Multinuclear NMR Spectra, 1H-T1 Relaxation, Conformational Behavior, and Intramolecular ^H*^δ*-''''*^δ*+**H Contacts of N**-**Borane Cyclic Adducts in Solution**

Marisol Gu1**izado-Rodrı**´**guez,† Angelina Flores-Parra,† Sonia A. Sa**´**nchez-Ruiz,† Rafael Tapia-Benavides,‡ Rosalinda Contreras,*,† and Vladimir I. Bakhmutov*,†**

Chemistry Department, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, C.P. 07000, México D.F, Mexico, and Centro de Investigaciones Quı´micas, Universidad A. del Estado de Hidalgo. Carretera Pachuca-Tulancingo Km 4.5. U. Universitaria, Pachuca Hidalgo. C.P. 42074, Mexico

*Recei*V*ed August 4, 2000*

Introduction

Short proton-hydride (H*^δ*+...*^δ*-H) contacts are organizing interactions which initiate chemical reactions. For example, dihydrogen bonding in transition metal hydrides causes proton transfer to yield dihydrogen complexes.1 The dihydrogen bonds, $M-H^{\delta-}\cdots^{\delta+}H$ or even $B-H^{\delta-}\cdots^{\delta+}H$,² are experimentally observed by convenient methods in solution and solid state. Intramolecular contacts C-H^{δ+}'''⁻^δH-B and C-H^{δ+}'''⁻^δF-B $(2.2-2.5 \text{ Å})$, established in some cyclic borane adducts in solid state,^{2b,3a} can affect conformational states of such molecules in solution.³ The aim of the present work was to determine these $C-H^{\delta+}\cdots$ ^{- δ}H-B contacts in solutions by the ¹H-T₁ relaxation method.

Experimental Section

Solvents and amines were freshly distilled and dried before use according to convenient procedures. The NMR spectra were obtained with JEOL-400 and Bruker-300 spectrometers. The T_1 measurements

- (1) (a) Richardson, T. B.; de Gala, S.; Crabtree, R. H.; Siegbahn, P. E. M. *J. Am. Chem. Soc*. **1995**, *117*, 12875. (b) Shubina, E. S.; Belkova, N. V.; Krylov, A. N.; Vorontsov, E. V.; Epstein, L. M.; Gusev, D. G.; Niedermann, M.; Berke, H. *J. Am. Chem. Soc.* **1996**, *118*, 1105. (c) Peris, E.; Wessel, J.; Patel, B. P.; Crabtree, R. H. *J. Chem Soc., Chem. Commun.* **1995**, 2175. (d) Ayllón, J. A.; Gervaux, C.; Sabo-Etienne, S.; Chaudret B. *Organometallics* **1997**, *16*, 2000. (e) Shubina, E. S.; Belkova, N. V.; Bakhmutova, E. V.; Vorontsov, E. V.; Bakhmutov, V. I.; Ionidis, A. V.; Bianchini, C.; Marvelli, L.; Peruzzini, M.; Epstein, L. M. *Inorg. Chim. Acta* **1998**, *280*, 302.
- (2) (a) Padilla-Martínez, I. I.; Rosalez-Hoz, M. J.; Contreras, R. 49th Southwest Regional ACS Meeting, October 24-27 1993. (b) Padilla-Martínez, I. I.; Rosalez-Hoz, M. J.; Tlahuext, H.; Camacho-Camacho, C.; Ariza-Castolo, A.; Contreras, R. *Chem. Ber.* **1996**, *129*, 441. (c) Epstein, L. M.; Shubina, E. S.; Bakhmutova, E. V.; Saitkulova, L. N.; Bakhmutov, V. I.; Chistyakov, A. L.; Stankevich, I. V. *Inorg. Chem*. **1998**, *37*, 3013. (d) Klooster, W. T.; Koetzle, T. F.; Siegbahn, P. E. M.; Richardson, T. B.; Crabtree, R. H. *J. Am. Chem. Soc.* **1999**, *121*, 6337.

were carried out by the standard inversion-recovery $(180^{\circ} - \tau - 90^{\circ})$ method with the use of a Bruker-300 NMR spectrometer in deoxygenated solutions. Calculations of the relaxation times were completed using the nonlinear three-parameter fitting routine of the spectrometer.

Adducts **¹**-**⁴** were prepared by the room-temperature addition of 1.2 equiv of BH_3 ⁻S(CH₃)₂ or BF_3 ⁻OEt₃ solutions to 1.0 equiv of a dry amine under anhydrous conditions. An excess of $BH₃$ ^{\cdot}S(CH₃)₂ was evaporated, and the resulting compounds were kept under N_2 . The BH₃and BF₃-adducts were obtained as white solids and viscous yellow liquids, respectively.

Adduct 1. ¹H NMR (CDCl₃): δ 3.20 (m, 2H, H-1, ²J(H1-H2) = 11.5 Hz, ³ J (H1-H3) = 6.0 Hz, ³ J (H1-H4) = 5.0 Hz); 2.65 (m, 2H,
 $J = 3 J/H$ ² – H3) = 6.6 Hz ³ J (H² – H4) = 7.0 Hz); 1.94 (m, 2H, H₂3 H-2, ³*J*(H2-H3) = 6.6 Hz, ³*J*(H2-H4) = 7.0 Hz); 1.94 (m, 2H, H-3, ²*J*(H3-H4) = 12.0 Hz); 1.80 (m, 2H, H-4); 4.6 (s, 1H, N-H); 1.4 (q, 3H, BH₃). ¹³C NMR (CDCl₃): δ 54.2 (t, C-2,5, ¹J(C-H) = 142.2 Hz);
24.6 (t, C-3.4, ¹*J*(C-H) = 133.9 Hz). ¹¹R NMR (CDCl): δ -17.2 (q 24.6 (t, C-3,4, ¹J(C-H) = 133.9 Hz). ¹¹B NMR (CDCl₃): δ -17.2 (q, BH₃, ¹*J*(B-H) = 94.2 Hz). ¹⁵N NMR (C₆D₆): *δ* -331.3 (d, NH, ¹*J*(N-H) = 71.3 Hz) H) = 71.3 Hz).

Adduct 2. ¹H NMR (CDCl₃): δ 3.16 (m, 2H, H-1, ²*J*(H1-H2) = 11.2 Hz), ${}^{3}J(H1-H3)$ and ${}^{3}J(H1-H4) = 5.7$ Hz); 2.97 (m, 2H, H-2, ${}^{3}J(H2-H3)$ and ${}^{3}J(H2-H4) = 6.7$ Hz); 1.87 (m, 4H, H-3,4); 5.1 (s, 1H, N-H). ¹³C NMR (CDCl₃): δ 47.0 (t, C-2,5, ¹*J*(C-H) = 146.1 Hz); 24.3 (t, C-3,4, ¹ $J(C-H) = 134.2$ Hz). ¹¹B{¹H} NMR (CDCl₃): δ -1.0 (q, BF₃, ¹*J*(B-F) = 16.9 Hz).¹⁹F NMR (C₆D₆): δ -156.9. ¹⁵N
NMR (C_dD₆): δ -324.0 (m, NH⁻¹*I*(N-H) = 71.6 Hz⁻¹*I*(N-R) = NMR (C₆D₆): δ -324.0 (m, NH, ¹J(N-H) = 71.6 Hz, ¹J(N-B) = $19.5 \frac{2}{I(N-F)} = 19.5$ Hz) 19.5 , 2 *J*(N-F) = 19.5 Hz).

Adduct 3. ¹H NMR (CDCl₃): δ 3.12 (m, 2H, H-1); 2.71 (m, 2H, H-2); 2.07 (m, 2H, H-3); 1.89 (m, 2H, H-4), 2.60 (s, 3H, Me-N). 13C NMR (CDCl₃): δ 62.8 (t, C-2,5, ¹*J*(C-H) = 145.3 Hz); 23.0 (t, C-3,4, 1*J*(C-H) = 131.5 Hz); 51.2 (a, Me-N, ¹*J*(C-H) = 141.4 Hz)^{[1}]R $J/C-H$) = 131.5 Hz); 51.2 (q, Me-N, $J/C-H$) = 141.4 Hz). ¹¹B NMR (CDCl₃): δ -11.2 (q, BH₃, ¹J(B-H) = 96.8 Hz).

Adduct 4. ¹H NMR (CDCl₃): δ 3.45 (m, 2H, H-2); 2.77 (m, 2H, H-1); 1.97 (m, 4H, H-3, H-4); 2.60 (s, 3H, Me-N). ¹³C NMR (CDCl₃): δ 56.9 (t, C-2,5, ¹J(C-H) = 143.0 Hz); 23.1 (t, C-3,4, $^{1}J(C-H) = 133.4$ Hz); 44.6 (q, Me-N, ¹J(C-H) = 140.7 Hz). ¹¹B- 1H NMR (CDCl₃): δ 0.1 (q, BF₃, ¹J(B-F) = 15.7 Hz).¹⁹F NMR (CDCl₃): δ -162.2.

Adduct 7. ¹H NMR (CDCl₃): δ 3.04 (m, 2H, H-2, ²J(H1-H2) = 5 Hz ³ I(H2-H4) = 11.0 Hz ³ I(H2-H3) = 4.6 Hz): 2.81 (m, 2H 13.5 Hz, ³ J (H2-H4) = 11.0 Hz, ³ J (H2-H3) = 4.6 Hz); 2.81 (m, 2H,
H₋₁ ³ J (H1-H3) and ³ J (H1-H4) = 3.9 Hz); 1.71 (m, 1H, H-5), 1.68 H-1, 3 *J*(H1-H3) and 3 *J*(H1-H4) = 3.9 Hz); 1.71 (m, 1H, H-5), 1.68 $(m, 2H, H-3,4)$, 1.41 $(m, 1H, H-6)$; 2.56 $(m, 3H, CH_3, \frac{3J(H-11B)}{2})$ 1.5 Hz). ¹³C NMR (CDCl₃): δ 52.4 (t, C-2,6, ¹*J*(C-H) = 140.7 Hz);
19.0 (t, C-3.5, ¹*J*(C-H) = 129.1 Hz); 22.3 (t, C-4, ¹*J*(C-H) = 128.4 19.0 (t, C-3,5, ¹*J*(C-H) = 129.1 Hz); 22.3 (t, C-4, ¹*J*(C-H) = 128.4
 Hz): 39.1 (a, Me-N⁻¹*J*(C-H) = 141.4 Hz)⁻¹¹R^J[H] NMR (CDCL): Hz); 39.1 (q, Me-N, $^{1}J(C-H) = 141.4$ Hz). $^{11}B{^1H}$ NMR (CDCl₃): *δ* 0.3 (q, BF₃, ¹*J*(B-F) = 15.8 Hz).¹⁹F NMR (CDCl₃): *δ* -163.4.

Results and Discussion

Borane adducts **¹**-**⁴** were characterized by multinuclear NMR spectra (Experimental Section). Simulation procedures, $\{^1H\}$ -, ${^{11}B}$., and ${^1H}\text{-NOESY experiments}$ provided the assignments in Table 1.

The ¹H NMR spectrum of adduct 1 (CDCl₃, 25 °C) shows four nonequivalent methylene protons, supporting the structure in Chart 1. Protons 1 and 2 exhibit the different ³*J*(HCNH) constants. Finally, the line of 2 is remarkably broadened (∆*ν* $= 2.5 - 3.0$ Hz) due to a three-bond $H^{-1}B$ coupling. This effect, by analogy with the $3J(H-H)$ coupling rule,⁴ results from different dihedral angles $H(1)$ -C-N-B and $H(2)$ -C-N-B (Chart 2). The same spectral features are detected in adduct **2**. In contrast, the "frozen" (ring-chair) conformations of the cycles in **⁵**-**8**³ (Chart 1) show the equally broadened lines of protons 1 and 2 due to their symmetrical location with respect

^{*} To whom correspondence should be addressed. Fax: (internat. + ⁵²- 5/747-7113). E-mail: rcontrer@mail.cinvestav.mx.

[†] Chemistry Department, Centro de Investigación y de Estudios Avanzados del IPN.

[‡] Centro de Investigaciones Quı´micas, Universidad A. del Estado de Hidalgo.

^{(3) (}a) Flores-Parra, A.; Sánchez-Ruiz, S. A.; Guadarrama, C.; Nöth, H.; Contreras, R. *Eur. J. Inorg*. *Chem*. **1999**, 2069. (b) Flores-Parra, A.; Farfán, N.; Hernández-Bautista, A. I.; Fernández-Sánchez, L.; Contreras, R. *Tetrahedron,* **1991**, *47*, 6903. (c) Flores-Parra, A.; Cadenas-Pliego, G.; Martínez-Aguilera, L. M. R.; García-Nares, M. L.; Contreras, R.; *Chem. Ber.* **1993**, *126*, 863.

⁽⁴⁾ Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. *Tetrahedron,* **1980**, *36*, 2783.

Table 1. The ${}^{1}H$ -T₁ NMR Data (300 MHz) for Adducts $1-8$ in CDCl3 at 25 °C*^a*

comp	proton	δ (ppm)	$T_1(s)$
1	1	3.20 (br),	3.1, 7.3, $b0.24c$
		$3J(HNCH) = 6.3 Hz$	
	\overline{c}	2.65 (sbr),	3.4, 7.3, $b0.27c$
		$3J(HNCH) = 8.6 \text{ Hz}$	3.7, 7.9, $b0.31c$
	3	1.94	
	$\overline{4}$	1.80	3.8, 8.7, $b0.36c$
	BH ₃	1.40	1.5, 3.4, $b0.11c$
2	1	3.16 (br),	1.1, 2.0 ^b
		$3J(HNCH) = 5.3 Hz$	
	$\overline{\mathbf{c}}$	2.97 (sbr),	1.2, 2.1 ^b
		$3J(HNCH) = 7.3 Hz$	
	3 $\overline{4}$	1.87	$1.7, 2.0^b$
3	1	1.87	1.7, 2.0 ^b
	2	3.12 2.71	5.6, $10.5, b0.93c$ 6.0, $10.6, b0.94c$
	3	2.07	5.9, $13.0, b0.96c$
	4	1.89	5.9, $11.0, b0.97c$
	CH ₃	2.60(br)	3.6, 6.3, b 0.50 c
	BH ₃	1.50	2.5, $4.0, b0.39c$
4	1	2.85,	4.8
		$(^{3}J(^{1}H-^{11}B) = 0.8$ Hz)	
	2	3.45,	5.1
		$(^{3}J(^{1}H-^{11}B) = 1.5$ Hz)	
	3	2.06	5.9
	$\overline{4}$	2.06	5.9
	CH ₃	2.60,	2.7
		$(^{3}J(^{1}H-^{11}B) = 1.4$ Hz)	
5	1	3.17,	1.6
		$3J(HNCH) = 2.3 Hz$	
	$\mathfrak{2}$	2.45,	1.7
		$3J(HNCH) = 12.4 Hz$	
	3, 4, 5, 6 BH ₃	1.70, 1.50, 1.30	1.8, 1.6, 1.7
		1.40, $(^{3}J(^{1}HBN^{1}H) = 2.3 Hz)^{d}$	0.95
6	1	3.25 (br),	0.94
		$3J(HNCH) = 3.0 Hz$	
	\overline{c}	2.59 (br),	0.93
		$3J(HNCH) = 12.9 Hz$	
	3, 4, 5, 6	1.76, 1.57, 1.33	0.90, 0.75, 0.95
7 8	1	2.82 (br)	2.5
	2	3.05 (br)	1.8
	3, 4, 5, 6	1.75, 1.69, 1.41	2.7, 2.6
	CH ₃	2.56,	2.3
		$(^{3}J(^{1}H-^{11}B) = 1.5$ Hz)	
	1	3.85	3.4
	$\overline{\mathbf{c}}$	4.37	3.0
	3	4.03	3.8
	4	3.40	3.6
	CH ₃	2.87	2.7
	BH ₃	1.65	1.5

a Broadened due to a ¹H⁻¹¹B coupling (br), strongly broadened (sbr), nectively *b* CD₂Cl₂ at 25 °C *s* CD₂Cl₂ at -90 °C *d* Measured by respectively *b* CD₂Cl₂ at 25 °C. *c* CD₂Cl₂ at -90 °C. *d* Measured by ${^{11}B}$ – experiments.

to ${}^{11}BR_3$ (Chart 2). On the basis of the data, one can conclude that adducts **1** and **2** exist in solutions as envelope conformations⁵ with the equatorial $BR₃$ groups (Chart 1). Note that equatorial protons 1 are high-frequency shifted by the equatorial BR3 groups.6 Six-membered cyclic adducts **5** and **6** show the same spectral feature.3 In contrast, adducts **4** and **7**, containing the $N(CH_3)BF_3$ fragments, demonstrate the opposite tendency; **Chart 1**

 4 (X=CH₃, R=F)

5 (X=R=H), 6 (X=H, R=F), 7 (X=CH₃, R=F)

Chart 2

here axial protons 2 are high-frequency shifted (Table 1).

Usually five-membered cycles are flexible in solutions.⁵ However, the ¹H and ¹³C NMR spectra of **1** (CD₂Cl₂) were temperature independent, and the ¹H-NOESY experiments (25° and -90 °C) revealed the cross-peaks 1-2, 3-4, 1-4, 2-3, and 1-NH. The VT ¹H-NOESY spectra of adduct 2 (CD₂Cl₂) were similar to that of **1**.

The "frozen" conformations of **1**, **2**, and **8**³ are convenient to use to determine contacts $H^{\delta + \cdots - \delta}H$ in solution by the ¹H- T_1 relaxation method. The method provides a high accuracy when ¹H-T₁ times reach minimal values ($T_{1\text{min}}$) at low temperatures.8 Unfortunately, such measurements are not possible for the investigated adducts because of their small inertia moments. Actually, protons 1 and 2 in adduct 1 (CD₂Cl₂, -90 °C) show the T_1 values of 0.24 and 0.26 s, respectively, which are

^{(5) (}a) Pfafferott, G.; Oberhammer, H.; Boggs, J. E.; Caminati, W. *J. Am. Chem. Soc.* **1985**, *107*, 2305. (b) Pfafferott, G.; Oberhammer, H.; Boggs, J. E.; *J. Am. Chem. Soc.* **1985**, *107*, 2309.

^{(6) (}a) Contreras, R.; Santiesteban, F.; Paz-Sandoval, M. A.; Wrackmeyer, B. *Tetrahedron* **1984**, *40*, 3829. (b) Paz-Sandoval, M. A.; Santiesteban, F.; Contreras, R. *Magn. Reson. Chem.* **1985**, *23,* 428. (c) Ariza-Castolo, A.; Contreras, R. In *Current Topics in the Chemistry of Boron*; Kabalka, G. W., Ed.; The Royal Society of Chemistry: Cambridge, 1994; p 90.

⁽⁷⁾ Abragam, A. *The Principles of Nuclear Magnetism*; Oxford University Press: New York; 1971.
(a) Bakhmutov, V. I.; Vorontsov, E. V. Inorg. Chem. Rev. 1998, 18,

^{(8) (}a) Bakhmutov, V. I.; Vorontsov, E. V. *Inorg. Chem. Re*V. **¹⁹⁹⁸**, *¹⁸*, 183. (b) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J*. J. Am. Chem. Soc*. **1991**, *113*, 4173.

Figure 1. Inversion-recovery curves (Intensities *I* versus delay times *τ* in sec), obtained for CH₃ (∇) and α -protons (\bullet) in adduct **4** (CDCl₃, 25 °C) and α-protons (o) in adduct **1** (CD₂Cl₂, 25 °C).

significantly greater than those calculated by eq 1, where ν is the 1 H NMR frequency. 8b

$$
r(H - H)^6 = 5.815^6 (T_{1\text{min}} / \nu)
$$
 (1)

The calculation leads to $T_{1min} = 0.10 - 0.15$ s if $r(H...H) = 1.54 -$ 1.64 Å and ν = 300 MHz.

At room temperature, the dipole-dipole relaxation of ${}^{1}H$ is described as:

$$
1/T_1 = (4/3)(\mu_0/4\pi)^2 \hbar^2 \gamma_H^2 \gamma_{NS}^2 S(S+1) \tau_c r (H-S)^{-6} (2)
$$

where μ_0 , S, and γ are known physical constants, and τ_c is a correlation time of molecular reorientations.7 The equation transforms to:

$$
1/T_1(H-H) = 8.55 \times 10^{11} \tau_c r (H-H)^{-6}
$$
 (3a)

$$
1/T_1(H^{-1}B) = 2.38 \times 10^{11} \tau_c r (H - B)^{-6}
$$
 (3b)

for the $H^{-1}H$ and $H^{-1}B$ (in account for the natural abundance of ¹¹B) interactions, respectively. Here T_1 and τ_c are measured in sec, and *r* is expressed in Å. In the solid cyclic $N-BH_3$ adducts, the $C-H^{\delta+}\cdots^{-\delta}H-B$ contacts (between the α -methylene and BH₃ protons) are elongated up to 2.2–2.5 Å.^{2b,3a,c} Taking τ_c as 1×10^{-11} s, calculation by eq 3a leads to ¹H-T₁ \geq 13.3 s when a proton-hydride distance, *r*(H...H), is \geq 2.2 Å. The same τ_c value predicts $T_1 = 1.54$ s for two methylene protons separated by 1.54 Å. Hence proton-hydride interactions can be contributed to a total relaxation rate of the methylene protons by $\leq 10\%$. Note that in a common case, T_1 values are determined with errors \approx 5%.^{8a} Thus, proton-hydride contributions (which can be quantitatively interpreted) are quite small and correspond to $5-10%$ of measured magnitudes.

Eqs. (3) are valid for isotropic molecular motions, while the adducts in Chart 1 are nonspherical. However, inversionrecovery curves collected, for example, in solutions of **1** and **4** (Figure 1), do not reveal the features typical of anisotropic motions.^{9a} Table 1 shows that the $T_1(1)$ and $T_1(2)$ values in 5 and **6** are identical, corresponding well to the locations of protons 1 and 2 with respect to $BR₃$ (Chart 2). In contrast, adducts 1 and 2 show the remarkable difference in T_1 of $H(1)$

and H(2) (CDCl₃, 25 °C). It is interesting that the T_1 values are more elongated for the axial protons which are closer to BH₃ or BF_3 (Chart 2). However, the difference disappears in CD_2 - $Cl₂$ at 25 °C and appears again at low temperatures (Table 1). We assume that such effects (see also **3**) are caused by anisotropic motions and cannot be interpreted in distance terms.

Adducts **1**, **2**, and **8** show that averaged relaxation rates $(R_1(1,2) = 1/T_1(1,2)$, characterizing α -methylene protons, are constantly higher than $R_1(3,4)$. This observation can be used to determine contacts C-H^{δ+}''⁻^{δ+}H-B. According to the X-ray structures of the cyclic NBH3 adducts2b,3a,c,9b (similar to **1**, **2**, and 8), distances H...H in the NCH₂ and SCH₂ groups are measured as $1.55-1.57$ Å. These distances in the BH₃ groups are remarkably longer $(1.84-1.93 \text{ Å})$. Finally, the B-H bond lengths are lying between 1.10 and 1.15 Å. On the basis of the structural data, the $T_1(3,4)$ value in adduct 8 gives, using eq 3a, $\tau_c = 0.44 \, 10^{-11}$ s (CDCl₃, 25 °C). In turn, this value predicts T_1 of the BH₃ protons, relaxing by proton-proton and protonboron dipolar interactions (eq 4), as 1.30 s; this is in accord with 1.54 s in

$$
1/T_1(BH_3) = 2(8.55 \times 10^{11})(0.44 \times 10^{-11})(1.84)^{-6} +
$$

(2.38 × 10¹¹)(0.44 × 10⁻¹¹)(1.10)⁻⁶ (4)

Table 1. One can think that $BH₃$ in $\bf{8}$ is not a fast-spinning group about the N-B bond because the rotation with $\tau \ll \tau_c$ strongly elongates ${}^{1}H$ -T₁ times.¹⁰ The same approach to 1 results in the τ_c value of 0.43 \times 10⁻¹¹ s (CDCl₃, 25 °C), 0.19 \times 10⁻¹¹ s (CD₂Cl₂, 25 °C), and 4.9 \times 10⁻¹¹ s (CD₂Cl₂, -90 °C). Again, the $T_1(BH_3)$ time in 1 is well predicted as 1.4, 3.2, and 0.12 s, respectively.

The equal $T_1(3)$ and $T_1(4)$ times in adduct **8** show that dipoledipole interactions $3-2(2')$ are negligible. Hence, an additional contribution to the total relaxation rate of α -protons, $(R_1(1,2))$ $-R₁(3,4)$, calculated as 0.0412 s⁻¹, can be attributed to dipoledipole interactions with BH₃.¹¹ Then, 0.0412 s⁻¹ and the τ_c value of 0.44 \times 10⁻¹¹ s leads to a distance H^{δ +}····^{- δ}H of 2.12 \pm 0.12 Å^{12a} to account for one $C-H^{\delta+}\cdots^{-\delta}H-B$ contact.

The faster relaxation of $H(1,2)$ with respect to $H(3,4)$ in 1 can be expressed as $(R_1(1,2) - R_1(3,4))/R_1(1,2)$ that is 16% of $R_1(1,2)$. Thus, this contribution is higher than 10%, as discussed above. The same approach to the T_1 times in pirrolidine $(T_1(1,2) = 7.4$ s, $T_1(3,4) = 8.0$ s, CDCl₃, 25 °C) leads to 9%. Hence the N-H proton also accelerates the relaxation of $H(1,2)$.^{12b} Then, a proton-hydride contribution to the total relaxation rate of H(1,2) in **1** is estimated as 7% or as 0.0228 s^{-1} (CDCl₃, 25 °C), 0.0101 s^{-1} (CD₂Cl₂, 25 °C), and 0.291 s^{-1} (CD₂Cl₂, -90 °C). In turn, these values give distances C-H δ ⁺. \cdots ^{- δ}H-B between 2.33 \pm 0.14 and 2.29 \pm 0.14 Å. Thus, 2.30 Å can be taken as a good estimation. Finally, it should be emphasized that the spectral parameters and the relaxation in adducts **1** and **2** are very similar. Therefore, the short C-H^{δ+}'''⁻^δF-B contacts can be also expected in solutions of **2**.

^{(9) (}a) Kratochwill, A.; Vold, R. L.; Vold, R. R. *J. Chem. Phys*. **1979**, *71*, 1319. (b) Brenchley, G.; Fedouloff, M.; Mahon, M. F.; Molloy, K. C.; Wills, M. *Tetrahedron* **1995**, *51*, 10581.

⁽¹⁰⁾ Woessner, D. E. *J. Chem. Phys*. **1962**, *36*, 1

⁽¹¹⁾ This is reasonable because contacts between NCH_3 and CH_2 are not shortened in the X-ray structures of the NCH₃ heterocyclic derivatives.^{3a} In addition, α - and β -protons in *N*-methyl- pirrolidine showed the In addition, α - and β -protons in *N*-methyl- pirrolidine showed the practically equal *T*₁ times (5.5 and 5.3 s, CDCl₃, 25 °C) despite the presence of the CH₃ group.

^{(12) (}a) The error is estimated on the basis of the averaged $T_1(1,2)$ values. (b) The NH contribution is calculated as 0.0107 s^{-1} . The $r(H...H)$ distance in the CH₂ groups, taken as 1.57–1.55 Å (see the text), gives distance in the CH₂ groups, taken as $1.57-1.55$ Å (see the text), gives $\tau_c = 0.22-0.20 \times 10^{-11}$ s. Then the contribution of 0.0107 s⁻¹ corresponds to a very reasonable CH...HN distance of 2.4–2.3 Å. corresponds to a very reasonable CH...HN distance of 2.4-2.3 Å.

Conclusions

Borane adducts $1-4$ and 7 were characterized by ¹H, ¹³C, ¹⁵N, ¹⁹F, and ¹¹B NMR spectra in CDCl₃. The VT ¹H NMR and 1H-NOESY studies revealed "frozen" envelope conformations in solutions of 1 and 2. The BR₃ groups occupy equatorial positions.

The relaxation study allowed the determination the $H^{\delta+}\cdots$ ^{- δ}H contacts in solutions of **1** (2.30 \pm 0.14 Å) and **8** (2.12 \pm 0.12 Å), which are similar to those found in the solid state. These

Acknowledgment. V.I.B. thanks Conacyt-Mexico for a Catedra Patrimonial and M.G.-R. for a scholarship. R.C. and A.F. thank Conacyt for Grant G32710-F.

IC000890J