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Density functional theory (DFT) has been used to calculate the energies of 36 different methylaluminoxane (MAO)
cage structures with the general formula (MeAlO)n, where n ranges from 4 to 16. A least-squares fit has been
used to devise a formula which predicts the total energies of the MAO with differentn’s giving an rms deviation
of 4.70 kcal/mol. These energies in conjunction with frequency calculations based on molecular mechanics have
been used to estimate the finite temperature enthalpies, entropies, and free energies for these MAO structures.
Furthermore, formulas have been devised which predict finite temperature enthalpies and entropies for MAO
structures of anyn for a temperature range of 198.15-598.15 K. Using these formulas, the free energies at
different temperatures have been predicted for MAO structures wheren ranges from 17 to 30. The free energy
values were then used to predict the percentage of eachn found at a given temperature. Our calculations give an
averagen value of 18.41, 17.23, 16.89, and 15.72 at 198.15, 298.15, 398.15, and 598.15 K, respectively. Topological
arguments have also been used to show that the MAO cage structure contains a limited amount of square faces
as compared to octagonal and hexagonal ones. It is also suggested that the limited number of square faces with
their strained Al-O bonds explain the high molar Al:catalyst ratio required for activation. Moreover, in this
study we outline a general methodology which may be used to calculate the percent abundance of an equilibrium
mixture of oligomers with the general formula (X)n.

1. Introduction

In 1980, Sinn and Kaminsky discovered that the addition of
water to systems such as Cp2ZrMe2/AlMe3 caused this rather
inactive reaction system to become highly active in ethene
polymerization.1 It was suspected that partial hydrolysis of
AlMe3 (TMA) brought about the formation of methylalumi-
noxane (MAO). It was further postulated that the role of the
MAO/TMA mixture in this system was to act as cocatalyst.
Equation 1 illustrates the commonly accepted role of MAO as
the catalyst activator. Equation 2 indicates the possible role of
the product cation as a catalyst in olefin polymerization.

The high activity imparted by MAO has caused it for many
years to be one of the most industrially important activators in
single-site or metallocene-catalyzed olefin polymerization. Yet,
despite this fact the structure (structures) of MAO remain largely
unknown. The characterization of MAO by NMR spectroscopy
has been hindered by disproportionation reactions at high
temperatures and association in solution yielding a mixture of
different oligomers with multiple equilibria. Moreover, the
characterization cannot be carried out using X-ray diffraction
due to the fact that it is not possible to isolate crystalline
samples.2

The determination of the structure of MAO can be linked to
the determination of the structures of alumoxanes in general.
Alumoxanes are intermediates in the hydrolysis of organoalu-
minum compounds to aluminum hydroxides. They were orig-
inally proposed as consisting of a linear1 or cyclic 2a-c chain
structure (Figure 1) which were composed of alternating three-
coordinate aluminum and two-coordinate oxygen atoms.3 The
first crystallographic evidence for the presence of four-
coordinate aluminum atoms was given by Atwood and co-
workers in their structural determination of the [Al7O6Me16]-

anion 3.4 This result encouraged many groups to propose
structures consisting of fused four- or six-membered rings or
both (4) for that of MAO.3 While these structures were more
reasonable than those of1 and those similar to2a-c, they still
contained a peripheral aluminum atom which remained three-
coordinate. Methyl bridges and/or the presence of trimethyl-
aluminum groups were suggested,3 but these resulted in
structures whose chemical formula substantially deviated from
the generally accepted formula of “pure” MAO, (MeAlO)n,
wheren is an integer.

Replacement of the methyl substituents in MAO with bulkier
tert-butyl groups made the first structural determination of
alkylalumoxanes possible. Barron and co-workers synthesized
a series of compounds [(tBu)Al(µ3-O)]n, wheren ) 6-9 and
12.2,5 These correspond to structures5-8, respectively (Figure
2). The synthesis of these compounds led to the suggestion that

(1) Sinn, H.; Kaminsky, W.; Vollmer, H. J.; Woldt, R.Angew. Chem.
1980, 92, 396.

(2) Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R.J. Am. Chem.
Soc.1993, 115, 4971.

(3) Pasynkiewicz, S.Polyhedron1990, 9, 429.
(4) Atwood, J. L.; Hrncir, D. C.; Priester, R. D.; Rogers, R. D.

Organometallics1983, 2, 985.
(5) Harlan, C. F.; Mason, M. R.; Barron, A. R.Organometallics1994,

13, 2957.

(η5-C5H5)2MMe2 + MAO f [(η5-C5H5)2MMe]+ +

[(MAO)Me]- M ) Ti, Zr (1)

[(η5-C5H5)2MMe]+ + n[CH2dCH2] f

[(η5-C5H5)2M[CH2CH2]nCH3]
+ (2)
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MAO has a three-dimensional cage structure. Within these cage
structures four-coordinate aluminum centers bridged by three-
coordinate oxygen atoms were thought to predominate.2 Barron
and co-workers have also proposed a topological relationship
for the prediction of the structures of [(tBu)Al(µ3-O)]n and
[(tBu)Ga(µ3-S)]n cages.5 For the structures which they synthe-
sized they noted that the number of square faces is always equal
to 6, while the number of hexagonal faces is equal ton - 4.5

They have also proposed two possible growth relationships for
such compounds.5

Barron’s [(tBu)Ga(µ3-S)]n cubane underwent structural rear-
rangements (n ) 6-8), yet under extreme conditions.2 However,
in the case of MAO, it has been proposed that the cages undergo
such rearrangements under normal conditions, as seen in the
following equation, wherex, y, andz are integers:

It was known that species of exceptional Lewis acidity are
found in MAO solutions, but four coordinate aluminum centers
are not thought of as being exceptionally Lewis acidic. Barron
and co-workers found that indeed they are and developed the

concept of latent Lewis acidity (LLA). LLA is a consequence
of the ring strain present in the cluster. If it is assumed that
four-coordinate aluminum and three-coordinate oxygen atoms
prefer tetrahedral and trigonal planar geometries, respectively,
then a qualitative determination of the LLA of a caged
compound may be found by calculating the sum of the angular
distortions from the ideal.6 Work has also been done on
quantitatively establishing the most acidic of Barron’stert-butyl
compounds.7

As has been mentioned previously, the characterization of
the structure of MAO via NMR spectroscopy has not been
successful. Yet, NMR and other spectroscopic methods have
been used to give further clues as to the structure(s) and role of
MAO. In most cases these methods have been used to give an
estimate of the size range for a typical MAO oligomer. For
example, the line widths of27Al NMR have predicted that, for
[AlOMe]n, n ranges between 9 and 14 at high temperatures and
between 20 and 30 at ambient conditions.8 EPR studies have
been performed via the addition of a spin probe to a MAO
solution. Once again, line widths coupled with line intensities
were used to find the radius of a MAO structure. This method
found thatn ranges between 14 and 20.9

It is well-known that there exists residual TMA (trimethyl-
aluminum) in all MAO solutions. It is accepted that TMA
participates in an equilibrium with different MAO oligomers.1

However, here we will focus upon establishing a model for a
pure (TMA free) MAO solution, although such a system
has not been established experimentally. A subsequent paper
will focus on MAO-containing TMA. To study real MAO
(MAO + TMA solution) it is first necessary to study pure MAO.
Currently we are performing this work, using some of the data
and methodology presented here.

The objective of this paper is to establish the percent
abundance of different MAO structures. Ultimately, it is the
Gibbs free energy which determines the stability of a given

(6) Harlan, C. J.; Bott, S. G.; Barron, A. R.J. Am. Chem. Soc.1995, 117,
6465.

(7) Koide. Y.; Bott, S. G.; Barron, A. R.Organometallics1996, 15, 5514.
(8) Babushkin, D. E.; Semikolenova, N. V.; Panchenko, V. N.; Sobolev,

A. P.; Zakharov, V. A.; Talsi, E. P.Macromol. Chem. Phys.1997,
198, 3845.

(9) Talsi, E. P.; Semikolenova, N. V.; Panchenko, V. N.; Sobolev, A. P.;
Babushkin, D. E.; Shubin, A. A.; Zakharov, V. Z.J. Mol. Catal. A:
Chem.1999, 139, 131.

Figure 1. Proposed structures for aluminoxanes.

Figure 2. Barron’s synthesized [(tBu)Al(µ3-O)]n compounds.

(MeAlO)x T (MeAlO)y T (MeAlO)z (3)
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structure. The Gibbs free energy is given as

whereHT(n) is the enthalpy at temperatureT for (AlOMe)n and
ST(n) the corresponding entropy.

Section 3.1 discusses different structural alternatives (sheets,
cages, fused cages) showing that caged structures are energeti-
cally the most stable. Section 3.2 derives formulas which are
important in determining the topologies of caged structures.
Section 3.3 discusses energetic considerations and proposes a
method by which they can be predicted. In section 3.4 we
discuss and provide methods to estimate enthalpic corrections,
and in section 3.5 the same is done for entropies. Finally, section
3.6 examines the Gibbs free energy and percent abundance of
different MAO structures.

2. Computational Details

The density functional theory calculations were carried out using
the Amsterdam density functional (ADF) program version 2.3.3
developed by Baerends et al.10 and vectorized by Ravenek.11 The
numerical integration scheme applied was developed by te Velde et
al.,12 and the geometry optimization procedure was based on the method
of Verslius and Ziegler.13 For total energies and geometry optimizations
the gradient-corrected exchange functional of Becke14 and the correla-
tion functional of Perdew15 were utilized in conjunction with the LDA
parametrization of Vosko et al.16 The electronic configurations of the
molecular systems were described by a double-ú STO basis set with
polarization functions. A 1s frozen core was used for carbon and
oxygen, while an [Ar] frozen core was used for aluminum. A set of
auxiliary s, p, d, f, and g STO functions centered on all nuclei was
used to fit the molecular density and represent Coulomb and exchange
potentials in each SCF cycle.17 Single-point numerical differentiation
of energy gradients were used for frequency calculations.

UFF218,19 was used to calculate entropic and finite temperature
enthalpy corrections to the Gibbs free energy. It was necessary to
reparametrize the force field for our specific system. The original and
reparametrized values are presented in Tables 1.1-1.3 of the Supporting
Information.

3. Results and Discussion

3.1. Energetics of Sheet/Caged/Fused-Caged Structures.
Despite the fact that experiment has provided evidence that
MAO consists of three-dimensional cage structures, it was
decided that a preliminary investigation on the relative stability
of sheet, caged, and fused-caged structures ought to be
performed. These results would then allow us to determine
which subset of structures ought to be studied in depth. Figure
3 affords a selection of the sheet and fused-caged structures.

First of all, it must be noted that during the geometry
optimization of the fused-caged structure the bonds correspond-
ing to five coordinate Al and four coordinate O atoms broke

giving simply a caged structure. This shows that such structures
are unstable alternatives for MAO.

The electronic binding energy per monomer unit is defined
as

It gives the energy which is gained per monomer (AlOMe
unit) when a certain geometry is formed fromn monomers. The
lower the binding energy per monomer, the more stable the
given structure is. Table 1 gives the binding energies per
monomer unit for sheet structures. The last five entries cor-
respond to two fused rings.

The first thing which must be noted is that when single-ring
structures are considered, the binding energy per monomer
decreases until it reaches a minimum for an octagonal ring,
before increasing again. The decrease in binding energy must
first be attributed to the fact that as the ring becomes larger the
O-Al-O and Al-O-Al angles approach values which cor-
respond more closely to those associated with an Al in a trigonal
planar environment and an O in a bent environment. As the
ring size increases, these angles deviate more from the ideal
and the binding energy increases. For the fused-ring structures
it is important to note that the binding energy per monomer
appears to reach a plateau at approximately-80 kcal/mol.

Next, a preliminary investigation of the binding energies of
caged structures was performed. This data can be found in
Table 2. With the exception of (AlOMe)4, the other structures
correspond to5-8 shown in Figure 2 (the MAO analogues of
Barron’s synthesized structures). What is important to note is
that even for a very strained structure such as (AlOMe)4, the
binding energy per monomer is approximately 9 kcal/mol lower
than for any of the sheet structures. Hence, this preliminary
investigation indicates that caged MAO structures consisting
of three coordinate oxygen and four coordinate aluminum atoms
are much more energetically stable than sheet or fused-caged
structures.

(10) (a) Baerends, E. J.; Ellis, D. E.; Ros, P.Chem. Phys.1973, 2, 41. (b)
Baerends, E. J.; Ros, P.Chem. Phys.1973, 2, 52.

(11) Ravenek, W.Algorithms and Applications on Vector and Parallel
Computers; te Riele, H. J. J., Dekker, T. J., vand de Horst, H. A.,
Eds.; Elservier: Amsterdam, 1987.

(12) (a) te Velde, G.; Baerends, E. J.Comput. Chem.1992, 99, 84. (b)
Boerringter, P. m.; te Velde, G.; Baerends, E. J.Int. J. Quantum Chem.
1998, 33, 87.

(13) Verslius, L.; Ziegler, T.J. Chem. Phys.1988, 88, 322.
(14) Becke, A. D.Phys. ReV. A. 1988, 38, 3098.
(15) Perdew, J. P.Phys. ReV. B. 1986, 33, 8822.
(16) Vosko, S. H.; Wilk, L.; Nusair, M.Can. J. Phys.1980, 58, 1200.
(17) Krijn, J.; Baerends, E. J.Fit Functions in the HFS-Method; Free

University of Amsterdam: Amsterdam, 1984.
(18) Casewit, A. K.; Colwell, K. S.; Rappe, A. K.J. Am. Chem. Soc.1992,

114, 10046.
(19) Casewit, C. J.; Colsell, K. S.; Rappe, A. K.J. Am. Chem. Soc.1992,

114, 10035.

GT(n) ) HT(n) - TST(n) (4)

Figure 3. A selection of sheet and fused-caged structures.

Table 1. Binding Energies/Monomer for Sheet Structures

structure
BE/monomer

(kcal/mol) structure
BE/monomer

(kcal/mol)

square -61.62 2 hexagons -80.18
hexagon -77.33 1 square, 1 hexagon -77.29
octagon -78.83 1 hexagon, 1 octagon -79.27
decagon -78.59 1 square, 1 octagon -78.49
dodecagon -78.30 2 octagons -79.35

BE(n) ) (1/n)(E[(AlOMe)n] - nE[AlOMe]) (5)
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Accordingly, in our investigation of possible MAO geometries
it was decided to focus on three-dimensional caged structures.
When such a structure is considered, it must be noted that the
cage compound itself consists of polygonal faces. Due to the
fact that these MAO cages must consist of alternating Al and
O atoms, it is clear that such a polygonal face must consist of
an even number of atoms. It is not possible within such a study
to look at all possible types of faces. Thus, it was decided that
caged compounds comprised of square, hexagonal, and octago-
nal faces would be considered. Later we shall present arguments
based on general principles that point to square and hexagonal
faces as being the most likely building blocks for caged MAO
structures.

3.2. Mathematical Relationships.To construct MAO cage
structures, it is first necessary to gain some insight into the
construction of polyhedrons consisting of square, hexagonal,
and octagonal faces. Within this section, we first of all propose
a mathematical method which may be used to construct such
polyhedrons. All of the MAO structures on which explicit
calculations have been performed have been created using this
method. Next, we shall derive a formula which relates the
number of square faces to the number of octagonal faces found
within a polyhedron. This result will prove useful in explaining
the large ratio of Al:catalyst needed in order for polymerization
to occur. Finally, we will derive mathematical relationships
which will be used later on in order to construct large MAO
cages.

A convenient way by which one can construct polyhedrons
is via the drawing of Schlegel diagrams.20 A Schlegel diagram
is a projection of a three-dimensional object onto a plane surface.
An example of such a diagram is shown in Figure 4. On the
left-hand side a Schlegel diagram is shown, with the three-
dimensional object which it corresponds to shown on the right.
Within this study, the different possible MAO cage structures
were constructed via the use of Schlegel diagrams.

Despite the fact that it is not possible to derive all of the
possible connectivities present in a polyhedron corresponding
to a given number of atoms, some assertions can be made. The
first deals with the relationship between the number of square,
hexagonal, and octagonal faces comprising a given polyhedron.

From the mathematical study of polytopes, it is known that20

whereF is the number of faces of a given polyhedron,P is the
number of points within the polyhedron, andC is the number

of connectivities. In this case,P corresponds to the number of
atoms within the caged structure,N. Within the cage structure
itself each atom bonds to three others. Yet, to find the number
of connectivities, this must be divided by two since each
connectivity belongs to two atoms. Hence,C is equal to 1.5N.
Thus, eq 6 simplifies to

Also, it must be noted that each atom belongs to three faces.
Thus, if O, H, andS correspond to the number of octagonal,
hexagonal, and square faces within a given cage structure, we
have the following relation:

Furthermore, the following trivial relationship is true:

If one equates eqs 7 and 9 and then substitutes eq 8 forN, it is
found that

Equation 10 gives us a relationship between the number of
octagonal and square faces within a MAO cage. It also shows
that the minimum amount of square faces which can exist in
such a polyhedron is 6 and that this occurs when the number
of octagonal faces is 0, that is when the polyhedron is made up
solely of square and hexagonal faces.

Other relationships which have been derived apply to the case
when only square and hexagonal faces are present. Within such
a polyhedron there are only four environments within which
each atom (point) may be found. They are the following:a )
the number of atoms which are part of 3 square faces;b ) the
number of atoms part of 2 square and 1 hexagonal face;c )
the number of atoms part of 1 square and 2 hexagonal faces;
d ) the number of atoms part of 3 hexagonal faces.

Despite the fact thata-d are unknown for a givenN, what
is known is the number of square faces and hexagonal faces
along with the number of atoms comprising each face (4 and
6, respectively). Thus, the quantity 4S + 6H is known for a
given N. Since each atom is part of three faces, we have that

Furthermore, it is clear that

And thus that

Using eqs 11 and 13 we have that

But the only terms which contribute to the square faces are
3a, 2b, andc. This is becauseb corresponds to the number of
atoms bonded to 2 square and 1 hexagonal face andc to the
number of atoms bonded to 1 square and 2 hexagonal faces
etcetera. The same reasoning may be used to determine that
the only terms which contribute to the hexagonal faces areb,
2c, and 3d. Moreover, since the structures which we are

(20) Coxeter, H. S. M.Regular Polytopes, 2nd ed.; Macmillian Co.: New
York, 1963.

Figure 4. Schlegel diagram and corresponding three-dimensional
object.

Table 2. Binding Energy/Monomer for Caged Compounds

structure
BE/monomer

(kcal/mol) structure
BE/monomer

(kcal/mol)

(AlOMe)4 -88.73 (AlOMe)9 -100.17
(AlOMe)6 -95.93 (AlOMe)12 -102.30
(AlOMe)8 -99.05

F ) 0.5N + 2 (7)

(8/3)O + (6/3)H + (4/3)S) N (8)

O + H + S) F (9)

S) O + 6 (10)

4S+ 6H ) 3N (11)

a + b + c + d ) N (12)

3a + 3b + 3c + 3d ) 3N (13)

3a + 2b +b + c + 2c + 3d ) 4S+ 6H (14)

F + P ) C + 2 (6)
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considering consist of only six square faces, the following
equations may be determined:

Take into consideration a MAO cage which simply consists
of square and hexagonal faces. As has been shown, the number
of square faces present in this instance is always equal to 6.
Then, as the cage grows the number of hexagonal faces increases
while the number of square faces stays the same. Thus, for a
large cage it can be imagined that the probability that an atom
is bonded to 3 square faces becomes very small. Similarly, so
does the probability that an atom is bonded to 2 square faces
and 1 hexagonal face. Hence, in eqs 15 and 16a andb can be
put to zero. Thus, it becomes trivial to solve for the types of
connectivities present in a MAO cage. Later on, this method
shall be used to generate large MAO structures. This does not
guarantee that such a structure can indeed exist. For confirma-
tion, a Schlegel diagram must be drawn.

3.2.1. Alternative Derivation of Eq 15.Descartes showed
that20 in a polyhedron if the face angles at a vertex amount to
360° - δ, whereδ is known as the deficit, then

Within our structures the deficits fora-d are 90, 60, 30, and
0˚, respectively. Hence, by17

Simplifying,

which is just eq 15.
3.3. Energetic Considerations.The potential energies of 36

different (AlOMe)n structures, wheren ranges between 4 and
16, were determined via DFT level calculations. The optimized
structures and energies are shown in Figure 1 and Table 2 of
the Supporting Information. The Cartesian coordinates are given
in Figure 2 of the Supporting Information. Some representative
structures composed of square and hexagonal faces are shown
in Figure 5. For (AlOMe)14 only the most stable structural
alternative is shown. Figure 6 displays the isomers which were
found for (AlOMe)8. The geometries of all structures were found
via drawing a Schlegel diagram and next constructing the
corresponding three-dimensional structure.

It was determined that the stability of a given MAO is heavily
dependent upon the structure of the cage and, specifically, upon
the bonding environment present. Hence, a least-squares fit was
done to predict the energies of the MAO structures, using the
bonding environments as an index. The details of this fit can
be found in the appendix. This fit resulted in the following
energy expression for any given MAO structure:

where 3Sdenotes the number of atoms belonging to three square
faces, 2S + H the number of atoms belonging to two square

and one hexagonal face, and so on.E(n) is in kcal/mol. None
of the structures which we have considered contained an atom
in a 3O environment, due to the fact that in order for such an
environment to be present, the cage would have to be quite large.
Hence, the coefficient for 3O is missing in the fit above. The
root-mean-square deviation of this fit for the total energy is 4.70
kcal/mol. The fit was checked on (AlOMe)14 from Figure 5.
The predicted and calculated energies differed by 5.51 kcal/
mol. Figure 7 shows the predicted and calculated energy values
for the 10 (AlOMe)12 isomers. Thex-axis corresponds to the
structure number, and they-axis, to the energy. The overall trend
is reproduced, with only slight deviations.

Moreover, it must be noted that the coefficients pertaining
to each specific bonding environment provide a means by which
one can gauge the stability of a particular environment. The
more negative the coefficient, the more stable the environment.
Hence, the order of stability is, in decreasing order, 3H >
2H + S > H + O + S > 2O + S > 2H + O > 2S + H >

3a + 2b + c ) 24 (15)

b + 2c + 3d ) 6H (16)

Σδ ) 720° (17)

90°a + 60°b + 30°c ) 720° (18)

3a + 2b + c ) 24 (19)

E(n) ) -373.57(3S) - 377.49(2S+ H) -
381.13(2H + S) - 381.80(3H) - 377.14(2S+ O) -

380.59(2O + S) - 381.03(H + O + S) -
378.86(2H + O) - 365.51(2O + H) (20)

Figure 5. MAO cage structures composed of square and hexagonal
faces only for (AlOMe)4-(AlOMe)16.

Figure 6. Different isomers for (AlOMe)8.

Modeling MAO Inorganic Chemistry, Vol. 40, No. 2, 2001365



2S + O > 3S > 2O + H. Thus, an atom bonded to three
hexagonal faces is the most stable, while an atom bonded to
two octagonal and one hexagonal face is the least stable.

It is also interesting to note that the structures which are
composed simply of square and hexagonal faces have the lowest
energies for a givenn with the exception of (AlOMe)10 where
another structure is 0.38 kcal/mol more stable. This can be
attributed to the fact that the number of square faces within a
structure is equal to the number of octagonal faces plus 6. Thus,
the minimum possible number of square faces occurs when no
octagonal faces are present. The square faces exhibit a large
amount of ring strain therefore destabilizing the structure. Hence,
the structures with the least amount of square faces present for
a givenn, are most stable, energetically.

Figure 8 shows the energy per monomer unit as a function
of n for the structures composed simply of square and hexagonal
faces. For n )17, 18, 20, 21, 25, and 30, the bonding
environments were found using eqs 15 and 16, verified via the
drawing of the corresponding Schlegel diagram, and eq 20 was
used to predict the energies. Since these energies were predicted,
error bars are present.

The first notable aspect of Figure 8 is that the energy per
monomer approaches a plateau asn increases. Equations 15 and
16 show that in general as a MAO cage increases in size the
number of atoms found in a 2H + S environment is 24, while
the number of atoms in a 3H environment increases as a function
of n. Equation 20 then assigns certain coefficients to atoms in
each environment. Thus, for largen, the energy of a structure
becomes a linear function ofn and hence the energy per
monomer unit reaches a plateau with increasingn. The graph
displays an almost smooth curve, with the exception of three
local maxima points which are present atn )7, 10, and 13.
More energetically stable structural alternatives for these oli-
gomers could not be found. Their relative instability is due to
the presence of a greater amount of strained bonds (i.e. atoms
in 3Sor 2S+ H environments) as compared to their neighbors.
For example, (AlOMe)6 contains 12(2S+ H) atoms, (AlOMe)7
contains 2(3S), 6(2S+ H), and 6(2H + S) atoms and (AlOMe)8
contains 8(2S + H) and 8(2H + S) atoms. Thus the presence
of atoms in a 3S environment destabilizes (AlOMe)7 in
comparison with its neighbors. Note that eq 20 shows that for
square and hexagonal faces only the order of stability is 3H >
2H + S > 2S + H > 3S.

Consider the growth of a MAO cage by two monomer units
as shown in Figure 9. All of these structures are composed of

square and hexagonal faces. Clearly, such structural alternatives
are possible for (AlOMe)2n, wheren ) 3, 4, 5, .... Yet such
structures contain six atoms in a 2S+ H environment which is
from an energetic perspective destabilizing. Other structural
alternatives were found forn > 10. The entries given in Figure
8 for eachn correspond to the most stable isomer.

3.4. Enthalpic Considerations.Finite temperature enthalpies
and entropies can be calculated from standard expressions21

provided that all the vibrational frequencies are known (eqs 1-7
of the Supporting Information). Unfortunately, fully quantum
mechanical frequency calculations are computationally expen-
sive and would require too much time to be performed on all
structures. Thus, another approach was taken, on the basis of
molecular mechanics calculations using the universal force
field.18,19 First it was necessary to parametrize UFF2 so that
the frequencies calculated agreed with those of ADF.

The original and optimized parameters of UFF2 are given in
Tables 1.1-1.3 of the Supporting Information. The results of
the ADF and UFF2 calculations for the parametrization are given
in Table 3. It must be noted that the parametrization was
performed on (AlOMe)4 and (AlOMe)6. It was then checked
on (AlOMe)8-II and (AlOMe)8-III. As Table 3 shows, the
parametrization reproduces zero-point energies and entropies
of all of the structures extremely well. Moreover, it reproduces
the differences for the two (AlOMe)8 isomers. What must also
be noted is the fact that the parametrization was performed on
MAO structures which are composed solely of square and
hexagonal faces. Yet, good values are also obtained for
(AlOMe)8-II which also contains two octagonal faces. Thus,
these thermodynamic values obtained using UFF2 are quite
reliable in the respect that they not only reflect the differences
between isomers but also that they perform well for structures
consisting of square, hexagonal, and octagonal faces.

The vibrational frequencies obtained via UFF2 were used to
calculate the zero-point energies and finite temperature enthalpy
corrections for the MAO structures. Next, formulas were found
which could be used to predict these corrections. A full
description of the fitting procedure can be found in the appendix.
The total enthalpy is given as

where E(n) is the energy andHEC(n), the finite temperature
enthalpy correction, is

HereHrot, Htrans, andHvib are the rotational, translational, and
vibrational finite temperature enthalpy corrections, respectively.

(21) Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A.Ab Initio
Molecular Orbital Theory; John Wiley & Sons: New York, 1986; pp
251, 259.

Figure 7. Predicted and calculated energies for (AlOMe)12 isomers.

Table 3. Comparison of Thermodynamic Properties Obtained Using
UFF2 and ADFa

structure ADF ZPE UFF ZPE ADF entropy UFF entropy

(AlOMe)4 100.14 98.87 126.221 130.880
(AlOMe)6 148.21 149.12 162.206 159.012
(AlOMe)8-II 197.89 198.81 211.609 207.582
(AlOMe)8-III 198.72 199.46 219.594 221.281

a ZPE’s given in kcal/mol; entropies in cal/molK at 298.15 K.

HT(n) ) E(n) + HEC(n) (21a)

HEC(n) ) Hrot + Htrans+ Hvib (21b)
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If H0 is the zero-point energy, the parametrizations give the
following in kcal/mol:

Note, T is in kelvin. Equation 21c gives an rms deviation of
1.16 kcal/mol, and eq 21d is exact, while the rms deviation for
eq 21e is 3.28, 0.78, 1.32, and 3.36 kcal/mol at 198.15, 298.15,
398.15, and 598.15 K, respectively.

Figure 10 shows the finite temperature enthalpy correction
per monomer unit (HEC(n)/n) as a function ofn at different
temperatures. The values are plotted for oligomers composed
of square and hexagonal faces only. Error bars are given forn
) 17, 18, 20, 21, 25, and 30, where eqs 21c-e were used for
predicting values. It shows that the enthalpy correction per
monomer unit is almost the same for all MAO oligomers at the
plotted temperatures. Hence, for a given disproportionation
reaction∆HEC(n) will be nearly zero and does not contribute
to the relative stability of the MAO oligomers.

3.5. Entropic Considerations.Entropic values were calcu-
lated via the parametrized UFF2 code. The total entropy of
(AlOMe)n at temperatureT is given by

whereStrans, Srot, andSvib are the translational, rotational, and
vibrational contributions to the entropy. The following equations

predict the different entropic contributions at 298.15 K in cal/
mol K (see Appendix for discussion of fit):

Here 3S corresponds to the number of atoms bonded to three
square faces and so on. The rms deviation forStot is 1.78 kcal/
mol at 298.15 K. Entropic corrections are temperature depend-
ent, and hence, we devised equations which could be used to
predict entropies at different temperatures given those at 298.15
K. They are the following in cal/mol K:

HereS2transis the translational entropy at temperatureT2 and so
on. Equations 23a,b are nearly exact, while eq 23c gives an
rms deviation of 0.27, 1.70, and 4.09 kcal/mol at 198.15, 398.15,
and 598.15 K, respectively. Details of the fit can be found in
the Appendix.

Figure 11 shows-TST(n)/n as a function ofn for different
temperatures. Forn ) 17, 18, 20, 21, 25, and 30, eqs 22b-23c
were used to predict the entropies; hence, only in these cases
are error bars present. At low temperatures-TST(n)/n is not
very significant. As the temperature increases,-TST(n)/n
becomes more important in stabilizing smaller structures. At
all temperatures the same trends are followed, yet the differences
between adjacent points become greater with increasing tem-
perature. The graph in Figure 11 displays an almost smooth
curve, with a local minimum present atn ) 12.

3.6. Gibbs Free Energy.The Gibbs free energy per monomer
is given as

Figure 8. Energy per monomer vsn.

Figure 9. Growth of a MAO cage by 2 AlOMe units.

H0 ) 25n (21c)

Hrot ) Htrans) 3/2RT (21d)

Hvib ) H0 + (0.0028T - 0.3548)n ln(T) (21e)

ST(n) ) Strans+ Srot + Svib (22a)

Strans) 0.351n + 41.168 (22b)

Srot ) 0.573n + 30.573 (22c)

Svib ) 7.91(3S) + 8.30(2S+ H) + 10.20(2H + S) + 8.49

(3H) + 10.41(2S+ O) + 9.50(2O + S) + 10.45(S+ O +
H) + 7.32(2H + O) + 0(2O + H) (22d)

S2trans) S1trans+ T2/T1 + (0.014)T2 - 5.47 (23a)

S2rot ) S1rot + T2/T1 + (0.007)T2 - 3.28 (23b)

S2vib )

(T2/T1 - ((0.0006T2
2 - 0.5353T2 + 108.85)-1)S1vib (23c)

GT(n)/n ) HT(n)/n - TST(n)/n (24)
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It is plotted in Figure 12 for structures composed of square and
hexagonal faces only. It was found that these structures give
the lowest Gibbs free energy for a givenn, with one exception.
That is of (AlOMe)10 where another structure is 2.59 kcal/mol
more stable. Error bars are present forn ) 17, 18, 20, 21, 25,
and 30, where eqs 15 and 16 were used to find the connectivities
and the methods described earlier were used to estimate the
Gibbs free energy. Table 3 of the Supporting Information gives
the Gibbs free energy for all calculated structures at 298.15 K.
Table 4 givesGT(n)/n for structures composed of square and
hexagonal faces at all temperatures.

As can be noted, the same general trend is followed at all
temperatures, with (AlOMe)12 being the most stable. At lower
temperatures, (AlOMe)16 is almost as stable as (AlOMe)12, while
at high temperatures the difference increases. This can be
attributed to entropic effects which were shown to be more
important at higher temperatures. Local maxima atn ) 7, 10,
and 13 are present at all temperatures. They are due to energetic
effects and appear as a consequence of the coefficients pertaining
to each type of bonding environment present as can be seen in
eq 5.

Equation 10 shows us that there are only six square faces
present in a MAO structure composed of square and hexagonal
faces only. Above we see that these structures have the lowest

free energy for a givenn. Moreover, the structures which are
most stable do not have atoms in 3Sor 2S + H environments;
that is, they do not contain square-square edges. Due to the
fact that these bonds are more strained and less stable they ought
to be the sites with greatest latent Lewis acidity. Thus, we have
shown that there are not many acidic or active sites in MAO.
This topological consequence could be used to explain the high
Al:catalyst ratio which is necessary for polymerization to occur.

The Gibbs free energy of (AlOMe)n relative ton monomeric
units is given by

If ∆G0(n) is defined in such a way, then eq 26 may be used to
calculate equilibrium constants between (AlOMe)n and n
monomer units. These are given in Table 5 of the Supporting
Information. It must be noted that forn ) 17, 18, 20, 21, 25,
and 30 these were obtained via using the estimated Gibbs free
energies for (AlOMe)n. For n ) 19, 22-24, and 26-29 the

Figure 10. HEC(n) per monomer vsn.

Figure 11. -TST(n) per monomer vsn at different temperatures.

Figure 12. Gibbs free energy per monomer vsn at different
temperatures.

Table 4. Percent Abundance of MAO at Different Temperatures

n 198.15 K 298.15 K 398.15 K 598.15 K

4 0.00 0.00 0.00 0.02
6 0.00 0.01 0.08 1.05
7 0.00 0.01 0.09 0.92
8 0.01 0.23 0.96 3.33
9 0.18 1.29 3.36 7.40

10 0.01 0.14 0.45 1.27
11 0.50 3.00 2.49 3.43
12 16.24 20.11 21.86 20.22
13 0.98 2.16 3.12 3.83
14 4.85 8.38 4.43 4.87
15 10.37 9.22 8.49 6.65
16 10.60 8.85 7.89 5.99
17 7.79 7.20 7.96 7.93
18 6.62 5.93 6.37 6.17
19 5.76 5.02 5.26 4.88
20 5.01 4.26 4.35 3.87
21 4.45 3.69 3.69 3.20
22 4.05 3.30 3.24 2.73
23 3.68 2.94 2.84 2.33
24 3.34 2.63 2.50 1.99
25 3.04 2.35 2.19 1.70
26 2.84 2.17 2.00 1.53
27 2.66 2.00 1.82 1.37
28 2.49 1.85 1.66 1.23
29 2.33 1.71 1.52 1.10
30 2.18 1.58 1.39 0.99

∆G0(n) ) GT(n) - nG°T (25)
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Gibbs free energies were found via interpolation and next the
equilibrium constants were calculated. As a check, structures
were found via drawing a Schlegel diagram forn ) 19, 22,
and 24 and then the Gibbs free energy were predicted using
the formulas given above. All of the Gibbs free energies found
in such a manner fell within the error bars given when
interpolation was done. Hence, this shows that it is valid to
find the equilibrium constants forn ) 26-29 in such a manner.

Next, it is possible to find the percent abundance of a given
structure according to eq 27. Table 4 gives the percent

abundance of the MAO’s at different temperatures. This is also
plotted in Figure 13. The most abundant species at all temper-
atures isn ) 12, which ranges between 16 and 22%. Higher
temperatures stabilize smaller species (which can be seen in
the large increase ofn ) 9 at 598.15 K), while lower
temperatures stabilize larger species (which can be seen in the
increase ofn g 15 at 198.15 K). This can also be seen when
the weighted average ofn is determined, which is 18.41, 17.23,
16.89, and 15.72 at 198.15, 298.15, 398.15, and 598.15 K,
respectively. These values agree well with experimental data
which estimate thatn ranges between 14 and 2010 especially
considering the fact that only TMA-free MAO was examined
in this study. However, it must be noted that it is not
clear exactly what the experimental results show. That is, we
are not sure if they reportn for (AlOMe)n, or n + m for
(AlOMe)n(TMA)m.

4. Conclusions

Within this study we have first of all proposed a method
which can be used in theoretical structure determination. The
method is based on drawing Schlegel diagrams and next
constructing the appropriate three-dimensional object. We have
also shown from topological arguments that in the most stable
MAO structures there are only six square faces present and
hence few square-square edges. These faces exhibit high ring
strain, and hence, such edges/bonds would be the most acidic.
We propose the low abundance of these faces and thus even a
lower abundance of square-square edges to explain the high
Al:catalyst ratio required for polymerization to occur. We have

also provided a methodology which may be used to investigate
any solution composed of an equilibrium mixture of oligomers.

Moreover, we have performed a complete study on pure
MAO structures which consist of three-coordinate O and four-
coordinate Al atoms. In so doing, we have fitted formulas which
may be used to predict the energies, enthalpies, and entropies
of any given MAO structure within the temperature range of
198.15-598.15 K effectively. Finally, we have calculated the
percent distribution for eachn within this temperature range.
The weighted average givesn as 18.41, 17.23, 16.89, and 15.72
at 198.15, 298.15, 398.15, and 598.15 K, respectively. These
values agree well with experimental data. However, it is not
clear whether the experimental data gives values forn in
(AlOMe)n or for n + m in (AlOMe)n(TMA)m. Using some of
the results obtained here, we shall in a forthcoming study discuss
the structure of TMA-containing MAO.
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Appendix

We must first note that all temperatures are in K; all formulas
predicting energies and enthalpies are in kcal/mol, and those
predicting entropies in cal/mol K.

Energies.The energies of a given MAO caged structure were
found to be heavily dependent upon the structure of the cage
itself. For example, the energy difference between two (AlOMe)12

isomers was found as being 59.8 kcal/mol. It was found that
assigning certain coefficients to atoms in different bonding
environments proved to be an effective means to predict
energies. Of course, Al and O atoms are not equivalent and
their positions within a certain bonding environment should add
slightly different values to the energy. Only two cases were
found where interchanging Al and O atoms gave different
structures and, hence, where the geometries were not symmetric
with respect to Al and O atoms. For (AlOMe)9 they were
structures8 and 9 and for (AlOMe)12 they are structures17
and18 of the Supporting Information. The energy differences
between these two sets of structures were 3.2 and 7.6 kcal/mol,
respectively. Such differences correspond to 0.05% and 0.08%
of the total energy and hence are not very significant. Thus, it
is reasonable to assume that Al and O atoms contribute by equal
amounts to the energy of a given structure when found in a
similar environment. In fact, the coefficients given in eq 20
correspond to an average value. Thus, the energies were fitted
via a least-squares analysis, with the bonding environments as
parameters. The bonding environments and fitted and calculated
energies can be found in Table 6 of the Supporting Information.

Enthalpies. Table 7 of the Supporting Information shows
that the zero-point enthalpy correction is 25n, giving an rms
deviation of 1.16 kcal/mol. Equations 5 and 6 of the Supporting
Information show that modeling the translational and rotational
contributions to the enthalpy is trivial. They are both given as
3/2RT. The vibrational enthalpy was fitted for structures
composed of square and hexagonal faces only. The fit was only
performed on these structures since they have the lowest Gibbs
free energy for a givenn. The estimated and calculated values
can be found in Table 8 of the Supporting Information.

Figure 13. Percentage of eachn at different temperatures.

Keq ) exp(-∆G0(n)/RT) (26)

%(AlOMe)n ) (Keq(n)/∑
i

Keq(i)) × 100 (27)
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Entropies. Equations 1 and 2 given in the Supporting
Information show that the translational entropy is dependent
only upon the mass of the molecule while the rotational entropy
is dependent upon the moment of inertia, which is in turn
dependent upon mass. Hence, it is natural to model the
translational and rotational entropy as a function ofn. Linear
regression was used to obtain formulas which model these two
parameters at room temperature to give eqs 22b and 22c.

The vibrational entropy varied considerably between different
isomers and hence could not be modeled in a similar fashion.
Thus, it was natural to model it in the same way as the energies.
A least-squares analysis with the bonding environments as
parameters was used to fit the entropies at 298.15 K. The results
of the fits giving the translational, rotational, and vibrational
entropies at room temperature are shown in Table 9 of the
Supporting Information.

The extension to different temperatures was performed on
structures consisting only of square and hexagonal faces. Since
predicting entropies at 298.15 K was already possible, it was
decided to devise a method by which entropies at different
temperatures could be found using these values. Tables 10 and
11 of the Supporting Information give the predicted and
calculated values for translational and rotational entropies.

To predict vibrational entropies at a variety of different
temperatures, a different approach must be taken. From eq 3 of
the Supporting Information, we are given the vibrational entropy
at one temperature. If we assume that the entropy at another
temperature is proportional to this value, the following equation
is obtained:

HereC is some constant to be determined andu(i) ) hν(i)/kT.
Hence, for a givenν,

Sincehν/kT is of the order of magnitude of about 10, we can
assume that exp(-hν1/kT1) f 0. Thus, ln(1- exp(-hν/kT) )

ln(1) ) 0. If one simplifies eq 29 and solves forC, the following
is obtained:

Using a Taylor series expansion,

The higher order terms containν1 and hence will be neglected.
Instead, a small correction factor will be added to eq 32 in order
to compensate for neglecting these terms. The correction factor
was found as being (0.0006T2 - 0.5353T + 108.85)-1. Thus,
the vibrational entropies may be obtained via the following
equation:

Table 12 of the Supporting Information shows the differences
between calculated vibrational entropies and those estimated
using eq 33. The rms deviations were found as being 0.27, 1.70,
and 4.09 kcal/mol for 198.15, 398.15, and 598.15 K, respec-
tively. This also gives a good fit, especially taking into account
the fact that the entropies were estimated accurately over a 400
K temperature range. It must be noted that as the temperature
rises, the approximation that exp(-hν1/kT1) f 0 becomes less
appropriate. This is why the rms deviation increases with
increasing temperature and becomes comparably quite large at
598.15 K.

Supporting Information Available: Equations used to calculate
thermodynamic properties, diagrams of all computed MAO caged
structures, Cartesian coordinates of all optimized structures, optimized
parameters for UFF2, binding energies per monomer for all MAO caged
structures, Gibbs free energies for all MAO structures at 298.15 K;
Gibbs free energy per monomer unit for MAO caged structures
composed of square and hexagonal faces only within the temperature
range of 198.15-598.15 K, equilibrium constants for the reaction
n(AlOMe) f (AlOMe)n within the temperature range of 198.15-598.15
K, bonding environments and fitted energies for all structures, calculated
and predicted zero-point energies for all structures, predicted and
calculated vibrational enthalpies at different temperatures, predicted
and calculated entropy values at 298.15 K, and predicted and calculated
translational, rotational, and vibrational entropies at different temper-
atures. This material is available free of charge via the Internet at
http://pubs.acs.org.

IC000845B

nRΣ{(u(i)1e
u(i)1 - 1)-1 - ln(1 - e-u(i)1)} )

C[nRΣ{(u(i)2e
u(i)2 - 1)-1 - ln(1 - e-u(i)2)}] (28)

{(hν1/kT1 exp(hν1/kT1) - 1)-1 - ln(1 - exp(-hν1/kT1)} )

C{(hν1/kT2 exp(hν1/kT2) - 1)-1 - ln(1 - exp(-hν1/kT2)}
(29)

C ) {hν1/kT2 exp(hν1/kT2)}/{hν1/kT1 exp(hν1/kT1)} (30)

C ) (T1/T2) exp(hν1/k (1/T2 - 1/T1)) (31)

C ) (T1/T2)(1 + higher order terms) (32)

S2 ) T2/T1 - ((0.0006T2
2 - 0.5353T2 + 108.85)-1)S1 (33)
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