Bis(phthalocyaninato)gadolinium(III) Hexacyanobutadienide(1-), $[GdPc_2]^+[C_4(CN)_6]^-$. An Electron Transfer Salt with Four Paramagnetic Sites

Durrell K. Rittenberg,[†] Ken-ichi Sugiura,[‡] Yoshiteru Sakata,[‡] Atta M. Arif,[†] and Joel S. Miller*,[†]

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, and Institute for Industrial and Scientific Research, Osaka University, Osaka 565, Japan

Received February 13, 2001

Metallophthalocyanines, MPc ($H_2Pc = phthalocyanine$), continue to be at the forefront of modern chemistry owing to their unique chemical^{1,2} and physical properties^{1,3} In particular, rareearth phthalocyanines, i.e., LnPc₂ and Ln₂Pc₃ (Ln = lanthanide), have received considerable attention in the past few years due to their unique electrochromic,¹ spectral,² and conducting properties.³

Rare-earth phthalocyanines are attractive building blocks for molecule-based magnets due to the lanthanide, which may possess up to seven unpaired electrons (i.e., $S = \frac{7}{2}$). In their neutral form, $LnPc_2$ are characterized as having stable phthalocyaninate(2-) and radical phthalocyaninate(1-) ligands consisting of (Pc2-)- $Ln^{+3}(Pc^{\bullet-})$ in resonance with $(Pc^{\bullet-})Ln^{3+}(Pc^{2-})^4$ or as $Ln^{4+}(Pc^{2-})_2$ for $Ln = Ce^{.5}$ Upon facile reduction to the monoanion the complex may be described as $[Ln^{3+}(Pc^{2-})_2]^-$, which in the case of [LuPc₂]⁻ was confirmed by NMR.^{2a} In contrast, oxidation to $[LnPc_2]^+$ leads to two possible electronic structures, i.e., $[Pc^{2}Ln^{3}Pc^{0}]^{+}$ {in resonance with $[Pc^{0}Ln^{3}Pc^{2}]^{+}$ } or $[Pc^{\bullet}Ln^{3+}Pc^{\bullet}]^+$, as well as systems with tetravalent Ln (i.e., Pc²⁻Ln⁴⁺Pc²⁻). Very few oxidized LnPc₂ species have been characterized; however, $[LuPc_2]^+[SbF_6]^-$ is reported to be diamagnetic;^{4c} hence it must be described as $[Pc^{2-}Lu^{3+}Pc^{0}]^{+}$ or $[Lu^{3+}(Pc^{\bullet-})_2]^+$ with strong antiferromagnetic coupling between the $S = \frac{1}{2} Pc^{-}$ units. For spin-containing lanthanide, e.g., Gd^{3+} , the $S = \frac{7}{2}$ Gd³⁺ and $S = \frac{1}{2}$ Pc⁻⁻ are strongly coupled for GdPc₂ leading to an S = 3 ground state.^{4d} Furthermore, on the basis of the absence of an EPR signal assignable to Pc^{•-} and the presence of an EPR signal assignable to Gd³⁺, the ground state was reported

- Phthalocyanine Research and Applications; Thomas, A. L., Ed.; CRC Press: Boca Raton, FL, 1990. The Phthalocyanines; Moser, F. H., Thomas, A. L., Eds.; CRC Press: Boca Raton, FL, 1983; Vols. 1 and 2. Phthalocyanines: Properties and Application. Phthalocyanine-Based molecular Electronic Devices; Lever, A. P. B., Leznoff, C. C., Eds.; VCH Publishers: New York, 1989 (Vol. 1), 1993 (Vols. 2 and 3), 1996 (Vol. 4).
- (2) (a) Iwase, A.; Harnoode, C.; Kameda, Y. J. Alloys Compd. 1993, 192, 280. (b) Riou, M. T.; Auregan, M.; Clarisse, C. J. Electroanal. Chem. 1985, 187, 349. (c) Kirin, I.; Moskalev, P.; Makashev, Y. Russ. J. Inorg. Chem. 1965, 10, 1065. (d) Kasuga, K.; Ando, M.; Morimoto, H.; Isa, M. Chem. Lett. 1986, 1095.
- (3) (a) Hanack, M.; Lang, M. Adv. Mater. 1994, 6, 819. (b) Hanack, M. Macromol. Symp. 1994, 80, 83. (c) Simon, J.; Bassoul, P. Phthalocyanines: Properties and Application. Phthalocyanine-Based Molecular Electronic Devices; Lever, A. P. B., Leznoff, C. C., Eds.; VCH Publishers: New York, 1993; Vol. 3, p 119.
 (4) (a) Andre, J.-J.; Holczer, K.; Petit, P.; Riou, M.-T.; Clarisse, C.; Even,
- (4) (a) Andre, J.-J.; Holczer, K.; Petit, P.; Riou, M.-T.; Clarisse, C.; Even, R.; Fourmigue, M.; Simon, J. Chem. Phys. Lett. 1985, 115, 463. (b) Tomilova, L. G.; Chernykh, E. V.; Ioffe, N. T.; Luk'yanets, E. A. Zh. Obshch. Khim. 1983, 53, 2594. (c) Chang, A. T.; Marchon, J.-C. Inorg. Chim. Acta 1981, 53, L241. (d) Trojan, K.; Kendall, T.; Kepler, L.; Hatfield, W. E. Inorg. Chim. Acta 1992, 198–200, 795.
- (5) (a) Haghighi, H. S.; Teske, C. L.; Homborg, H. Z. Anorg. Allg. Chem. 1992, 602, 73. (b) Ostendorp, G.; Rotter, H. W.; Homborg, H. Z. Naturforsch., B 1996, 51, 567.

to have a $[Pc^0Gd^{3+}Pc^{2-}]^+$ electronic structure,^{4b,c} which was modeled by MO calculations.⁶

LnPc₂ with the added feature of possessing spin-bearing ligands has a structural relationship to $S = \frac{1}{2}$ [Fe^{III}(C₅Me₅)₂]⁺, a key component in the first organic magnet, [Fe^{III}(C₅Me₅)₂]⁺[TCNE]^{•-} (TCNE = tetracyanoethylene) ($T_c = 4.8$ K).⁷ Hence, [GdPc₂]⁺[TCNE]^{•-} due to the presence of g = 2, L = 0 Gd³⁺, was targeted for synthesis. Although TCNE was insufficient to oxidize GdPc₂, C₄(CN)₆⁸ was reacted with GdPc₂ forming [GdPc₂]-[C₄(CN)₆], **1**. In accord with previous work, GdPc₂ has several sites that can be oxidized, namely, Pc^{•-}, and Pc²⁻, and unlikely, but observed for other Ln^{3+,*}s, Gd³⁺. Hence, [GdPc₂][C₄(CN)₆][•], (iii) is valence ambiguous as it may be formulated in many ways, e.g., (i) [Gd³⁺Pc₂]⁰[C₄(CN)₆][•], (ii) [Gd³⁺(Pc⁻)₂]⁺[C₄(CN)₆]^{•-}, (iii) [Gd³⁺(Pc⁰)(Pc²⁻)]⁺[C₄(CN)₆]^{•-}, or their resonance structures.^{4d} Herein, we report the crystal and electronic structures of **1**.

GdPc₂^{4c} and C₄(CN)₆⁸ were prepared by literature methods. **1** was prepared from the reaction of GdPc₂ (24.7.0 mg, 0.0208 mmol) and C₄(CN)₆ (25.0 mg, 0.122 mmol) each dissolved in 20 mL of PhCl and stirred under nitrogen at room temperature for 4 h. The resulting dark green microcrystalline precipitate was then collected by vacuum filtration. Single crystals were grown in a 20 mL "H-tube" crystallization cell loaded with 7.1 mg of C₄-(CN)₆ in 0.5 mL of CH₂Cl₂ and 10 mg of GdPc₂ mixed in 0.5 mL of CH₂Cl₂ in different ends of the tube. Chlorobenzene was added to the cell very slowly so as not to mix with the starting materials. The diffusion was completed in 3 weeks, and small crystals were observed on the wall of the flask: IR (Nujol, cm⁻¹) ν_{CN} 2185 (m), 2155 (m), 2071 (w).

The presence of isolated $[C_4(CN)_6]^{\bullet-}$ was confirmed by characteristic shifts in the ν_{CN} absorptions 2185, 2155, and 2071 cm^{-1,9} while $[Gd^{3+}Pc_2]^+$ was confirmed by IR spectroscopy with a characteristic absorptions band at 1319 cm⁻¹. The latter absorption is lower than that of other cationic phthalocyanine radicals, e.g., $[Co^{II}Pc^{\bullet-}]^+$ (1358 cm⁻¹), $[Ni^{II}Pc^{\bullet-}]^+$ (1356 cm⁻¹), and $[H_2Pc^{\bullet}]^+$ (1365 cm⁻¹), but consistent with the neutral $Ln^{III}(Pc^{2-})(Pc^{\bullet-})$ radicals that range from 1315 to 1320 cm^{-1,10} suggesting the presence of both Pc²⁻ and Pc⁻⁻.

The structure of $[GdPc_2][C_4(CN)_6]$ ·2PhCl¹¹ consists of isolated $[GdPc_2]^+$, $[C_4(CN)_6]$ ·⁻, and two PhCl solvates, Figure 1. The Gd–N bond distances average 2.424 Å, and all the bond distances

^{*} Author to whom correspondence should be addressed.

[†] University of Utah.

[‡]Osaka University.

⁽⁶⁾ Rosseau, R.; Aroca, R.; Rodriguez-Mendez, M. L. J. Mol. Struct. 1995, 356, 49.

^{(7) (}a) Miller, J. S.; Calabrese, J. C.; Dixon, D. A.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M. J. Am. Chem. Soc. **1987**, 109, 769.
(b) Miller, J. S.; Calabrese, J. C.; Dixon, D. A.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M. J. Chem. Soc., Chem. Commun. **1986**, 1026. (c) Chittipeddi, S.; Cromack, K. R.; Miller, J. S.; Epstein, A. J. Phys. Rev. Lett. **1987**, 22, 2695.

^{(8) (}a) Webster, O. W. J. Am. Chem. Soc. 1962, 84, 3370. (b) Ward, M. D. Electroanal. Chem. 1989, 16, 182.

⁽⁹⁾ Miller, J. S.; Calabrese, J.; Dixon, D. J. Phys. Chem. 1991, 95, 3139.
(10) Yakushi, K.; Ida, T.; Ugawa, A. J. Phys. Chem. 1991, 95, 7636.

Figure 1. ORTEP drawing (50% probability ellipsoids) of $[GdPc_2][C_4-(CN)_6]$ ·2PhCl. Hydrogen atoms have been omitted for clarity.

and angles of $[GdPc_2]^+$ are typical of other known LnPc₂ complexes.¹² Gd³⁺ is eight coordinate and bonded to two phthalocyanines in a distorted square-antiprismatic coordination environment with two essentially planar and parallel Pc mean planes. The Pc–Pc intraplanar separation is 3.07 Å, which is close to that of the neutral GdPc₂.¹² The staggering angle between the phthalocyanines is 46.7°, larger than that reported for $[(n-Bu)_4N][Gd^{III}(Pc^{2-})_2]$ (34.5°),¹² but close to that for $\{[PPh_3]_2N]\}$ - $[Gd^{3+}(Pc^{2-})_2]$ (43.6°).¹³

The C–C bond distances for the C₄ backbone of C₄(CN)₆ range from 1.408(9) to 1.422(9) Å averaging 1.414(9) Å, in good agreement with predicted values for bond order of 1.5 expected for $[C_4(CN)_6]^{\bullet-,7}$ The average C–CN bond distances for the *exo*, *endo*, and *interior* positions are 1.419, 1.433, and 1.453 Å, respectively; hence they are chemically equivalent and average 1.435 Å. This average is slightly larger than that found for $[C_4(CN)_6]^{2-}$ (1.427 Å), but significantly shorter than that observed for $C_4(CN)_6^0$ (1.471 Å) consistent with the presence of $[C_4(CN)_6]^{\bullet-,7}$ The most surprising structural feature of the $[C_4(CN)_6]^{\bullet-,7}$ is the pronounced torsion angle along the C₄ backbone of 161.3°, close to that of the dimerized $[C_4(CN)_6]^{\bullet-}$ (170.8°);¹⁴ however, both are inconsistent with $C_4(CN)_6^{0,7}$ which has a twisted conformation, with a more pronounced 40° dihedral angle. Hence, to balance charge $[GdPc_2]^+$ must be the counterion.

There are two distinct molecular stacking motifs known for $LnPc_2$ species; either the $LnPc_2$'s stack in pseudo-chains, e.g., $GdPc_2$, or as isolated units, e.g., $[Ce(Pc)_2][BF_4]_{0.33}$.^{5b} $[GdPc_2][C_4-(CN)_6]$ •2PhCl belongs to the former arrangement with stacks of $[GdPc_2]^+$ along *a* with $[C_4(CN)_6]$ •⁻ and PhCl's filling channels. Along *a* the $[GdPc_2]^+$ form a tilted array with a 14.2° tilt between $GdPc_2$ moleties. Interestingly the $[GdPc_2]^+$ stack such that the

- (12) Engel, M. K. Rep. Kawamura Inst. Chem. Res. 1997, 8, 11.
- (13) (a) Koike, N.; Uekusa, H.; Ohashi, Y.; Harnoode, C.; Kitamura, F.;
 Ohsaka, T. K. *Inorg. Chem.* **1996**, *35*, 5798. (b) Haghighi, M. S.; Franken,
 A.; Homborg, H. Z. *Naturforsch., B* **1994**, *49*, 812. (c) Moussavi, M.;
 Weiss, R.; Fischer, J.; DeCian, A. *Inorg. Chem.* **1988**, *27*, 1287.
- (14) Rittenberg, D. K.; Sugiura, K-i.; Arif, A. M.; Sakata, Y.; Incarvito, C. D.; Rheingold, A. L.; Miller, J. S. Chem.-Eur. J. 2000, 6, 1811.

Figure 2. UV-vis spectra of GdPc₂, $[GdPc_2]^+[C_4(CN)_6]^-$, and $[n-Bu_4N]^+-[GdPc_2]^-$.

phthalocyanine of each $[GdPc_2]^+$ is eclipsed with respect to the next $[GdPc_2]^+$, with an inter-phthalocyanine distance of 3.612 Å. A similar arrangement was observed for α -[LiPc]^{•-} that exhibits a tilt angle and inter-phthalocyanine spacing of 26.5° and 3.8 Å, respectively.¹⁵ The twisted $[C_4(CN)_6]^{\bullet-}$ and lack of the \cdots DADA \cdots {D = $[GdPc_2]^+$, A = $[C_4(CN)_6]^{\bullet-}$ } alternating chain structure as observed for other classes of molecule-based magnets¹⁶ suggest that this material stabilizes magnetic ordering.

The electronic spectrum of $[GdPc_2][C_4(CN)_6]$ in CH₂Cl₂ exhibits absorptions at 318, 357, 400, 489, 518 sh, 622 sh, 682, and 709 nm (Figure 2), where the 318 nm band is assigned to the B-band (MLCT) absorption, and the 489 and 518 nm bands are assigned to the presence of Pc^{-} [2e_g (π) \rightarrow 2a_{1u} (π)], while the 682 and 709 nm bands are assigned to Q-bands $[a_{1u}(\pi) \rightarrow e_g]$ (π^*)].¹⁷ The remaining bands are attributed to $[C_4(CN)_6]^{-1}$ absorptions.7,10 These assigned bands represent shifts with respect to absorptions for $Gd^{3+}Pc_2$ of 322, 460, 472 sh, 604, and 671 nm.¹⁷ As with Gd³⁺Pc₂, which exhibits an absorption at 458 and shoulder at 472 nm attributed to Pc^{•-}, [GdPc₂]⁺ exhibits a broad absorption at 489 and shoulder at 518 nm consistent with the presence of Pc⁻⁻. Reduction of GdPc₂ to [GdPc₂]⁻ is accompanied by the disappearance of the characteristic Pc⁻⁻ absorption at 460 nm, consistent with the $[Pc^2-Gd^{3+}Pc^{2-}]^-$ representation.¹⁷ Hence, oxidation of $Gd^{3+}Pc_2$ to the cation, $[GdPc_2]^+$, leads to a shift in the Pc^{•-} absorption to 489 nm consistent with the formulation of 1 as $[Gd^{3+}(Pc^{\bullet-})_2[C_4(CN)_6]^{\bullet-}$, with four paramagnetic centers. Insufficient material hampered the detailed study of the magnetic behavior of 1; however, preliminary studies did not show evidence for magnetic ordering.

Acknowledgment. This work is supported by the U.S. Department of Energy (Grant No. DE FG 03-93ER45504) and U.S. National Science Foundation (Grant No. CHE9807669).

IC010187A

- (15) Brinkmann, M.; Turek, P.; Andre, J.-J. J. Mater. Chem. 1998, 8, 675.
- (16) Miller, J. S.; Epstein, A. J. Angew. Chem. 1994, 106, 399.
- (17) Tran-thi, T.-H.; Mattioli, T. A.; Chabach, D.; DeCian, A.; Weiss, R. J. Phys. Chem. 1994, 98, 8279.
- (18) (a) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. SIR92– A program for crystal structure solution. J. Appl. Crystallogr. 1993, 26, 343. (b) Sheldrick, G. M. SHELX97-2 Programs for Crystal Structure Analysis (Release 97-2); Institut für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998. (c) Farrugia, L. J. WinGX-A Windows Program for Crystal Structure Analysis; University of Glasgow: Glasgow, 1998.

⁽¹¹⁾ Crystal data: triclinic space group $P\overline{1}$ (No. 2), a = 13.2324(2) Å, b = 15.6369(3) Å, c = 18.2546(3) Å, $\alpha = 110.770(8)^\circ$, $\beta = 97.788(1)^\circ$, $\gamma = 97.772(9)^\circ$, Z = 2. Cell constants and orientation matrix were obtained from 10 images exposed for 30 s at 200 K on a Nonius Kappa CCD diffractometer. The structures were solved by direct methods and expanded using Fourier techniques using the SIR92^{18a} software package. The non-hydrogen atoms were refined anisotropically and hydrogen atoms were included, but not refined, using SHELX97-2^{18b} as part of the WinGX^{18c} graphics suite. The final cycle of full-matrix least-squares refinement was based on 4563 observed reflections $[I_0 > 2.00\sigma(I)]$ and 366 variable parameters and converged with unweighted and weighted agreement factors R = 0.0285 and $R_w = 0.0882$, respectively.