Bis(phthalocyaninato)gadolinium(III) Hexacyanobutadienide(1-**), [GdPc2]**+**[C4(CN)6]**-**. An Electron Transfer Salt with Four Paramagnetic Sites**

Durrell K. Rittenberg,† Ken-ichi Sugiura,‡ Yoshiteru Sakata,‡ Atta M. Arif,† and Joel S. Miller*,†

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, and Institute for Industrial and Scientific Research, Osaka University, Osaka 565, Japan

*Recei*V*ed February 13, 2001*

Metallophthalocyanines, MPc (H_2 Pc = phthalocyanine), continue to be at the forefront of modern chemistry owing to their unique chemical^{1,2} and physical properties^{1,3} In particular, rareearth phthalocyanines, i.e., $LnPc_2$ and Ln_2Pc_3 ($Ln = lanthanide$), have received considerable attention in the past few years due to their unique electrochromic, $\frac{1}{2}$ spectral, $\frac{2}{2}$ and conducting properties.³

Rare-earth phthalocyanines are attractive building blocks for molecule-based magnets due to the lanthanide, which may possess up to seven unpaired electrons (i.e., $S = \frac{7}{2}$). In their neutral form,
I nPc, are characterized as having stable phthalocyaninate(2-) $LnPc₂$ are characterized as having stable phthalocyaninate(2-) and radical phthalocyaninate($1-$) ligands consisting of (Pe^{2-}) - $Ln^{+3}(Pc^{--})$ in resonance with $(Pc^{--})Ln^{3+}(Pc^{2-})^4$ or as $Ln^{4+}(Pc^{2-})_2$ for $Ln = Ce⁵$ Upon facile reduction to the monoanion the complex may be described as $[Ln^{3+}(Pc^{2-})_2]$, which in the case of $[LuPc_2]$ ⁻ was confirmed by NMR.^{2a} In contrast, oxidation to [LnPc2]⁺ leads to two possible electronic structures, i.e.*,* $[Pe^{2}-Ln^{3}Pc^{0}]^{+}$ {in resonance with $[Pe^{0}Ln^{3}Pc^{2-}]^{+}$ } or $[Pe^{-1}Ln^{3+}Pe^{-1}$, as well as systems with tetravalent Ln (i.e., $Pc^{2-}Ln^{4+}Pc^{2-}$). Very few oxidized $LnPc_2$ species have been characterized; however, $[LuPc_2]^+$ [SbF₆]⁻ is reported to be diamagnetic;^{4c} hence it must be described as $[Pe^{2-}Lu^{3+}Pe^{0}]^{+}$ or $[Lu^{3+}(Pc^{--})_2]$ ⁺ with strong antiferromagnetic coupling between the $S = \frac{1}{2}$ Pc⁺⁻ units. For spin-containing lanthanide, e.g., Gd³⁺,
the $S = \frac{7}{6}$ Gd³⁺ and $S = \frac{1}{6}$ Pc⁺⁻ are strongly counled for GdPcs the $S = \frac{7}{2}$ Gd³⁺ and $S = \frac{1}{2}$ Pc⁺⁻ are strongly coupled for GdPc₂
leading to an $S = 3$ ground state ^{4d} Furthermore, on the basis of leading to an $S = 3$ ground state.^{4d} Furthermore, on the basis of the absence of an EPR signal assignable to Pc^{-} and the presence of an EPR signal assignable to Gd^{3+} , the ground state was reported

- (1) *Phthalocyanine Research and Applications*; Thomas, A. L., Ed.; CRC Press: Boca Raton, FL, 1990. *The Phthalocyanines*; Moser, F. H., Thomas, A. L., Eds.; CRC Press: Boca Raton, FL, 1983; Vols. 1 and 2. *Phthalocyanines: Properties and Application. Phthalocyanine-Based molecular Electronic De*V*ices*; Lever, A. P. B., Leznoff, C. C., Eds.; VCH Publishers: New York, 1989 (Vol. 1), 1993 (Vols. 2 and 3), 1996 (Vol. 4).
- (2) (a) Iwase, A.; Harnoode, C.; Kameda, Y. *J. Alloys Compd.* **1993**, *192*, 280. (b) Riou, M. T.; Auregan, M.; Clarisse, C. *J. Electroanal. Chem*. **1985**, *187*, 349. (c) Kirin, I.; Moskalev, P.; Makashev, Y. *Russ. J. Inorg. Chem*. **1965**, *10*, 1065. (d) Kasuga, K.; Ando, M.; Morimoto, H.; Isa, M. *Chem. Lett.* **1986**, 1095.
(3) (a) Hanack, M.; Lang, M. *Adv. Mater*. **1994**, 6, 819. (b) Hanack, M.
- (3) (a) Hanack, M.; Lang, M. *Ad*V*. Mater.* **¹⁹⁹⁴**, *⁶*, 819. (b) Hanack, M. *Macromol. Symp.* **1994**, *80*, 83. (c) Simon, J.; Bassoul, P. *Phthalocyanines: Properties and Application. Phthalocyanine-Based Molecular Electronic De*V*ices*; Lever, A. P. B., Leznoff, C. C., Eds.; VCH Publishers: New York, 1993; Vol. 3, p 119.
- (4) (a) Andre, J.-J.; Holczer, K.; Petit, P.; Riou, M.-T.; Clarisse, C.; Even, R.; Fourmigue, M.; Simon, J. *Chem. Phys. Lett*. **1985**, *115*, 463. (b) Tomilova, L. G.; Chernykh, E. V.; Ioffe, N. T.; Luk'yanets, E. A. *Zh. Obshch. Khim.* **1983**, *53*, 2594. (c) Chang, A. T.; Marchon, J.-C. *Inorg. Chim. Acta* **1981**, *53*, L241. (d) Trojan, K.; Kendall, T.; Kepler, L.; Hatfield, W. E. *Inorg. Chim. Acta* **¹⁹⁹²**, *¹⁹⁸*-*200*, 795.
- (5) (a) Haghighi, H. S.; Teske, C. L.; Homborg, H. *Z. Anorg. Allg. Chem.* **1992**, *602*, 73. (b) Ostendorp, G.; Rotter, H. W.; Homborg, H. *Z. Naturforsch., B* **1996**, *51*, 567.

to have a $[Pe^{0}Gd^{3+}Pe^{2-}]^+$ electronic structure, ^{4b,c} which was modeled by MO calculations.6

LnPc2 with the added feature of possessing spin-bearing ligands has a structural relationship to $S = \frac{1}{2}$ [Fe^{III}(C₅Me₅)₂]⁺, a key component in the first organic magnet, $[Fe^{III}(C_5Me_5)_2]^+$ [TCNE] \cdot ⁻ (TCNE = tetracyanoethylene) $(T_c = 4.8 \text{ K})$.⁷ Hence, $[\text{GdPc}_2]^+[\text{TCNE}]$ ⁻ due to the presence of $g = 2, L = 0 \text{ Gd}^{3+}$, was targeted for synthesis. Although TCNE was insufficient to oxidize GdPc₂, $C_4(CN)_6^8$ was reacted with GdPc₂ forming [GdPc₂]- $[C_4(CN)_6]$, **1**. In accord with previous work, $GdPc_2$ has several sites that can be oxidized, namely, $Pc^{\bullet-}$, and Pc^{2-} , and unlikely, but observed for other Ln^{3+} 's, Gd^{3+} . Hence, $[GdPc_2][C_4(CN)_6]$ is valence ambiguous as it may be formulated in many ways, e.g., (i) $[Gd^{3+}Pc_2]^0[C_4(CN)_6]^0$, (ii) $[Gd^{3+}(Pc^{--})_2]^+[C_4(CN)_6]^{\bullet-}$, (iii) $[\text{Gd}^{3+}(\text{Pc}^{0})(\text{Pc}^{2-})]^{+}[\text{C}_{4}(\text{CN})_{6}]^{²}$, or their resonance structures.^{4d} Herein, we report the crystal and electronic structures of **1**.

 $GdPc_2^{4c}$ and $C_4(CN)_6^8$ were prepared by literature methods. **1** was prepared from the reaction of $GdPc₂$ (24.7.0 mg, 0.0208) mmol) and $C_4(CN)_6$ (25.0 mg, 0.122 mmol) each dissolved in 20 mL of PhCl and stirred under nitrogen at room temperature for 4 h. The resulting dark green microcrystalline precipitate was then collected by vacuum filtration. Single crystals were grown in a 20 mL "H-tube" crystallization cell loaded with 7.1 mg of C_4 - $(CN)_6$ in 0.5 mL of CH_2Cl_2 and 10 mg of GdPc₂ mixed in 0.5 mL of CH_2Cl_2 in different ends of the tube. Chlorobenzene was added to the cell very slowly so as not to mix with the starting materials. The diffusion was completed in 3 weeks, and small crystals were observed on the wall of the flask: IR (Nujol, cm^{-1}) v_{CN} 2185 (m), 2155 (m), 2071 (w).

The presence of isolated $[C_4(CN)_6]^{\bullet-}$ was confirmed by characteristic shifts in the v_{CN} absorptions 2185, 2155, and 2071 $\text{cm}^{-1,9}$ while $\text{[Gd}^{3+}\text{Pc}_2]^+$ was confirmed by IR spectroscopy with a characteristic absorptions band at 1319 cm^{-1} . The latter absorption is lower than that of other cationic phthalocyanine radicals, e.g., $[Co^HPc[*]]⁺ (1358 cm⁻¹)$, $[Ni^HPc[*]]⁺ (1356 cm⁻¹)$, and $[H_2Pc^{\bullet}]^+$ (1365 cm⁻¹), but consistent with the neutral $Ln^{III}(Pc^{2-})(Pc^{--})$ radicals that range from 1315 to 1320 cm⁻¹,¹⁰ suggesting the presence of both Pc^{2-} and Pc^{--} .

The structure of $\lbrack \text{GdPc}_2 \rbrack \lbrack C_4(CN)_6 \rbrack$ ²PhCl¹¹ consists of isolated $[\text{GdPc}_2]^+$, $[\text{C}_4(\text{CN})_6]^{\bullet-}$, and two PhCl solvates, Figure 1. The Gd-N bond distances average 2.424 Å, and all the bond distances

(9) Miller, J. S.; Calabrese, J.; Dixon, D. *J. Phys. Chem.* **1991**, *95*, 3139. (10) Yakushi, K.; Ida, T.; Ugawa, A. *J. Phys. Chem*. **1991**, *95*, 7636.

^{*} Author to whom correspondence should be addressed.

[†] University of Utah.

[‡] Osaka University.

⁽⁶⁾ Rosseau, R.; Aroca, R.; Rodriguez-Mendez, M. L. *J. Mol. Struct.* **1995**, *356*, 49.

^{(7) (}a) Miller, J. S.; Calabrese, J. C.; Dixon, D. A.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M. *J. Am. Chem. Soc.* **1987**, *109*, 769. (b) Miller, J. S.; Calabrese, J. C.; Dixon, D. A.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M. *J. Chem. Soc., Chem. Commun.* **1986**, 1026. (c) Chittipeddi, S.; Cromack, K. R.; Miller, J. S.; Epstein, A. J. Phys. Rev. Lett. 1987, 22, 2695.

*Phys. Re*V*. Lett.* **¹⁹⁸⁷**, *²²*, 2695. (8) (a) Webster, O. W. *J. Am. Chem. Soc.* **1962**, *84*, 3370. (b) Ward, M. D. *Electroanal. Chem.* **1989**, *16*, 182.

Figure 1. ORTEP drawing $(50\%$ probability ellipsoids) of $\lceil \text{GdPc}_2 \rceil \lceil C_4 - C_1 \rceil$ $(CN)_6$ ^{2PhCl.} Hydrogen atoms have been omitted for clarity.

and angles of $\left[\text{GdPc}_2\right]^+$ are typical of other known LnPc₂ complexes.¹² Gd^{3+} is eight coordinate and bonded to two phthalocyanines in a distorted square-antiprismatic coordination environment with two essentially planar and parallel Pc mean planes. The Pc-Pc intraplanar separation is 3.07 Å, which is close to that of the neutral $GdPc_2$.¹² The staggering angle between the phthalocyanines is 46.7°, larger than that reported for $[(n-Bu)_{4}N][Gd^{III}(Pc^{2-})_{2}]$ (34.5°),¹² but close to that for $\{[PPh_{3}]_{2}N]\}$ - $[Gd^{3+}(Pc^{2-})_2]$ (43.6°).¹³

The C-C bond distances for the C_4 backbone of $C_4(CN)_6$ range from 1.408(9) to 1.422(9) Å averaging 1.414(9) Å, in good agreement with predicted values for bond order of 1.5 expected for $[C_4(CN)_6]^{--.7}$ The average C-CN bond distances for the *exo*,
endo, and *interior* positions are 1.419, 1.433, and 1.453, \AA *endo*, and *interior* positions are 1.419, 1.433, and 1.453 Å, respectively; hence they are chemically equivalent and average 1.435 Å. This average is slightly larger than that found for $[C_4(CN)_6]^{2-}$ (1.427 Å), but significantly shorter than that observed for $C_4(CN)_6^0$ (1.471 Å) consistent with the presence of $[C_4(CN)_6]^{(-7)}$ The most surprising structural feature of the $[C_4(CN)_6]^{\bullet-}$ is the pronounced torsion angle along the C4 backbone of 161.3°, close to that of the dimerized $[C_4(CN)_6]^{(-)}$ (170.8°);¹⁴ however, both are inconsistent with $C_4(CN)_6^{0,7}$ which has a twisted conformation, with a more pronounced 40° dihedral angle. Hence, to balance charge $[\text{GdPc}_2]^+$ must be the counterion.

There are two distinct molecular stacking motifs known for $LnPc₂$ species; either the $LnPc₂$'s stack in pseudo-chains, e.g., GdPc₂, or as isolated units, e.g., $[Ce(Pc)_2][BF_4]_{0.33}$ ^{5b} $[GdPc_2][C_4$ -(CN)6]'2PhCl belongs to the former arrangement with stacks of $[GdPc_2]^+$ along *a* with $[C_4(CN)_6]^{\bullet-}$ and PhCl's filling channels. Along *a* the $\text{[GdPc}_2\text{]}^+$ form a tilted array with a 14.2° tilt between $GdPc_2$ moieties. Interestingly the $[GdPc_2]^+$ stack such that the

Figure 2. UV-vis spectra of GdPc₂, $[\text{GdPc}_2]^+[\text{C}_4(\text{CN})_6]^-,$ and $[n-\text{Bu}_4\text{N}]^+$ - $[GdPc₂]$.

phthalocyanine of each $[GdPc_2]^+$ is eclipsed with respect to the next $[\text{GdPc}_2]^+$, with an inter-phthalocyanine distance of 3.612 Å. A similar arrangement was observed for α -[LiPc]^{\bullet -} that exhibits a tilt angle and inter-phthalocyanine spacing of 26.5° and 3.8 Å, respectively.¹⁵ The twisted $[C_4(CN)_6]$ ^{*-} and lack of the \cdots DADA \cdots {D = [GdPc₂]⁺, A = [C₄(CN)₆] \cdots } alternating chain structure as observed for other classes of moleculebased magnets¹⁶ suggest that this material stabilizes magnetic ordering.

The electronic spectrum of $\text{[GdPc}_2\text{][C}_4(\text{CN})_6\text{]}$ in CH_2Cl_2 exhibits absorptions at 318, 357, 400, 489, 518 sh, 622 sh, 682, and 709 nm (Figure 2), where the 318 nm band is assigned to the B-band (MLCT) absorption, and the 489 and 518 nm bands are assigned to the presence of Pc^{--} [2e_g (π) \rightarrow 2a_{1u} (π)], while the 682 and 709 nm bands are assigned to Q-bands $[a_{1u} (\pi) \rightarrow e_g]$ (π^*)].¹⁷ The remaining bands are attributed to $[C_4(CN)_6]$ ⁺⁻ absorptions.7,10 These assigned bands represent shifts with respect to absorptions for $Gd^{3+}Pc_2$ of 322, 460, 472 sh, 604, and 671 nm.¹⁷ As with $Gd^{3+}Pc_2$, which exhibits an absorption at 458 and shoulder at 472 nm attributed to $\text{Pc}^{\bullet-}$, $[\text{GdPc}_2]^+$ exhibits a broad absorption at 489 and shoulder at 518 nm consistent with the presence of $\text{Pc}^{\bullet-}$. Reduction of $GdPc_2$ to $[GdPc_2]^-$ is accompanied by the disappearance of the characteristic $Pc^{\bullet-}$ absorption at 460 nm, consistent with the $[Pe^{2-}Gd^{3+}Pe^{2-}]^-$ representation.¹⁷ Hence, oxidation of $Gd^{3+}Pc_2$ to the cation, $[GdPc_2]^+$, leads to a shift in the Pc•- absorption to 489 nm consistent with the formulation of **1** as $[\text{Gd}^{3+}(\text{Pc}^*)_2[\text{C}_4(\text{CN})_6]^*]$, with four paramagnetic centers. Insufficient material hampered the detailed study of the magnetic behavior of **1**; however, preliminary studies did not show evidence for magnetic ordering.

Acknowledgment. This work is supported by the U.S. Department of Energy (Grant No. DE FG 03-93ER45504) and U.S. National Science Foundation (Grant No. CHE9807669).

IC010187A

- (15) Brinkmann, M.; Turek, P.; Andre, J.-J. *J. Mater. Chem*. **1998**, *8*, 675.
- (16) Miller, J. S.; Epstein, A. J. *Angew. Chem.* **1994**, *106,* 399.

⁽¹¹⁾ Crystal data: triclinic space group $P\bar{1}$ (No. 2), $a = 13.2324(2)$ Å, $b =$ 15.6369(3) Å, $c = 18.2546(3)$ Å, $\alpha = 110.770(8)^\circ$, $\beta = 97.788(1)^\circ$, γ $= 97.772(9)$ °, $Z = 2$. Cell constants and orientation matrix were obtained from 10 images exposed for 30 s at 200 K on a Nonius Kappa CCD diffractometer. The structures were solved by direct methods and expanded using Fourier techniques using the SIR92^{18a} software package. The non-hydrogen atoms were refined anisotropically and hydrogen atoms were included, but not refined, using SHELX97-2^{18b} as part of the WinGX18c graphics suite. The final cycle of full-matrix least-squares refinement was based on 4563 observed reflections $[I_0 \geq 2.00 \sigma(I)]$ and 366 variable parameters and converged with unweighted and weighted agreement factors $R = 0.0285$ and $\bar{R}_{w} = 0.0882$, respectively.

⁽¹²⁾ Engel, M. K. *Rep. Kawamura Inst. Chem. Res.* **1997**, *8*, 11.

^{(13) (}a) Koike, N.; Uekusa, H.; Ohashi, Y.; Harnoode, C.; Kitamura, F.; Ohsaka, T. K. *Inorg. Chem.* **1996**, *35*, 5798. (b) Haghighi, M. S.; Franken, A.; Homborg, H. *Z. Naturforsch., B* **1994**, *49*, 812. (c) Moussavi, M.; Weiss, R.; Fischer, J.; DeCian, A. *Inorg. Chem.* **1988**, *27*, 1287.

⁽¹⁴⁾ Rittenberg, D. K.; Sugiura, K-i.; Arif, A. M.; Sakata, Y.; Incarvito, C. D.; Rheingold, A. L.; Miller, J. S. *Chem.*-*Eur. J.* **2000**, 6, 1811.

⁽¹⁷⁾ Tran-thi, T.-H.; Mattioli, T. A.; Chabach, D.; DeCian, A.; Weiss, R. *J. Phys. Chem.* **1994**, *98*, 8279.

^{(18) (}a) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. SIR92-A program for crystal structure solution. *J. Appl. Crystallogr*. **1993**, *26*, 343. (b) Sheldrick, G. M. *SHELX97-2 Programs for Crystal Structure Analysis (Release 97-2)*; Institut fu¨r Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998. (c) Farrugia, L. J. WinGX-A Windows Program for Crystal Structure Analysis; University of Glasgow: Glasgow, 1998.