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The magnetic anisotropy of the cyclic octanuclear Fe(III) cluster [Cs⊂Fe8{N(CH2CH2O)3}8]Cl was investigated.
Based on a spin Hamiltonian formalism and the consequent use of all symmetries, the magnetic anisotropy could
be calculated exactly to first order, i.e., in the strong exchange limit. Experimentally, the magnetic anisotropy
was investigated by magnetic susceptibility and high-field torque magnetometry of single crystals. The field and
angle dependence of the torque at 1.7 K could be accurately reproduced by the calculations with one single
parameter set, providing accurate results for the coupling constant and single-ion zero-field-splitting. These magnetic
parameters are compared to those of several related hexanuclear ferric wheels and are discussed with respect to
magneto-structural correlations for both coupling constant and single-ion anisotropy.

1. Introduction

In recent years, polyoxometalates have become the focus of
intensive research activity since this class of inorganic com-
pounds exhibits an enormous variety of structures as well as
magnetic properties.1-5 Actually, these systems often are
excellent practical realizations of nanomagnets, with properties
changing gradually from those of simple paramagnets to those
of bulk magnets.

A particular aesthetic class is that of the ring-shaped iron-
(III) compounds denoted as molecular ferric wheels. The
decanuclear wheel [Fe10{(OMe)2(O2CCH2Cl)}10] reported by
Lippard et al. may be regarded as the prototype of this class.6

Meanwhile ferric wheels with 6, 10, 12, and even 18 Fe(III)
ions have been reported.6-15 The magnetization of the ferric

wheels exhibits steplike field dependencies at low temperatures
due to the occurrence of field induced ground-state level-
crossingssa spectacular manifestation of quantum size effects
in these nanomagnets.2 They also can be regarded as ideal model
systems for the finite-size version of the linear Heisenberg chain
with periodic boundary conditions. Actually, the emergence of
the ferric wheels has led to a renewed interest of physicists in
the properties of the Heisenberg chain, especially for large spin
values.16-18

So far, only the Fe6 ferric wheels have been accurately
characterized for their isotropic as well as anisotropic magnetic
properties.9,11,19,20For the Fe10 ferric wheel and the larger species
the isotropic coupling constant could be determined, at least
approximately. But the anisotropy remained largely unre-
solved.6,13-15 The reason is quite obvious: The dimensions of
the Hamiltonian matrixes become extremely large, being
60 466 176 for Fe10. Compared to this, the calculation of the
magnetic parameters for the Fe6 wheels is actually a trivial task
(the dimension is here 46 656).

Recently, we reported the new octanuclear ferric wheel
[Cs⊂Fe8{N(CH2CH2O)3}8]Cl (1) (Figure 1).12 The alkali ion
is situated at the center of the octagonal wheel and stabilizes
the complex. In this work we present a detailed study of the
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magnetic properties of the Fe8 cluster1 by means of magnetic
susceptibility and high-field torque magnetometry, with par-
ticular emphasis on the magnetic anisotropy. The Fe8 ferric
wheel is of special interest since it not only closes the gap
between the Fe6 and Fe10 ferric wheels but also is just at the
border of what can be tackled with today’s computer facilities:
we will show that the calculation of the magnetic anisotropy
can be achieved by the consequent use of all symmetries (the
total number of states is 1 679 616). This enabled us to obtain
accurate values for the coupling constant as well as the single-
ion anisotropy. Finally, we compare the findings for the
magnetic parameters to those of related Fe6 ferric wheels and
discuss them in the light of magneto-structural correlations.

2. Experimental Techniques

2.1. Synthesis and Characterization of the Crystal Samples.
The eight membered iron-coronate [Cs⊂Fe8L8]Cl (1) with L )
[N(CH2CH2O)3]3- was prepared as described in ref 12. Dis-
solving1 in ethanol or acetone followed by diffusion of diethyl
ether gave amber colored cuboid crystals of the solvate
[Cs⊂Fe8L8]Cl‚8C2H5OH (2) or [Cs⊂Fe8L8]Cl‚xC3H6O (3),
respectively. For unequivocal structure characterization an X-ray
structure analysis was performed on a single crystal of2. As
will be demonstrated below, the magnetic properties of crystals
of 2 and3 are exactly the same. The presence of the unsolvated

cluster1 in 3 was confirmed by FAB spectroscopy. Compound
2 crystallizes in the space groupP4/n. The cation [Cs⊂Fe8L8]+

exhibits crystallographicC4h molecular symmetry with the eight
iron atoms forming an almost regular octagon.

X-ray structural data for [Cs⊂Fe8L8]Cl‚8C2H5OH was col-
lected on a Nonius Kappa CCD area detector using Mo KR
radiation (λ ) 0.71073 Å). The structure was solved by direct
methods with SHELXS-9721 and refined with full-matrix least-
squares againstF2 with SHELX-97.22 Hydrogen atoms were
fixed in idealized positions using a riding model. An absorption
correction was applied. Details for crystal data, data collection,
and refinement are given in Table 1. Crystallographic data
(excluding structure factors) for2 were deposited with the
Cambridge Crystallographic Data Centre, Deposition Number
CCDC 154233. Copies of the data can be obtained free of charge
on application to CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK (fax, (+44)1223-336-003; e-mail, deposit@ccdc.cam.ac.uk).

2.2. Magnetic Susceptibility Measurements.A single crystal
was selected by light microscopy in the mother liquor. Then,
the crystal was put directly from the solution into Apiezon grease
and mounted on a plastic straw. The weight of the crystal
samples was typically 10µg. The magnetic moment was
measured with a Quantum Design SQUID magnetometer. The
temperature range was 1.8-250 K and the maximum field was
5.5 T. The susceptibility was determined from measurements
at fields of 1 T. The background signal of the straw and the
grease was found to be below the sensitivity of the magnetom-
eter. Each crystal was measured repeatedly at several mutually
perpendicular field directions. The molecularC4 axis was aligned
with an accuracy of(7° parallel and perpendicular to the
magnetic field. The weight of the crystals could be determined
only roughly, the susceptibility data was therefore normalized
as to yield g) 2.

2.3. Torque Measurements.The torque of single-crystal
samples was measured with a homemade silicon-cantilever
torquemeter which provides a resolution of 10-11 Nm (see
chapter 2.4). The torquemeter was either inserted into a 15 T/17
T cryomagnet system with variable temperature insert or into
the M6 magnet at the Grenoble High Magnetic Field Laboratory
(GHMFL) providing up to 23.15 T. In both cases the lowest
temperature was 1.7 K. The orientation of the molecularC4 axis
of the crystals with respect to the magnetic field could be aligned
in situ with an accuracy of(0.3°. As for the susceptibility
measurements, a single crystal was selected by light microscopy
in the mother liquor, put into grease, covered carefully with
grease, mounted on the cantilever, and then cooled as quickly
as possible. After a maximum of 15 min the crystal was at
temperatures below 150 K. The weight of the crystal samples
was typically 10µg. The background signal of the cantilever

(21) Sheldrick, G. M.SHELXS97. Program for the Solution of Crystal
Structures; University of Göttingen: Germany, 1997.

(22) Sheldrick, G. M.SHELXL97. Program for the Refinement of Crystal
Structures; University of Göttingen: Germany, 1997

Table 1. Crystal Data for [Cs⊂Fe8L8]Cl‚8C2H5OH

formula C64H144ClCsFe8N8O32 Mr 2153.03
crystal system tetragonal space group P4/n
crystal size [mm] 0.40× 0.35× 0.30 µ [mm-1] 1.786
a [Å] 18.300(3) T [K] 173(2)
b [Å] 18.300(3) Pcalcd [Mgm-3] 1.612
c [Å] 13.242(3) reflections collected 9108
R [deg] 90 unique reflections 5103
â [deg] 90 refl. observed [I> 2σ(I)] 3779
γ [deg] 90 finalR1 [I > 2σ(I)] 0.0449
V [Å3] 4434.5(12) wR2 (all data) 0.1431
Z 2 largest residuals [eÅ-3] 2.708/-1.022

Figure 1. (a) Structure of the cation [Cs⊂Fe8L8]+ of 2 in the crystal
(PLUTON-representation; view along the crystallographicC4 axis; H
atoms omitted). (b) Detailed view of the coordination sphere of the
iron center at the 12 o’clock position in (a), defining the labeling of
the oxygen atoms.
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and the grease could be neglected. A total of 10 single crystals
of 2 and3 were investigated with the 15 T/17 T setup and one
single crystal of2 with the M6 magnet. The nonlinearityRKτ
(chapter 2.4) was smaller than 10% for all samples.

2.4. Silicon-Cantilever Torquemeter.A schematic drawing
of our cantilever torquemeter is presented in Figure 2. The main
part is a double-cantilever device micromachined in one piece
out of a wafer of crystalline silicon using anisotropic etching
techniques. The use of crystalline silicon guarantees excellent
mechanical as well as magnetic properties. The thickness of
the cantilevers is about 15µm, but that can be controlled in a
wide range during the etching process. A thin gold layer is
evaporated on the bottom sides of the cantilevers. The cantilever
device is glued onto a glass substrate with two appropriate gold
pads evaporated on it. Each cantilever together with its
associated gold pad forms a capacitor.

The functional principle is simple: The torque exerted by
the sample mounted on one of the cantilevers leads to a
deflection of this cantilever which is detected by a change of
capacity. For capacitive readout the two cantilever capacitors
were connected to a ratio transformer forming an ac bridge.
With this arrangement a sensitivity of∆C/C0 ) 10-7 is readily
obtained.23,24Here, C0 denotes the zero-field capacitance (ca. 1
pF) and∆C the change due to a deflection∆d.

The properties of the cantilever torquemeter can be modeled
as follows. The torqueτ leads to a deflection∆d ) (3/2)τ/
(DL) where D is the spring constant and L the length of the
cantilever. Approximating the capacitors as plate capacitors, this
deflection in turn results in a capacitance change of∆C/C0 ≈
∆d/d0(1 + ∆d/d0). d0 is the distance of the capacitor plates.
This equation shows that a cantilever torquemeter is inherently
nonlinear. Finally, the capacitance bridge gives an output voltage
U of U ) U0(∆C/C0), where U0 is a characteristic of the bridge.
Putting all together, one obtains

K is the calibration constant of the torquemeter, andR is a
nonlinearity parameter. In principle, these two parameters can
be calculated from D, L, d0, and C0, i.e., from the geometry of
the torquemeter, but the result might be inaccurate by a factor
of 2. If K and R are required they should be obtained from an
explicit calibration which can be done quite easily in many
ways.24,25

3. Hamiltonian and Energy Spectrum

The appropriate spin Hamiltonian for a spin cluster consisting
of high-spin Fe(III) ions is9,11,19,20

with Si ) 5/2 and the standard terms: a Heisenberg term due to
exchange interactions, a dipole-dipole interaction term, a zero-
field-splitting (ZFS) term due to ligand-field interactions, and
the Zeeman term, respectively. An anisotropic exchange interac-
tion term is generally neglected9,11,19,20 since for the Fe(III)
centers with their weak g-factor anisotropy it is expected to be
small compared to the dipole-dipole interaction.28 For an
octanuclear cluster the dimension of the Hilbert space is as large
as 1 679 616. It is thus clear that, for an accurate estimation of
the magnetic properties, one has to exploit the symmetries of
Hamiltonian eq 2 as far as possible, as well as to resort to
suitable approximations. Hamiltonian eq 2 exhibits spin per-
mutational (SP) symmetry26 and for B ) 0 spin flip (SF)
symmetry. SP symmetry is related to the point group symmetry
of the spin cluster and thus often has been denoted so but is of
different significance.26 These two symmetries alone still do
not allow to solve eq 2. Recognizing that the Heisenberg
exchange term additionally exhibits spin rotational (SR) sym-
metry, a perturbational scheme can be set up as follows.

With Jij ) J + ∆Jij andgi ) g + ∆gi, Hamiltonian eq 2 may
be written as H) H0 + H1 such that H0 is invariant with respect
to all mentioned symmetries, SP, SF, and SR, while H1 exhibits
only SP and SF symmetry:

Here, H0 has been already specified to a regular octanuclear
spin cluster for which the spin permutations form the group
D8. The eigenstates of H0 may be classified according to the
irreducible representations (IRs) ofD8 and the spin and magnetic
quantum numbers S and M, respectively. SF symmetry is of
no further advantage since the SF parity is simply (-1)S.
Exploiting the full symmetry of H0 all eigenvalues and eigen-
vectors can be calculated numerically using irreducible tensor
operator and group theoretical projection techniques27,26

The additional energy shifts due to H1 are now accounted
for by first-order perturbation theory, i.e., J is assumed to be
the dominant term. This approach is well justified for hexa-
nuclear ferric wheels,9,20 but its accuracy will be tested below,
experimentally. The splitting of the coupling constants Jij into
J + ∆Jij is necessary for a consistent perturbational treatment
since the∆Jij values are certainly smaller than J for the almost
regular octagon [Cs⊂Fe8L8]+. SinceD8 contains one-dimen-
sional as well as two-dimensional IRs, many of the eigenstates
of H0 are doubly degenerate, besides the trivial degeneracy in(23) Richardson, R. C.; Smith, E. N.Experimental Techniques in Condensed

Matter Physics at Low Temperatures; Addison-Wesley Publishing
Company, Inc: California, 1988.

(24) Waldmann, O.; Steinmeyer, F.; Mu¨ller, P.; Neumeier, J. J.; Re´gi, F.
X.; Savary, H.; Schneck, J.Phys. ReV. B. 1996, 53, 11825.

(25) Schwarz, M. P.; Grundler, D.; Meinel, I.; Heyn, C.; Heitmann, D.
Appl. Phys. Lett.2000, 76, 3564.

(26) Waldmann, O.Phys. ReV. B 2000, 61, 6138.
(27) Gatteschi, D.; Pardi, L.Gazz. Chim. It.1993, 123, 231.
(28) Bencini, A.; Gatteschi, A.Electron Paramagnetic Resonance of

Exchange Coupled Systems; Springer-Verlag: Berlin, Germany, 1990.

Figure 2. Sketch of the silicon double-cantilever torquemeter described
in chapter 2.3.

U ) Kτ(1 + RKτ) (1)

H ) - ∑
i<j

JijSi‚Sj + ∑
i<j

Si‚Dij
dip‚Sj + ∑

i

Si‚Di
lig‚Si +

µB∑
i

Si‚gi‚B (2)

H0 ) -J(∑
i

7

Si‚Si+1 + S8‚S1) + µBS‚g‚B (3a)

H1 ) - ∑
i<j

∆JijSi‚Sj + ∑
i<j

Si‚Dij
dip‚Sj + ∑

i

Si‚Di
lig‚Si +

µB∑
i

Si‚∆gi‚B (3b)
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M. This has to be accounted for properly by the perturbation
treatment.20 However, in the following, only nondegenerate
states are of importance. For them the results of the first-order
perturbation approach is equivalent to the well-known method
of introducing an effective spin Hamiltonian Hn for each
eigenstate of H0:28

The quantities∆n, Dn, and gn are related to the microscopic
parameters of eq 2 via∆n ) -∑i<jaij

nJij , Dn ) ∑i<jbij
n Dij

dip +
∑ici

n Di
lig, andgn ) ∑idi

ngi. Here it is worth while to note that
the factorsa, b, c, andd reflect the spin permutational properties
of H0 while the microscopic parameters Jij, Dij

dip, Di
lig, andgi

are connected by symmetry operations of the point group of
the complex. This clarifies the different significance of spin
permutational and point group symmetry.

TheD8 symmetry of H0 requires that aij ) ai+1,j+1. Assuming
that only nearest-neighbor interactions are nonzero, this yields
∆n ) -anJ with an ) ∑iai,i+1

n . Therefore, the possible alteration
of the coupling strengths along the ring in [Cs⊂Fe8L8]+

produces no effects in first order in the energy spectrum. This
is equivalent to set all∆Jij ) 0 in H1. The exchange interaction
is then completely characterized by the single constant J.

The D8 symmetry also implies that ci
n ) ci+1

n and thus
∑ici

n Di
lig ) ci

n∑iDi
lig , i.e., the ligand field contribution toDn is

determined by an average over allDi
lig. Since the tensorsDi

lig

are connected by theC4h symmetry of [Cs⊂Fe8L8]+ only
components parallel to the main symmetry axis survive.∑iDi

lig

is thus strictly uniaxial irrespective of the actual single-ion
symmetries. Then it is mathematically equivalent to replace the
ligand-field term in the microscopic Hamiltonian eq 2 by Dlig∑i-
[Si,z

2 - 1/3Si
2], i.e., the ligand-field interaction is completely

characterized by one single constant Dlig. The dipole-dipole
contribution toDn is also uniaxial and can be expressed as bnDdip

where Ddip ) µ0µB
2g2/(4πRi,i+1

3 ). For the ZFS term in eq 4 one
finally obtainsS‚Dn‚S ) Dn[Sz

2 - 1/3S2] with Dn ) bnDdip +
cnDliq.

Since also di
n ) di+1

n and moreover di
n ) 1/8, gn ) g where

g is strictly uniaxial. This shows that the∆gi in H1 produce no
effects in first order and may be set to zero. Additionally, the
Zeeman splitting is completely characterized by two parameters
g| and g⊥. However, since g| - g⊥ is rather small for the
Fe(III) ions, we use an isotropic g-factor as first approximation.

The splitting of the Hilbert space exploiting SR as well as
the full SP, i.e.,D8, symmetry is given in Table 2. The
dimension of the largest matrix is only 2085; this along with
taking further advantage of the fact that the terms of H1 commute
with the spin permutations enabled us to calculate the values
for an, bn, and cn with a standard personal computer. For the
four lowest eigenstates these values are given in Table 3; their
spectrum is drawn schematically in Figure 3. For the calculations
the coupling scheme was chosen asS ) S1357 + S2468, S1357 )
S15 + S37, S2468) S26 + S48, S15 ) S1 + S5, S37 ) S3 + S7, S26

) S2 + S6, S48 ) S4 + S8.
Now the question arises of how large|D/J| can be for the

first order approximation, from which eq 4 resulted, to be still
justified. For the hexanuclear ring it has been explicitly tested
in ref 20 that the first-order results are accurate to within 1.5%
for a ratio of |D/J| as large as 0.05. At first this sounds
astonishing since the splitting of the lowest S) 1 state of D1

) 0.68 |J| is then already comparable to the S) 0 T S ) 1
level distance of∆1 ) 0.69 |J|. However, the perturbation H1,
which exhibits SP symmetry, cannot mix the S) 0 and S) 1

states since they belong to different IRs of the SP group. A
view in Figure 3 reveals that the first state which mixes with
the S) 0 state is the lowest S) 2 level being∆2 apart. The
conclusion is that for the lowest levels (which are detected in
most experiments) the effective spin Hamiltonian eq 4 and in
particular the values presented in Table 3 are valid for a rather
large ratio of|D/J|.
4. Torque Magnetometry

For an anisotropic magnetic system the free energy is a
function of the components of the magnetic field and temper-
ature, F≡ F(T, Bx, By, Bz). x, y, and z denote the magnetic
principal axis frame. The magnetic moment vector is defined

Table 2. Classification Scheme for a High-spin Fe(III) Octanuclear
Ring Cluster in the D8 Group

S A1 A2 B1 B2 E1 E2 E3 total

0 213 140 140 213 350 315 315 2666
1 442 503 512 433 945 980 980 7700
2 792 713 722 783 1505 1470 1470 11900
3 898 944 961 882 1845 1875 1875 14875
4 1075 996 1012 1058 2068 2038 2038 16429
5 1014 1045 1066 993 2059 2085 2085 16576
6 1013 940 961 992 1953 1927 1927 15520
7 835 854 875 814 1691 1710 1710 13600
8 736 675 696 715 1409 1390 1390 11200
9 534 544 562 516 1078 1092 1092 8680

10 422 376 394 404 798 784 784 6328
11 266 270 284 253 538 546 546 4333
12 192 161 174 178 351 343 343 2779
13 102 103 112 93 205 210 210 1660
14 68 49 58 59 117 112 112 916
15 28 28 33 23 57 59 59 462
16 19 9 14 14 27 25 25 210
17 5 5 7 3 10 11 11 84
18 4 0 2 2 4 3 3 28
19 0 0 1 0 1 1 1 7
20 1 0 0 0 0 0 0 1

Table 3. Values for the Quantities an, bn, and cn Discussed in the
Text for the Lowest Spin Levels of Antiferromagnetic High-spin
Fe(III) Hexanuclear and Octanuclear Ringsa

hexanuclear ring octanuclear ring

an bn cn an bn cn

S ) 1 0.6917 20.498 -13.597 0.5366 25.033 -16.348
S ) 2 2.074 5.057 -3.092 1.608 6.118 -3.808
S ) 3 4.147 2.484 -1.340 3.213 2.964 -1.716

a The values for S) 0 are identically zero.

Figure 3. Schematic representation of the energy spectrum of the four
lowest eigenstates of Hamiltonian eq 4. At the left, the classification
of each spin level according to the IRs of D8 and the spin quantum
number S is given. Bc1 marks the first level crossing.

Hn ) ∆n 1 + S‚Dn‚S + µBS‚gn‚B (4)

Molecular Ferric Wheels Inorganic Chemistry, Vol. 40, No. 13, 20012989



by m ) -∇BF, the torque vector byτ ) m × B.29 However,
most magnetometers measure the projection of the magnetic
moment in direction of the applied magnetic field, i.e., the
measurement gives the value mˆ ) m‚B/B or m̂ ) -∂F(B)/∂B,
respectively. Analogously, a torque magnetometer measures the
component of the torque with respect to a rotary axisr . The
measured value is thenτ̂ ) τ‚r or τ̂ ) ∂F(æ)/∂æ, respectively.
æ is the angle of a rotation aroundr . This shows that mˆ is related
to the dependence of F on the magnitude ofB, while τ̂ reflects
the dependence of F on the orientation ofB. Interestingly,τ̂
can be expressed asτ̂ ) m‚(B × r ). This provides an alternative
viewpoint: magnetization experiments measure the component
of m in direction of B, torque experiments measure the
component ofm in direction ofB × r , i.e., perpendicular toB.

Since both magnetization and torque derive from the same
total differential F, both mˆ andτ̂ provide the same information.
But the torque technique has some experimental advantages and
it is a purpose of this work to illustrate them. One point is that
the torque technique allows for a rather direct access to the
magnetic anisotropy since its value is closely related to
anisotropy. Nevertheless it still provides the same information
about the coupling constants as magnetization does. A further
great advantage is that it easily allows for an in situ orientation
of the magnetic field. Additionally, torquemeters are easily
operated at high fields and low temperatures. (They also provide
very high sensitivity, but this is not a specific advantage since
nowadays magnetometers with comparable sensitivity are avail-
able.30)

For ferric wheels it is well-known that the magnetization as
well as the torque exhibit steplike field dependencies at low
temperatures due to the occurrence of level-crossings:2,19,20

Increasing the field, the ground state abruptly changes at a field
Bc1 from the zero-field S) 0 ground state to the first excited
S ) 1 state. At a field Bc2 ≈ 2 Bc1 it changes to the second
excited S) 2 state and so on (see also Figure 3). Thus it is
possible to perform what may be called thermodynamic
spectroscopy, i.e., the determination of the energies and splitting
of individual spin levels with a thermodynamic technique.31

With respect to eq 4 there are two sources of information to
determine∆n and Dn, namely the field positions of the steps or
level-crossings,19,32 respectively, and the magnitude of the
torque.20 The first approach requires the measurement of the
step positions Bcn (n ) 1,2,...) as function of the orientation of
the magnetic field. This can be done by magnetization measure-
ments, but torque is here greatly in favor because of its in situ
orientation feature. On the basis of eq 4 the fields Bcn can be
calculated exactly for the first step,32

or in the high-field limit for all steps,19

Here,Θ is the angle between magnetic field and magneticz-axis.
In these equations it has been assumed that the g-factor is
isotropic, i.e., g| ) g⊥ ≡ g.

It is important to note that, due to the high-field approxima-
tion, the range of validity of eq 5b is limited to values of|D/J|
smaller than about 0.003, which is much smaller than what is
acceptable for eq 4. However, it is clear that for higher level-
crossings, i.e., higher fields, eq 5b becomes increasingly valid.

A further point which requires consideration is how to
determine the field positions of the level-crossings Bcn experi-
mentally. The most sensible features of the data are the
deflection points of the measured torque steps, denoted here as
Bcn

/ . It is natural to identify these deflection points with Bcn.
However, this is only correct for very low temperatures as is
shown in Figure 4. Here we have calculated Bc1

/ (Θ) numeri-
cally for J) -24.2 K, D) -0.55 K (( ∆1 ) 13 K, D1 ) 9 K)
taking into account the four lowest spin levels and the values
in Table 3. Figure 4 demonstrates that already for temperatures
T ≈ 0.1 ∆1 the deflection point Bc1

/ considerably differs from
Bc1. Since each torque step exhibits a different step height, one
confirms easily that with increasing temperature the thermally
broadened torque steps become less and less symmetrical; this
leads to the above effect. It should be noted that a temperature
of T ≈ 0.1 ∆1 is already small enough for the torque steps to
be well resolved (see Figure 6). If one would analyze the T)
1.7 K curve in Figure 4 using eq 5a, one would obtain∆1 ) 13
K and D1 ) 7.5 K, i.e., D1 would be wrong by 17%.

According to the above, eq 5 should be applied with care,
but trouble can be avoided by calculating Bcn

/ (Θ) numerically
what is easily done. In any case, the approach to measure
Bcn

/ (Θ) [or Bcn(Θ)] is an excellent tool to determine the∆n and
Dnsas long as one relies on the validity of the spin Hamiltonian
eq 4. There is little if any chance to check whether eq 4 is really
valid or whether it should be better supplemented by further
terms, like g-factor anisotropy, fourth order terms, etc. Bcn

/ (Θ)
does not contain enough information to do that unambiguously.

As an alternative approach, the Dn can be determined from
the magnitude of the torque since it is directly related to the
magnetic anisotropy:20

Here, the magnetic field is applied in thexz-plane and the torque
(29) Jackson, J. D.Classical Electrodynamics; John Wiley & Sons: New

York, 1975.
(30) Wernsdorfer, W.; Bonet Orozco, E.; Hasselbacj, K.; Benoit, A.;

Barbara, B.; Demoncy, N.; Loiseau, A.; Pascard, H.; Mailly, D.Phys.
ReV. Lett. 1997, 78, 1791.

(31) Waldmann, O.; Koch, R.; Schromm, S.; Mu¨ller, P.; Zhao, L.;
Thompson, L. K.Chem. Phys. Lett.2000, 73, 332.

(32) Cornia, A.; Jansen, A. G. M.; Affronte, M.Phys. ReV. B 1999, 60,
12177.

BcI(Θ) )
∆1 + 1/3D1

gµB ( ∆1 - 2/3D1

∆1 + 1/3D1(1 - 3 cos2 Θ))1/2

(5a)

Bcn(Θ) )

∆n + (cos2 Θ - 1/3)[DnS(S- 1/2) - Dn-1(S - 1)(S- 3/2)]

gµB

(5b)

Figure 4. Calculated angle dependence of the deflection point of the
first torque step due to the S) 0 f S ) 1 level crossing for various
temperatures.

τ̂ ) mzBx - mxBz (6)
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is measured with respect to they-axis. The ∆n are still
determined by the step positions.

Reversely, the accuracy of the values for Dn is directly
determined by the accuracy of the calibration of the torque signal

and, if one uses a cantilever torquemeter, might be further
corrupted by a too large nonlinearity. Nonlinearity, however,
can be avoided in most cases by selecting crystals of proper
size. The calibration consists of two factors, the calibration
constant of the torquemeter K and the number N of molecules
of the individual crystal. With some care, K can be determined
within 1-2%. Thus, the most crucial point is the determination
of N. If the crystal is stable in air, this may be done by
weighting.31 If the crystal should be covered by, e.g., grease in
order to prevent decomposition, one can measure the suscep-
tibility and scale it to the data obtained for a polycrystalline
sample.20 However, to be fair, it is difficult to arrive at an
(overall) accuracy better than 5%. Also, it may happen that there
is no way at all to determine Nsas in the present case of
[Cs⊂Fe8L8]+, see the next section.

In this work we consider angle/field dependence and mag-
nitude of the torque simultaneously. We will then show that
the data contains enough information to determine∆n, Dn, N,
nonlinearity, etc., as well as to check the completeness of the
theoretical model without the need for a calibration.

5. Magnetic Susceptibility Measurements

The magnetic susceptibility of single crystals of2 and3 is
shown in Figure 5. Figure 5a and 5b present data for the first
four successive temperature sweeps after having extracted
samples of3 and2, respectively, from the mother liquor. Data
were collected for decreasing temperature. Obviously, the
magnetic properties for both materials changed during measure-
ment. In particular, the temperature of the maximum ofø
increased starting from about 90 K (insets of Figure 5a and
5b). However, after a certain time, the samples relaxed into a
final state, and reproducible measurements could be performed.
This is demonstrated in Figure 5c. Here a crystal of2 was
measured for three orientations of the magnetic field. For relaxed
samples the maximum ofø occurs at about 130 K. The
temperature dependencies ofø in Figure 5c exhibit the behavior
expected for an octanuclear ring with antiferromagnetic coupling
and a hard axis anisotropy. Since the maximum temperature is
directly proportional to the coupling strength, Figure 5 indicates
an increase of the coupling constant by at least 40%. In the
relaxed state, J≈ -60 K.

For the hexanuclear rings [Li⊂Fe6L6]+ and [Na⊂Fe6L6]+ it
has been found that the coupling constant of powder samples
is about 10% larger than that of crystal samples.20 This has been
attributed to structural changes due to a loss of solvent molecules
in the powder samples. Obviously, in the octanuclear ring
[Cs⊂Fe8L8]+ structural changes are much more rapid and
pronounced. However, it is unlikely that a loss of solvent
molecules is responsible for them. First, in the case of
[Li ⊂Fe6L6]+ and [Na⊂Fe6L6]+ a loss of solvent molecules leads
to a decomposition of the crystals. And second, the grease
covering the crystals usually operates as a protective shield
effectively preventing losses of solvent molecules. The actual
mechanism is quite unclear so far and will not be discussed
further.

These results show that the determination of the magnetic
properties on samples of2 (and 3) with structures which
correspond exactly to that determined by X-ray crystallography
represents a problem for many experimental techniques. The
technique must allow to determine the isotropic (∆n) and
anisotropic parameters (Dn) of single crystals without ever
exposing the crystals to temperatures above, e.g., 100 K. This
excludes most techniques such as magnetic susceptibility
measurements (clear from Figure 5), high-resolution magnetiza-

Figure 5. (a) and (b) show the temperature dependence of the magnetic
susceptibility of3 and 2, respectively, for the first four successive
temperature sweeps. The insets provide a detailed view on the
temperature range 50-150 K. (c) Temperature dependence of the
magnetic susceptibility for a “relaxed” crystal sample of2 for three
mutually perpendicular field directions.

Figure 6. Typical field dependence of the torque for a crystal sample
of 2. The data shown here was measured in the M6 magnet at the
GHFML.
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tion measurements (no in situ orientation of the crystal), specific
heat techniques (too low sensitivity), and inelastic neutron
scattering (huge amounts of materialw powder samples).
Furthermore, X-band EPR-spectroscopy on single crystals of3
gave no signal. In view of the expected broad lines the crystals
were probably too small, but high-frequency EPR might be
successful.

However, torque magnetometry allows for the determination
of the isotropic and anisotropic parameters from measurements
at low temperature without the need to warm the crystal once
installed. Thus it meets all requirements to determine the
“intrinsic” magnetic parameters of2 and3 without running into
the “relaxation” problem, as will be demonstrated in the next
section.

6. Torque Measurements: Results and Analysis

Figure 6 presents the typical result of a torque measurement.
The positive value of the torque at an angle ofΘ ) 127°
demonstrates a hard axis anisotropy of [Cs⊂Fe8L8]+. This
already fixes the signs of the values Dn to be positive. For fields
up to 23.15 T, two torque steps due to the S) 0 f S ) 1 and
S ) 1 f S ) 2 level crossings can be clearly seen, the onset
of a third torque step due to the S) 2 f S ) 3 level crossing
is in the offing.

We determined the deflection points Bc1
/ of the first torque

step by numerical differentiation of the data. The resulting angle
dependencies are shown in Figure 7 for several samples. Two
conclusions can be drawn. First, the magnetic properties of
[Cs⊂Fe8L8]+ obviously are not influenced by the type of solvent
molecules in the crystal, i.e., they are equal for2 and3. Second,
measurements for different samples led to equal results. This
demonstrates that we indeed measured the intrinsic magnetic
properties of [Cs⊂Fe8L8]+ in its X-ray structure, unaffected by
the “relaxation” effect described in chapter 5 which prevented
reliable magnetization measurements. In the following we no
longer discriminate between different samples, i.e., all conclu-
sions should be understood to be valid for all samples
investigated.

The values of∆1 and D1 were determined by fitting the
experimental deflection points Bc1

/ to a numerical calculation
as described in chapter 4 (Figure 7). The result for∆1 and D1

is given in eq 7. The agreement of theory and experiment is
excellent. A similar procedure was applied for the second torque
step yielding the∆2 and D2 given in eq 7. Although the data
for the second torque step scatters considerably more, the
agreement between theory and experiment is still good.

To gain more insight, we took into account the additional
information contained in the magnitude of the torque signal by
fitting the field-sweep data at 1.7 K for about 20 angles
simultaneously with one spin Hamiltonian. Actually, for fitting,
the derivative dτ/dB has been used. The data set for one crystal
typically consists of a total of 2500 data points. Figure 8 presents
the data set for the crystal of2 measured in the M6 magnet at
GHFML. For clarity, not all of the 24 angles are shown.

We considered the following parameters which can be divided
into three groups. The first group includes the number of
molecules N which could not be determined independently due
to the “relaxation” effect (chapter 5), as well as the nonlinearity
parameterR. The second group consists of the parameters of
the effective spin Hamiltonian eq 4, namely,∆1, ...,∆3 and D1,
..., D3. The last group embraces parameters with a comparatively
weak effect. This includes a g-factor with g* 2 and a g-factor
anisotropy∆g ) g| - g⊥. Furthermore, in second order the
Hamiltonian eq 4 has to be extended by a forth order term,
B0

4 O0
4(S), and a TIP term,-1/2B‚ø0‚B.33,31 The latter is pa-

rametrized by∆ø0 ) ø0,| - ø0,⊥.
We tried to get an impression about the importance of a

particular parameter by looking at how its value depended on
which parameters were included in the fit. For example, if the
best fit value for∆g widely scatters depending on whether B0

4,
∆ø0, etc. are set as free parameters or not, we would regard∆g
as being not significant. If the value of a particular parameter

(33) Abragam, A.; Bleaney, B.Electron Paramagnetic Resonance of
Transition Ions; Clarendon Press: Oxford, U. K., 1970.

Figure 7. Angle dependence of the deflection points of the first and
second torque step for various crystals of2 and3. The deflection points
were determined by numerical differentiation of field versus torque
measurements for fixed angles at 1.7 K. The solid curves correspond
to the fitting results.

Figure 8. Field dependence of the torque, drawn as-dτ/dB, for various
angles and T) 1.74 K. The derivative with respect to the field was
calculated numerically. The solid curves represent a typical fitting result.

∆1 ) 12.1(1) K, D1 ) 9.2(1) K

∆2 ) 33.8(3) K, D2 ) 2.2(1) K (7)
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stayed within about 5% independent of the choice of the other
parameters, we called it “stable”. For each of the chosen
combination of fitting parameters, we checked for a possible
over-parametrization by repeating the fit for many different
starting values. If over-parametrized, the fitting routine would
converge to distinct sets of best fit parameters. However, in no
case over-parametrization was detected. Finally we compared
the values obtained for different crystals providing a further
test for “stability”.

The number of molecules N was always found to be a stable
parameter. The values had the correct order of magnitude. Also,
for those measurements with an appreciable nonlinearity (i.e.,
whereRKτ > 1%), the parameterR was stable and in good
agreement with that determined independently. This demon-
strates that the data indeed contains enough information to
determine not only the physically interesting parameters but also
N andR.

Concerning the parameters∆1, ..., ∆3 and D1, ..., D3, it is
clear that the 17 T data sets gave stable values for∆1 and D1

(since they exhibitn ) 1 torque steps) and that the 23 T data
set additionally gave stable values for∆2 and D2. Since for these
magnetic fields the respective next higher torque steps are
already in the offing, they had to be accounted for in the fit.
But clearly the data do not allow the determination of both∆m+1

and Dm+1 independently (m) 1 for the 17 T and m) 2 for the
23 T data sets). Therefore, we first set Dm+1 as free parameter
and fixed∆m+1 to am+1/a1 ∆1. The fits resulted in stable but
much too large, i.e., unphysical, values for Dm+1. Choosing∆m+1

as a free parameter with Dm+1 ) cm+1/c1 D1 also resulted in
stable values for∆m+1. Since∆2 obtained in this way for the
17 T curves agreed well with the value from the 23 T fits, we
regard the 23 T value for∆3 as an approximate estimate of∆3.
Taking into account the parameters of the first and second group,
the agreement factor R[(dm/dτ)2] was always less than 2%. In
view of the large data sets, this is a satisfying value.

Concerning the parameters of the third group, their inclusion
led only to a slight improvement: The agreement factor R could
be improved at best by a factor of 2. Furthermore, the values
significantly scattered for the varying fit conditions, i.e., these
parameters were not stable in the above sense. But reducing
the g-factor to about g) 1.95 seemed to give consistently
smaller R values. Concerning the second-order parameters, we
conclude that they are too small to be determined from our
experiments.

We summarize our findings as follows:

The esds given here reflect the statistical error, the dependence
of the values on the combination of fit parameters, as well as
the variation for different crystals. The values are consistent
with those determined from Bcn

/ (θ), eq 7. However, we regard
eq 8 as our final result since our fitting strategy guarantees that
these values are model independent within the given esds (eq 7
was obtained from an analysis where second-order contributions
were neglected from the outset).

7. Discussion

The analysis in chapter 6 gave no evidence for the importance
of second-order contributions to the effective spin Hamiltonian

eq 4. Thus, the first-order calculation of the energy spectrum
should allow for an accurate determination of the magnetic
parameters J and D of the microscopic Hamiltonian eq 2 using
the experimental values for∆n and Dn of the effective
Hamiltonian eq 4.

The contribution of the dipole-dipole interaction to the ZFS
of the S) 1 spin level is calculated as D1

dip ) 1.98 K (Ddip )
0.0791 K). This yields a value of D1lig ) 7.0(4) K, or Dlig )
-0.43(2) K for the microscopic ZFS, respectively. The value
estimated from D2 is Dlig ) -0.45(5) K which is somewhat
larger than the S) 1 estimate but agrees within the error
estimates, i.e., D1 and D2 are consistent within the framework
of a first-order calculation.

In contrast, the values for J estimated from∆1 and∆2 are J
) -22.5(6) K and J) -21.0(4) K, respectively. The discrep-
ancy is significantly larger than experimental errors. However,
the analysis in chapter 6 and the consistency of D1 and D2

implies that the values of Table 3 are correct. One might assume
that the magnetic coupling paths in the [Cs⊂Fe8L8]+ cluster
are better described by two coupling constants J1 and J2. This
is not only suggested by theC4h molecular symmetry but is
also consistent with the above findings: Setting J1 * J2 leads
to a second order correction to the∆n but only to a third order
correction to the Dn and moreover produces no second-order
terms in the effective spin Hamiltonian eq 4. Increasing|J1 -
J2| has different effects than increasing the ratio|Dlig/J|.
However, to explain the observed discrepancy of the J values
one would require a rather large difference of J1 and J2, which
seems unlikely in view of the crystal structure of [Cs⊂Fe8L8]+.
To find a final answer, more accurate measurements of Dn, and/
or measurements of∆n and Dn for n > 2 would be required.
To close we summarize our results as

It is interesting to compare the values of Table 3 for the
hexanuclear and the octanuclear ring. The splitting of the spin
levels ∆n ) an |J| exhibits the behavior which meanwhile is
widely accepted:4 The an follow the Landé-rule an ≈ a1 1/2
n(n+1), whereby a1 ≈ 4/N. N is the nuclearity of the ring. These
findings are based on a simple two-sublattice model.4 Within
the same model it is straightforward to calculate also ap-
proximations for bn and cn.9 For the hexanuclear ring this model
leads to values accurate to within 8%,20 but with increasing N
the accuracy decreases. A further point is of interest. According
to Table 3,∆n increases while Dn decreases with N (with J,
Ddip, and Dlig being constant). Since|D1/∆1| is a measure for
the importance of higher order terms in the effective Hamiltonian
eq 4, we expect the strengths of higher order terms to increase
with the nuclearity of the cluster.

Given the current interest in single molecule magnets
(SMMs), it is of great importance to understand the factors
which control the coupling strength and in particular the ZFS
in order to find strategies to produce SMMs with high blocking
temperatures.34 In practice, it may be a challenging task to
calculate the dipole-dipole contribution to the ZFS since precise
wave functions are required. But in principle it can be done
rigorously. Therefore, in the following we focus on J and Dlig.

Meanwhile, accurate measurements of both the coupling
strength as well as the single-ion ZFS have been reported for
five hexanuclear ferric wheels.9,11,19,20For these hexanuclear
clusters and the octanuclear cluster discussed in this work, the
values of J, Dlig, and some structural parameters are compiled

(34) Gatteschi, D.; Sessoli, R.; Cornia, A.Chem. Commun.2000, 725.

∆1 ) 12.1(3) K, D1 ) 9.0(4) K

∆2 ) 33.7(6) K, D2 ) 2.2(2) K

∆3 ) 70(6) K

g ) 1.95(3) (8)

J ) -22(1) K, Dlig ) -0.44(3) K (9)
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in Table 4. It is clear from the limited amount of experimental
data available so far that it is difficult to establish any correlation
conclusively. But overall trends may be visible.

Before entering a discussion of magneto-structural correla-
tions, it is useful to consider the plot Dlig versus J shown in
Figure 9. The data points scatter widely indicating that the two
sets of structural parameters which determine J and Dlig,
respectively, cannot be identical. This could have been antici-
pated from the outset since J is determined by the coupling path
while Dlig is determined by the coordination sphere. Neverthe-
less, there is a clear trend for Dlig to increase with J, in particular
if one distinguishes between the four clusters based on the
triethanolamine ligand (called L-clusters) and the two clusters
[Li ⊂Fe6L′6]

+ and [Na⊂Fe6L′′6]
+ based onâ-diketonato ligands

(L*-clusters), see Figure 9.
Actually, the difference of these two cluster families is evident

from the different coordination spheres of the iron centers: For
L-clusters it consists of one amino-nitrogen and five alkoholato
oxygens (see Figure 1b), while for L*-clusters it is comprised
of four alkoxy oxygens and two oxygens from theâ-diketonato
ligand. This difference should clearly affect the ZFS, and it is
thus not reasonable to search for a common correlation of Dlig

and structure. We regard the two clusters [Li⊂Fe6L′6]
+ and

[Na⊂Fe6L′′6]
+ as members of one family since the ligands L′

and L′′ are quite similar, at least with respect to the first
coordination sphere. That the differences of L′ and L′′ are of
little importance magnetically is also suggested by the insen-
sitivity of the coupling constant, which is J) -28.6 K for
[Na⊂Fe6L′′6]ClO4,36 J ) -28.8 K for [Na⊂Fe6L′6]ClO4,36 and J
) -29.4 K for [Na⊂Fe6L′6]Cl.8

For weakly coupled di(alkoxo)-bridged Fe(III) complexes Le
Gall et al.37 reported a linear correlation between coupling

constant and average Fe-O-Fe angleR: J[K] ) -2.13 R[°]
+ 194. A view in Table 4 reveals that for the cyclic clusters J
is neither correlated to the average Fe-O-Fe angleR nor to
the larger Fe-O-Fe angleR2 (the di-alkoxo bridge exhibits
two different bridging angles,R2 > R1, see inset of Figure 10a).
But a plot of J versus the smaller Fe-O-Fe angleR1 reveals
a linear correlation (Figure 10a). The best-fit straight line is

As a simple model one may assume that the coupling strength
is the sum of that of each coupling path, J) JR1 + JR2. Then
eq 10 expresses that JR2 either remains constant in the series of

(35) Geisselman, A.; Pilawa, P. Private communication.
(36) Lascialfari, A.; Gatteschi, D.; Borsa, F.; Cornia, A.Phys. ReV. B 1997,

55, 14341.
(37) Le Gall, F.; Biani, F. F.; Caneschi, A.; Cinelli, P.; Cornia, A.; Fabretti,

A. C.; Gatteschi, D.Inorg. Chim. Acta1997, 262, 123.

Table 4. Structural Parameters Discussed in the Text and Experimental Results for the Magnetic Parameters for Several Molecular Ferric
Wheelsa

cluster R1 [deg] R2 [deg] æ [deg] ∆1 [K] J [K] D 1 [K] D 1
dip [K] D 1

lig [K] D lig [K]

[Li ⊂Fe6L6]+b 101.1 105.9 127.4 12.5 -18.1 3.9 1.60 2.3 -0.17
[Na⊂Fe6L6]+b 103.3 106.4 119.0 15.9 -23.0 6.1 1.54 4.6 -0.34
[Fe6L6]c 105.3 106.2 97.8 21.8 -31.5 11.8 1.56 10.2 -0.75
[Cs⊂Fe8L8]+d 102.8

102.3
103.4
104.6

115.4
112.7

12.1 -22.5 9.0 1.98 7.0 -0.43

[Li ⊂Fe6L′6]+e 101.3 103.8 13.8 -20.0 1.67 1.78 -0.11 0.01
[Na⊂Fe6L′′6]+e 104.6 106.5 19.8 -28.6 6.22 1.65 4.57 -0.34

a The hexanuclear ferric wheels all exhibit molecularS6 symmetry. Due to theC4h molecular symmetry of [Cs⊂Fe8L8]+ two values appear for
each structural parameter (the means were used for Figures 9 and 10). L( N(CH2CH2O)3, L′ ( (OMe)2dbm, L′′ ( (OMe)2pmdbm.b Refs 12, 20.
cRefs 11, 35.dRef 12 and this work.eRefs 9, 10, 19.

Figure 9. Single-ion anisotropy Dlig versus coupling strength J for
the ferric wheels listed in Table 4. Dashed lines are guides to the eyes.

Figure 10. (a) Coupling strength J versus the smaller Fe-O-Fe angle
R1 for the ferric wheels listed in Table 4. The dashed line corresponds
to the best fit line, eq 10. (b) Single-ion anisotropy Dlig versus rotation
angleæ discussed in the text. The dashed line corresponds to the best
fit line, eq 11.

J[K] ) -2.91R1[°] + 276 (10)
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cyclic clusters or is negligibly small compared to JR1. We favor
the second interpretation since it sounds more likely that the
magnetic orbitals are oriented in a way that the overlap in one
direction is very small, rather than that the overlap is indepen-
dent of the bridge angle.

For the single-ion anisotropy Dlig one finds no distinct trend
with R, R2, or R1. A plot of Dlig versusR1 would essentially
reproduce Figure 9 since J andR1 are linearly correlated.
According to Figure 9 it is meaningless to consider L-clusters
and L*-clusters simultaneously. In the following we restrict
ourselves to the L-clusters.

Since Dlig is mainly determined by the coordination geometry
of the iron centers, we carefully investigated it for the series of
L-clusters. We found that, except forµ3Ovic, the coordination
sphere is rather robust. That is, the relative positions of the ions
(with regard to the iron center) differ only slightly within the
four clusters: The distance of the nitrogen exhibits the largest
deviation with 0.10 Å, followed byµ3Oipso (0.07 Å), for the
remaining oxygens the deviation is less than 0.05 Å. The relative
donor-Fe-donor angles vary by less than 7°. Exceptions are
found only for relative angles involvingµ3Ovic Since the angle
N-Fe-µ3Ovic (151.2-152.6°) as well as the distance Fe-µ3Ovic

(1.978-2.030 Å) remains almost constant, the displacement of
µ3Ovic is most easily recognized as a rotation around the N-Fe
axis. The rotation angleæ is measured with respect to the plane
spanned by the nitrogen, the iron, andµ1Oipso (inset of Figure
10b). Whileæ differs by less than 7° for the other oxygens, it

changes by as much as 30° for µ3Ovic. This rotation ofµ3Ovic is
by far the most notable structural variation in the series of the
L-clusters, and we thus regard it to be most responsible for the
behavior of Dlig. Indeed, plotting Dlig as function of æ
demonstrates a remarkable correlation (Figure 10b). The best-
fit straight line is

It is noteworthy that it is exactlyµ3Ovic which is also involved
in the Fe-O-Fe bridge arm exhibiting the smaller angleR1

which controls J. To some extent this explains the approximate
correlation of Dlig with J visible in Figure 9 for the L-clusters.
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