$[\{ReH_2(PMePh_2)\}\,2(\mu\text{-}H)_3]$: The First Member of a New Class of Anionic Polyhydride Dimers $[Re_2H_7L_4]$

Justin G. Hinman, Kamaluddin Abdur-Rashid, Alan J. Lough, and Robert H. Morris*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada

*Recei*V*ed January 10, 2001*

A variety of monomeric, anionic rhenium hydride salts are known, and they have been conveniently synthesized by the deprotonation of neutral polyhydride complexes by use of a strong base, such as $KH.1-4$ The anionic complexes are of interest as they have been shown to display a wide range of basicities⁴ and, in the presence of a hydrogen bond donor source, they have also been shown to form extended structures held together by protonic-hydridic bonds^{5,6} (also referred to as dihydrogen bonds⁷). To date, the only examples of anionic dirhenium polyhydride complexes (greater than two hydrides⁸) reported are $[(H)_6Re(\mu-H)_3Re(CH_3C(CH_2P(C_6H_5)_2)_3]^{-9,10}$ and $[(CO)_3Re(\mu-H)_3Fe(CH_3C_4H_3)_2)_3]^{-9,10}$ H ₃Re(CO)₃]⁻¹¹ The former unsymmetrical dimer was prepared by the reaction of $\text{Re}H_9^2$ with triphos and was shown to contain three bridging hydrides. A few heteronuclear dimers are also known: $[(H)_3(PPh_3)_2Re(\mu-H)_3M(CO)_3]^-$, M = Cr, Mo, W^{12,13} and $[(H)_3(PPh_3)_2Re(\mu-H)_3U(C_5Me_5)_2Cl)]^{-14}$ Here we report the synthesis and characterization of $[K(Q)][{Re₂H₂(PMePh₂)₂}₂(μ [H]$ ₃] (Q = 18-crown-6 or 1,10-diaza-18-crown-6), the first members of a novel series of anionic dirhenium polyhydride salts of the form $[\{Re_2H_2(L)_2\}](\mu - H)_3]^{-15}$ These have been prepared by a one step deprotonation reaction of the neutral conjugate acid ${ReH_2(L)_2}_2(\mu$ -H)₄, using KH in the presence of the appropriate crown ether (Scheme 1).

The neutral rhenium polyhydride dimeric precursors (**1**) are well known and can be conveniently prepared by elimination of H_2 from the monomeric heptahydride complexes, $ReH_7(L)_2$ (L $=$ PPh₃, PMePh₂, PEtPh₂).^{16,17} An alternative preparation involves hydride addition to $\text{Re}_2\text{Cl}_4(\text{L})_4$ (L = PMe₃, PE_{t₃, PⁿPr₃, PMePh₂,}

- (2) Baudry, D.; Boydell, P.; Ephritikhine, M.; Felkin, H.; Guilhem, J.; Pascard, C.; Tran Huu Dan, E. *J. Chem. Soc., Chem. Commun.* **1985**, 670.
- (3) Alvarez, D.; Lundquist, E. G.; Ziller, J. W.; Evans, W. J.; Caulton, K. G. *J. Am. Chem. Soc.* **1989**, *111*, 8392.
- (4) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.; Morris, R. H. *J. Am. Chem. Soc.* **2000**, *122*, 9155.
- (5) Abdur-Rashid, K.; Lough, A. J.; Morris, R. H. *Can. J. Chem.* **2001**, in press.
- (6) Abdur-Rashid, K.; Gusev, D. G.; Landau, S. E.; Lough, A. J.; Morris, R. H. *J. Am. Chem. Soc.* **1998**, *120*, 11826.
- (7) Crabtree, R. H.; Siegbahn, P. E. M.; Eisenstein, O.; Rheingold, A. L. *Acc. Chem. Res.* **1996**, *29*, 348.
-
- (8) Hlatky, G. G.; Crabtree, R. H. *Coord. Chem. Re*V*.* **¹⁹⁸⁵**, *⁶⁵*, 1. (9) Ginsberg, A. P.; Abrahams, S. C.; Marsh, P.; Ataka, K.; Sprinkle, C. R. *J. Chem. Soc., Chem. Commun.* **1984**, 1321.
- (10) Abrahams, S. C.; Ginsberg, A. P.; Koetzle, T. F.; Marsh, P.; Sprinkle, C. R. *Inorg. Chem.* **1986**, *25*, 2500.
- (11) Ginsberg, A. P.; Hawkes, M. J. *J. Am. Chem. Soc.* **1968**, *90*, 5930. (12) Freeman, J. W.; Arif, A. M.; Ernst, R. D. *Inorg. Chim. Acta* **1995**, *240*,
- 33.
- (13) Drabnis, M. H.; Bau, R.; Mason, S. A.; Freeman, J. W.; Ernst, R. D. *Eur. J. Inorg. Chem.* **1998**, 851.
- (14) Cendrowski-Guillaume, S. M.; Ephritikhine, M. *J. Chem. Soc., Dalton Trans.* **1996**, 1487.
- (15) Hinman, J. G.; Roesche, A.; Morris, R. H., manuscript in preparation.
- (16) Chatt, J.; Coffey, R. S. *J. Chem. Soc. A* **1969**, 1963.
- (17) Bau, R.; Carroll, W. E.; Teller, R. G.; Koetzle, T. F. *J. Am. Chem. Soc.* **1977**, *99*, 3872.

Scheme 1

PEtPh₂, and PMe₂Ph) complexes.^{18,19} In this study, ${ReH_2(PMe Ph₂)₂$ ₂ $(\mu$ -H₎₄ is conveniently prepared by a two step process.²⁰ The first step is the addition of hydride to $ReCl_4(PMePh_2)_2$,²¹ by use of LiAlH₄, to form $ReH_7(PMePh_2)_2$. The second step is similar to the one reported by Chatt and Coffey,¹⁶ and it involves heating $ReH_7(PMePh_2)_2$ to 68 °C under Ar in an EtOH/THF (3:1) solution to convert it to the ${ReH_2(PMePh_2)_2}_2(\mu-H)_4$ complex.

The neutral dimer reacts with 1 equiv of KH in the presence of a crown-ether in THF to yield $[K(Q)][{ReH_2(PMePh_2)_2}_2(\mu H$ ₃] (2) as a red, air-sensitive, crystalline salt.²² The ¹H NMR spectrum of the salt at room temperature shows a characteristically broad singlet at -8.42 ppm due to a rapid exchange of terminal and bridging hydrides. A singlet in the ${}^{31}P{^1H}$ NMR spectrum at 19.03 ppm is consistent with four equivalent phosphines. The variable temperature 1H NMR spectra in the hydride region of [K(1,10-diaza-18-crown-6)][{ReH2(PMePh2}2(*µ*-H)3] in THF-*d*⁸ were recorded. At -20 °C the peak decoalesces, and at -64 °C two hydride resonances are detected in a 3:4 intensity ratio, indicative of four terminal hydrides (δ = -9.42, t, *J* = 7.5 Hz, 4H) and three bridging hydrides (δ = -7.46, br, 3H). The solidstate infrared spectrum shows two terminal ReH vibrational modes, at 1935 and 1892 cm^{-1} .

Complex **1** in THF at 20 °C was shown to be in equilibrium with the acid OP(OEt)₂NHPh (4), with $pK_{\alpha}^{\text{THE}} = 32 \pm 4^4$ (Scheme
2) and with an equilibrium constant of $K_{\alpha} = 0.079$. The pK_{α}^{THE} 2) and with an equilibrium constant of $K_{eq} = 0.079$. The pK_{α} ^{THF}

- (20) Diethyl ether (15 mL) was added to a mixture of $ReCl_4(PMePh_2)_2$ (0.950 g, 1.30 mmol) and LiAlH₄ (0.30 g, 7.9 mmol) under Ar and the reaction mixture was stirred for 3 h. It was then was filtered, and ethanol (15 mL) was added dropwise to the filtrate over a period of 2.5 h. The solvent was then removed under vacuum, and the resulting brown powder was shown by ¹H NMR to be $ReH_7(PMePh_2)_2$. This was dissolved in 20 mL of THF/ethanol (1:3) and refluxed for 4 h under Ar. {ReH₂- $(PMePh₂)₂$ ₂ $(\mu$ -H)₄ precipitated as a bright red solid and was washed with EtOH (3×8 mL). Yield: 0.354 g, 46.0%. ¹H NMR (benzene- d_6): 7.68–7.57 (m, 16 H, C₆H₅), 6.98–6.86 (m, 24 H, C₆H₅), 1.80 (d, 12H, 7.68–7.57 (m, 16 H, C₆H₅), 6.98–6.86 (m, 24 H, C₆H₅), 1.80 (d, 12H, ²*J*(PH) = 8.7 Hz, PCH₃), -5.85 (quin, 8H, ²*J*(PH) = 9.0 Hz, ReH). ³¹P
NMR(benzene-*d*a): 14 97 (s) $NMR(benzene-d_6): 14.97$ (s).
- (21) Hahn, F. E.; Imhof, L.; Lügger, T. *Inorg. Chim. Acta* 1997, 261, 109. (22) Typical procedure conducted under Ar: THF (5 mL) was added to a mixture of Re₂H₈(PMePh₂)₄ (72 mg, 0.061 mmol), 1,10-diaza-18-crown-6 (16 mg, 0.061 mmol), and KH (8 mg, 0.20 mmol), and was stirred for 8 h. Excess KH was filtered from the solution and washed with THF (3 mL). The combined filtrate was evaporated to dryness to yield a dark red crystalline powder which was recrystallized from THF/diethyl ether. Yield: 50 mg (55%). ¹H NMR (THF- d_8): 7.76–7.07 (m, 40 H, C₆H₅), Yield: 50 mg (55%). ¹H NMR (THF-*d*₈): 7.76–7.07 (m, 40 H, C₆H₅), 3.63 (m, 16 H, CH₂), 2.74 (m, 8 H, CH₂), 1.65 (qnt, 2 H, NH), 1.89 (d, 2 l /PH) = 7.5 Hz, PCH₃), -8.42 (hr, 7H, R_eH₁) 3.19*1*.1H), NMR (T $^{2}J(\text{PH}) = 7.5$ Hz, PCH₃), -8.42 (br, 7H, ReH). ³¹P{¹H} NMR (THF*d*₈): 19.03 (s). IR (neat): $\nu_{\text{Re-H}}$ 1935 (s), 1892 (s); ν_{NH} 3292 (w), 3231 (br) cm⁻¹.

10.1021/ic010041b CCC: \$20.00 © 2001 American Chemical Society Published on Web 04/25/2001

^{*} To whom correspondence should be addressed. E-mail: rmorris@chem.utoronto.ca.

⁽¹⁾ Bruno, J. W.; Huffman, J. C.; Green, M. A.; Caulton, K. G. *J. Am. Chem. Soc.* **1984**, *106*, 8310.

⁽¹⁸⁾ Fanwick, P. E.; Root, D. R.; Walton, R. A. *Inorg. Chem.* **1989**, *28*, 3203.

⁽¹⁹⁾ Brant, P.; Walton, R. A. *Inorg. Chem.* **1978**, *17*, 2074.

Figure 1. The structure of ${ReH_2(PMePh_2)_2}_2(\mu-H)_4$ in molecule A of two independent molecules. Selected bond lengths (Å) and angles (deg): $Re(1A)$ - $Re(1A)$ #1 2.5338(2), $Re(1A)$ - $H(4A)$ 1.55(4), $Re(1A)$ - $H(3A)$ 1.57(4), Re(1A)-H(2A) 1.68(4), Re(1A)-H(2A)#1 1.93 (4), Re(1A)- H(1A) 1.84 (4), Re(1A)-H(1A)#1 1.77(4), Re(1A)-P(1A) 2.3351(8), Re(1A)-P(2A) 2.3503(9). H(4A)-Re(1A)-H(3A) 119(2), H(4A)-Re- $(1A)-H(2A)$ 78(2), $H(3A)-Re(1A)-H(2A)$ 147(2), $H(4A)-Re(1A)-$ H(1A)#1 86(2), H(3A)-Re(1A)-H(1A)#1 137(2), H(2A)-Re(1A)- H(1A)#1 66(2).

Scheme 2

{ReH₂(PMePh₂)₂}₂(μ -H)₄ + [K(2,2,2-crypt)][OP(OEt)₂NPh] $[K(2,2,2-crypt)][{ReH₂(PMePh₂)₂}₂(\mu-H)₃] + OP(OEt)₂NHPh$

(the approximate free-ion pK_a)²³ for ${ReH_2(PMePh_2)_2}$ ₂ ${(\mu$ -H)₄ was calculated to be 33 ± 4 by using eq 1 and an estimate of the difference in ion pair dissociation constants $\Delta pK_d = 0.4^{24}$

$$
pK_{\alpha}^{\text{THF}}(1) = pK_{\alpha}^{\text{THF}}(4) - pK_{\text{eq}} + \Delta pK_{\text{d}} \tag{1}
$$

The structures of ${ReH_2(PMePh_2)_2}_2(\mu-H)_4$ and ${K(1,10\text{-}diaza-1)}$ 18-crown-6)][${ReH_2(PMePh_2)_2}_2(\mu-H)_3$], as determined by singlecrystal X-ray crystallography, are shown in Figures 1 and 2, respectively.25 Both structures have a center of inversion midway between the two rhenium atoms. The $Re-Re$ distance in ${ReH₂}$ $(PMePh₂)₂$ ₂ $(\mu$ -H₎₄ is 2.5338(2) Å, which is similar to those of the ${ReH_2(L)_2}_2(\mu-H)_4$ complexes that have been studied previ-

Figure 2. The structure of $[K(1,10\text{-}diaga-18\text{-}crown-6)][\{ReH_2(PMePh_2)\}$ $(\mu - H)_{3}$]. Selected bond lengths (Å) and angles (deg): Re(1)-H(1Re) 1.51(3), Re(1)-H(2Re) 1.54(4), Re(1)-P(2) 2.3131(8), Re(1)-P(1) 1.51(3), Re(1)-H(2Re) 1.54(4), Re(1)-P(2) 2.3131(8), Re(1)-P(1)
2.3137(7) Re(1)-Re(1)#1.2.5958(2) H(1Re)-Re(1)-H(2Re) 137(2) 2.3137(7), Re(1)-Re(1)#1 2.5958(2). H(1Re)-Re(1)-H(2Re) 137(2),
H(1Re)-Re(1)-P(2) 72(1) H(2Re)-Re(1)-P(2) 77(1) H(1Re)-Re(1)- $H(1Re)-Re(1)-P(2)$ 72(1), $H(2Re)-Re(1)-P(2)$ 77(1), $H(1Re)-Re(1)-$ P(1) 82(1), H(2Re)-Re(1)-Re(1)#1 109(1), H(2Re)-Re(1)-Re(1)#1 113(1).

ously by single-crystal X-ray and neutron diffraction.²⁶ [K(1,10diaza-18-crown-6)]⁺[{ReH₂(PMePh₂)₂}₂(μ -H)₃]⁻ crystallizes with the phosphines eclipsed across a Re-Re bond distance of 2.5958(2) Å. This Re-Re bond distance is significantly longer than that determined for the neutral conjugate acid, but is similar to the 2.594(1) Å Re-Re bond distance for $(\mu$ -H)₃ bridged complex $[NEt_4][Re_2(\mu-H)_3H_6(CH_3C(CH_2P(C_6H_5)_2)_3)]$.¹⁰ The extended structure of $[K(1,10$ -diaza-18-crown-6)][$\{ReH_2(PMePh_2)_2\}_2$ - $(\mu$ -H)₃], as determined by X-ray diffraction, consists of chains held together by protonic hydridic bonds, with NH···HRe distances of about 2.2 Å between the terminal ReH and the NH. This distance was calculated by correcting the observed N-^H distance, $0.77(4)$ Å, to the 1.0 Å NH distance that is typically determined by neutron diffraction methods, thus shortening the observed H \cdots H distance of 2.35 Å to approximately 2.2 Å. The terminal hydrides were located and refined isotropically, with $Re-H$ distances of 1.51(3) and 1.54(4) Å, however, the bridging hydrides were not located. Attempts to obtain X-ray quality crystals of the 18-crown-6 analogue without the protonic hydridic interaction have not been successful to date, thus illustrating the utility of using azacrowns and protonic-hydridic bonding in crystallization.

Further work will examine the effect of the ligand L in the dimers $[Re₂H₇L₄]⁻$ on the hydrogen bond accepting ability and the basicity of these anions, as measured by the pK_{α}^{THF} value of the conjugate acid $Re₂H₈L₄$. Initial studies show that analogous anionic dimers, with other phosphine ligands such as $P(p-C_6H_4F)_3$ and PMe₃, can be prepared.¹⁵

Acknowledgment. We thank NSERC for an operating grant to R.H.M. and the University of Toronto for an open scholarship to J.G.H.

Supporting Information Available: X-ray crystallographic files, in CIF and PDF format, for $C_{52}H_{60}P_4Re_2$ and $C_{64}H_{86}KN_2O_6P_4Re_2$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC010041B

⁽²³⁾ pK_{α}^{THE} is an approximation to the absolute free ion pK_{α}^{THE} value, which is obtained by crudely correcting the observed K for 1:1 ion pairing is obtained by crudely correcting the observed *K* for 1:1 ion pairing effects by use of the Fuoss equation (see ref 4).

⁽²⁴⁾ The correction for ion pairing ΔpK_d (see ref 4 for an explanation of this correction) was calculated using the ionic radius of $[K(2,2,2-\text{crypt})]$ ⁺ (5) Å), of $[OP(OEt)_2NPh]$ ⁻ (3 Å), and of $[\{ReH_2(PMePh_2)_2\}^2(\mu - H_3)]$ ⁻ (4.3) Å) (determined from the distance between K and the midpoint of the Re – Re bond).

Re-Re bond).
(25) Crystals of [K(1,10-diaza-18-crown-6)][{ReH₂(PMePh)₂}₂(μ -H₃)] suitable for X-ray analysis were grown by slow diffusion of hexane into a THF solution of the salt. Crystallographic data for $C_{64}H_{86}KN_2O_6P_4Re_2$: $a = 11.0535(2)$, $b = 12.157(1)$, $c = 13.2904(3)$, \mathring{A} , $\alpha = 66.782(1)$ ^o, $\beta =$ 11.0535(2), $b = 12.157(1)$, $c = 13.2904(3)$ Å, $\alpha = 66.782(1)$ °, $\beta = 74.983(1)$ °, $\gamma = 83.151(1)$ °, with $Z = 1$ in space group Pl V $74.983(1)^\circ$, $\gamma = 83.151(1)^\circ$, with $Z = 1$ in space group P1, $V = 1584.91(5)$ \mathbf{A}^3 , $T = 150(1)$ K, $D_{\text{calc}} = 1.553$ mg/m³, R1(F) $[I > 2\sigma(I)] = 0.0260$ wR2 [all datal = 0.0624 and data/restraints/parameters = $= 0.0260$, wR2 [all data] $= 0.0624$, and data/restraints/parameters $=$ 7250/0/364. Crystals of ${ReH_2(PMePh_2)_2}(\mu-H)_4$ suitable for X-ray analysis were grown by slow diffusion of hexane into a THF solution of the compound. Crystallographic data for $C_{52}H_{60}P_4Re_2$: $a = 9.2683(1)$, $b = 13.3189(2), c = 19.4136(4)$ Å, $\alpha = 89.148(1)^\circ$, $\beta = 84.436(1)^\circ$, γ *b* = 13.3189(2), *c* = 19.4136(4) Å, α = 89.148(1)°, β = 84.436(1)°, γ
= 87.011°, with *Z* = 2 in space group PI. *V* = 2381.83(7) Å³, *T* = 150(1) K, *D*_{rch} = 1.647 mg/m³. R1(F) *II* > 2*σ*(*D*) = 0.0301 $150(1)$ K, $D_{\text{calc}} = 1.647 \text{ mg/m}^3$, R1(F) $[I > 2\sigma(I)] = 0.0301$, wR2 [all data = 0.0720, and data/restraints/parameters = 13768/0/560. data] = 0.0720, and data/restraints/parameters = 13768/0/560. (26) Cotton, F. A.; Luck, R. L. *Inorg. Chem.* **1989**, 28, 4522.