¹H NMR spectra in the hydride region of $[K(1,10-diaza-18-crown-6)][{ReH₂(PMePh₂}₂(\mu-H)₃] in THF-d₈$ were recorded. At -20 °C the peak decoalesces, and at -64 °C two hydride resonances are detected in a 3:4 intensity ratio, indicative of four terminal hydrides ($\delta = -9.42$, t, J = 7.5 Hz, 4H) and three bridging hydrides ($\delta = -7.46$, br, 3H). The solidstate infrared spectrum shows two terminal ReH vibrational modes, at 1935 and 1892 cm⁻¹.

Complex 1 in THF at 20 °C was shown to be in equilibrium with the acid OP(OEt)₂NHPh (4), with $pK_{\alpha}^{THF} = 32 \pm 4^4$ (Scheme 2) and with an equilibrium constant of $K_{eq} = 0.079$. The p K_{q}^{THF}

- (20) Diethyl ether (15 mL) was added to a mixture of ReCl₄(PMePh₂)₂ (0.950 g, 1.30 mmol) and LiAlH₄ (0.30 g, 7.9 mmol) under Ar and the reaction mixture was stirred for 3 h. It was then was filtered, and ethanol (15 mL) was added dropwise to the filtrate over a period of 2.5 h. The solvent was then removed under vacuum, and the resulting brown powder was shown by ¹H NMR to be $ReH_7(PMePh_2)_2$. This was dissolved in 20 mL of THF/ethanol (1:3) and refluxed for 4 h under Ar. {ReH2-(PMePh₂)₂}₂(µ-H)₄ precipitated as a bright red solid and was washed with EtOH (3×8 mL). Yield: 0.354 g, 46.0%. ¹H NMR (benzene- d_6): 7.68-7.57 (m, 16 H, C₆H₅), 6.98-6.86 (m, 24 H, C₆H₅), 1.80 (d, 12H, ${}^{2}J(PH) = 8.7 \text{ Hz}, PCH_{3}, -5.85 \text{ (quin, 8H, } {}^{2}J(PH) = 9.0 \text{ Hz}, ReH). {}^{31}P$ NMR(benzene- d_6): 14.97 (s).
- (21) Hahn, F. E.; Imhof, L.; Lügger, T. *Inorg. Chim. Acta* 1997, 261, 109.
 (22) Typical procedure conducted under Ar: THF (5 mL) was added to a mixture of Re2H8(PMePh2)4 (72 mg, 0.061 mmol), 1,10-diaza-18-crown-6 (16 mg, 0.061 mmol), and KH (8 mg, 0.20 mmol), and was stirred for 8 h. Excess KH was filtered from the solution and washed with THF (3 mL). The combined filtrate was evaporated to dryness to yield a dark red crystalline powder which was recrystallized from THF/diethyl ether. Yield: 50 mg (55%). ¹H NMR (THF- d_8): 7.76–7.07 (m, 40 H, C₆H₅), 3.63 (m, 16 H, CH₂), 2.74 (m, 8 H, CH₂), 1.65 (qnt, 2 H, NH), 1.89 (d, $^{2}J(PH) = 7.5$ Hz, PCH₃), -8.42 (br, 7H, ReH). $^{31}P{^{1}H}$ NMR (THFd₈): 19.03 (s). IR (neat):v_{Re-H} 1935 (s), 1892 (s); v_{NH} 3292 (w), 3231

10.1021/ic010041b CCC: \$20.00 © 2001 American Chemical Society Published on Web 04/25/2001

(br) cm^{-1} .

^{*} To whom correspondence should be addressed. E-mail: rmorris@chem.utoronto.ca.

⁽¹⁾ Bruno, J. W.; Huffman, J. C.; Green, M. A.; Caulton, K. G. J. Am. Chem. Soc. 1984, 106, 8310.

⁽²⁾ Baudry, D.; Boydell, P.; Ephritikhine, M.; Felkin, H.; Guilhem, J.; Pascard, C.; Tran Huu Dan, E. J. Chem. Soc., Chem. Commun. 1985, 670.

⁽¹⁸⁾ Fanwick, P. E.; Root, D. R.; Walton, R. A. Inorg. Chem. 1989, 28, 3203.

⁽¹⁹⁾ Brant, P.; Walton, R. A. Inorg. Chem. 1978, 17, 2074.

Figure 1. The structure of $\{ReH_2(PMePh_2)_2\}_2(\mu-H)_4$ in molecule A of two independent molecules. Selected bond lengths (Å) and angles (deg): Re(1A)-Re(1A)#1 2.5338(2), Re(1A)-H(4A) 1.55(4), Re(1A)-H(3A) 1.57(4), Re(1A)-H(2A) 1.68(4), Re(1A)-H(2A)#1 1.93 (4), Re(1A)-H(1A) + 1.48 (4), Re(1A)-H(1A)#1 1.77(4), Re(1A)-P(1A) 2.3351(8), Re(1A)-P(2A) 2.3503(9). H(4A)-Re(1A)-H(3A) 119(2), H(4A)-Re(1A)-H(2A) 147(2), H(4A)-Re(1A)-H(2A) 147(2), H(2A)-Re(1A)-H(1A)#1 86(2), H(3A)-Re(1A)-H(1A)#1 137(2), H(2A)-Re(1A)-H(1A)#1 66(2).

Scheme 2

 $\{ \text{ReH}_{2}(\text{PMePh}_{2})_{2} \}_{2}(\mu-H)_{4} + [\text{K}(2,2,2\text{-crypt})][\text{OP(OEt)}_{2}\text{NPh}]$ $1 \qquad 3$ $[\text{K}(2,2,2\text{-crypt})][\{ \text{ReH}_{2}(\text{PMePh}_{2})_{2} \}_{2}(\mu-H)_{3}] + \text{OP(OEt)}_{2}\text{NHPh}$

(the approximate free-ion pK_a)²³ for {ReH₂(PMePh₂)₂}₂(μ -H)₄ was calculated to be 33 ± 4 by using eq 1 and an estimate of the difference in ion pair dissociation constants $\Delta pK_d = 0.4$.²⁴

$$pK_{\alpha}^{\text{THF}}(\mathbf{1}) = pK_{\alpha}^{\text{THF}}(\mathbf{4}) - pK_{\text{eq}} + \Delta pK_{\text{d}}$$
(1)

The structures of $\{\text{ReH}_2(\text{PMePh}_2)_2\}_2(\mu-\text{H})_4$ and $[\text{K}(1,10\text{-diaza-18-crown-6})][\{\text{ReH}_2(\text{PMePh}_2)_2\}_2(\mu-\text{H})_3]$, as determined by singlecrystal X-ray crystallography, are shown in Figures 1 and 2, respectively.²⁵ Both structures have a center of inversion midway between the two rhenium atoms. The Re–Re distance in $\{\text{ReH}_2(\text{PMePh}_2)_2\}_2(\mu-\text{H})_4$ is 2.5338(2) Å, which is similar to those of the $\{\text{ReH}_2(\text{L})_2\}_2(\mu-\text{H})_4$ complexes that have been studied previ-

Figure 2. The structure of $[K(1,10-diaza-18-crown-6)][{ReH}_2(PMePh_2)_2]_2-(\mu-H)_3]$. Selected bond lengths (Å) and angles (deg): Re(1)-H(1Re) 1.51(3), Re(1)-H(2Re) 1.54(4), Re(1)-P(2) 2.3131(8), Re(1)-P(1) 2.3137(7), Re(1)-Re(1)#1 2.5958(2). H(1Re)-Re(1)-H(2Re) 137(2), H(1Re)-Re(1)-P(2) 72(1), H(2Re)-Re(1)-P(2) 77(1), H(1Re)-Re(1)-P(1) 82(1), H(2Re)-Re(1)-Re(1)#1 109(1), H(2Re)-Re(1)-Re(1)#1 113(1).

ously by single-crystal X-ray and neutron diffraction.²⁶ [K(1,10diaza-18-crown-6)]⁺[{ReH₂(PMePh₂)₂}₂(μ -H)₃]⁻ crystallizes with the phosphines eclipsed across a Re-Re bond distance of 2.5958(2) Å. This Re–Re bond distance is significantly longer than that determined for the neutral conjugate acid, but is similar to the 2.594(1) Å Re-Re bond distance for $(\mu$ -H)₃ bridged complex $[NEt_4][Re_2(\mu-H)_3H_6(CH_3C(CH_2P(C_6H_5)_2)_3)]$.¹⁰ The extended structure of [K(1,10-diaza-18-crown-6)][{ReH₂(PMePh₂)₂}₂- $(\mu$ -H)₃], as determined by X-ray diffraction, consists of chains held together by protonic hydridic bonds, with NH···HRe distances of about 2.2 Å between the terminal ReH and the NH. This distance was calculated by correcting the observed N-H distance, 0.77(4) Å, to the 1.0 Å NH distance that is typically determined by neutron diffraction methods, thus shortening the observed H···H distance of 2.35 Å to approximately 2.2 Å. The terminal hydrides were located and refined isotropically, with Re-H distances of 1.51(3) and 1.54(4) Å, however, the bridging hydrides were not located. Attempts to obtain X-ray quality crystals of the 18-crown-6 analogue without the protonic hydridic interaction have not been successful to date, thus illustrating the utility of using azacrowns and protonic-hydridic bonding in crystallization.

Further work will examine the effect of the ligand L in the dimers $[\text{Re}_2\text{H}_7\text{L}_4]^-$ on the hydrogen bond accepting ability and the basicity of these anions, as measured by the pK_{α}^{THF} value of the conjugate acid $\text{Re}_2\text{H}_8\text{L}_4$. Initial studies show that analogous anionic dimers, with other phosphine ligands such as $P(p-\text{C}_6\text{H}_4\text{F})_3$ and PMe₃, can be prepared.¹⁵

Acknowledgment. We thank NSERC for an operating grant to R.H.M. and the University of Toronto for an open scholarship to J.G.H.

Supporting Information Available: X-ray crystallographic files, in CIF and PDF format, for $C_{52}H_{60}P_4Re_2$ and $C_{64}H_{86}KN_2O_6P_4Re_2$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC010041B

⁽²³⁾ pK_{α}^{THF} is an approximation to the absolute free ion pK_{α}^{THF} value, which is obtained by crudely correcting the observed *K* for 1:1 ion pairing effects by use of the Fuoss equation (see ref 4).

⁽²⁴⁾ The correction for ion pairing ΔpK_d (see ref 4 for an explanation of this correction) was calculated using the ionic radius of [K(2,2,2-crypt)]⁺ (5 Å), of [OP(OEt)₂NPh]⁻ (3 Å), and of [{ReH₂(PMePh₂)₂}₂(μ-H₃)]⁻ (4.3 Å) (determined from the distance between K and the midpoint of the Re–Re bond).

⁽²⁵⁾ Crystals of [K(1,10-diaza-18-crown-6)][{ReH₂(PMePh)₂}₂(μ -H₃)] suitable for X-ray analysis were grown by slow diffusion of hexane into a THF solution of the salt. Crystallographic data for C₆₄H₈₆KN₂O₆P₄Re₂: a =11.0535(2), b = 12.157(1), c = 13.2904(3) Å, $\alpha = 66.782(1)^{\circ}$, $\beta =$ 74.983(1)°, $\gamma = 83.151(1)^{\circ}$, with Z = 1 in space group P1. V =1584.91(5) Å³, T = 150(1) K, $D_{calc} = 1.553$ mg/m³, R1(F) [$I > 2\sigma(I)$] = 0.0260, wR2 [all data] = 0.0624, and data/restraints/parameters = 7250/0/364. Crystals of {ReH₂(PMePh₂)₂}(μ -H)₄ suitable for X-ray analysis were grown by slow diffusion of hexane into a THF solution of the compound. Crystallographic data for C₅₂H₆₀P₄Re₂: a = 9.2683(1), b = 13.3189(2), c = 19.4136(4) Å, $\alpha = 89.148(1)^{\circ}$, $\beta = 84.436(1)^{\circ}$, $\gamma =$ 87.011°, with Z = 2 in space group P1. V = 2381.83(7) Å³, T =150(1) K, $D_{calc} = 1.647$ mg/m³, R1(F) [$I > 2\sigma(I)$] = 0.0301, wR2 [all data] = 0.0720, and data/restraints/parameters = 13768/0/560.

⁽²⁶⁾ Cotton, F. A.; Luck, R. L. Inorg. Chem. 1989, 28, 4522.