Insertion Reactions of $(PPh_3)_2Pt(SR)_2$ with CS_2 , where R = H, CMe_3 , $CHMe_2$, $4-C_6H_4Me$; Structure of $(PPh_3)Pt(SC_6H_4Me)(S_2CS-4-C_6H_4Me)$

Alan Shaver,* Mohammad El-khateeb, and Anne-Marie Lebuis

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 2K6

Received July 24, 2000

Introduction

Recently we reported¹ the reaction of **1** with SO₂ to give **2** (Equation 1). Both complexes catalyze the industrially important Claus reaction; they are the first homogeneous catalysts to do so. The Claus reaction involves the reaction of SO₂ with H_2S to give sulfur and water. Equation 1 is thought to be the first step in the reaction.

$$\begin{array}{c} Ph_{3}P \\ Ph_{3}P \\ Ph_{3}P \end{array} \xrightarrow{Pt} SH + SO_{2} \xrightarrow{Ph_{3}P} Pt \xrightarrow{S} S=0 + H_{2}O \quad (1)$$

$$1 \qquad 2$$

Although SO₂ readily inserts into M–C bonds,² and there are a few reports of SO₂ insertion into M–N³ and M–O⁴ bonds, there are no reports, to our knowledge, of SO₂ insertion into M–S bonds. Therefore, the reaction of **1** with SO₂ is thought to involve insertion into the S–H bond.¹ On the other hand, CS₂ readily inserts into M–S bonds;⁵ however, its reactivity with the MSH moiety has not been studied except for one example.^{5a} Therefore, we have conducted a study of the reactivity of CS₂ with *cis*-(PPh₃)₂Pt(SH)₂, **1**, and the thiolate complexes (PPh₃)₂Pt(SR)₂, **4a–c**, the results of which are reported below.

Experimental Section

All experiments were performed under nitrogen using vacuum lines and Schlenk techniques. Complexes 1^7 and $4a-c^8$ were prepared

- (2) (a) Bennett, M. A.; Bruce, M. I.; Matheson, T. W. Comprehensive Organometallic Chemistry; Wilkinson, G., ed.; Pergamon Press: Toronto, 1982; Vol. 4, p 778. b) Kubas, G. J.; Ryan, R. R. Polyhedron 1986, 5, 473. c) Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98. d) Kubas, G. J. Inorg. Chem. 1979, 18, 182. e) Wojcicki, A. Adv. Organomet. Chem. 1974, 12, 31. f) Jacobson, S. E.; Wojcicki, A. J. Am. Chem. Soc. 1973, 95, 6921.
- (3) Wernschuh, E.; Zimmering, R. Z. Chem. 1988, 190.
- (4) (a) Michelin, R. A.; Napoli, M.; Ros, R. J. Organomet. Chem. 1979, 175, 239. b) Green, L. M.; Meek, D. W. Organometallics 1989, 8, 659. c) Randall, S. L.; Miller, C. A.; Janik, T. S.; Churchill, M. K.; Atwood, J. D. Organometallics 1994, 13, 141.
- (5) (a) Shaver, A.; Plouffe, P.-Y.; Bird, P.; Livingstone, E. Inorg. Chem. 1990, 29, 1826. b) Shaver, A.; Lum, B. S.; Bird, P.; Arnold, K. Inorg. Chem. 1989, 28, 1900. c) Coucouvanis, D. Prog. Inorg. Chem. 1979, 26, 301. d) Burns, P. P.; McCullough, F. P.; McAuliffe, C. A. Adv. Inorg. Chem. Radiochem. 1980, 23, 211. e) Sato, F.; Fida, K.; Sato, M. J. Organomet. Chem. 1972, 39, 197. f) Avdeef, A.; Facklev, J. P. J. Coord. Chem. 1975, 4, 211.
- (6) Hunt, C. T.; Matson, G. B.; Balch, A. L. Inorg. Chem. 1981, 20, 2270.
- (7) Shaver, A.; Lai, R. D.; Bird, P.; Wickramasinghe, W. Can. J. Chem. 1985, 63, 2555.
- (8) Lai, R. D.; Shaver, A.; Inorg. Chem. 1981, 20, 477.

according to published procedures. CS₂ (Aldrich) was used as received. Nuclear magnetic resonance spectra were recorded under nitrogen on a Varian XL-200 or JEOL-270 spectrometer. Chemical shifts are in ppm relative to TMS (for ¹H) and H₃PO₄ (for ³¹P) at 0 ppm. Infrared spectra were recorded on an Analect AQS-20 Fourier transform infrared (FT-IR) spectrophotometer. Elemental analyses were performed by Canadian Microanalytical Service Ltd., Delta, British Columbia. Melting points were obtained on a Thomas Hoover Capillary melting point apparatus and are uncorrected.

(**PPh₃)₂Pt(S₂CS**) (**3**). In a 100 mL Schlenk flask, carbon disulfide (10.0 mL) was added to a solid sample of *cis*-(PPh₃)₂Pt(SH)₂ (0.10 g, 0.13 mmol). The solution became yellow after stirring overnight. The volatile compounds were removed under vacuum. Recrystallization of the residue from methylene chloride/hexanes gave yellow crystals (0.09 g, 85%). Mp: 265–267°. IR (KBr, cm⁻¹): $\nu_{C=S}$ 1060(s). ¹H NMR (CDCl₃): δ 7.20 (m, PPh₃). ³¹P NMR (CDCl₃): δ 18.3 (J_{Pt-P} = 3146 Hz). Anal. Calcd for C₃₇H₃₀P₂PtS₃·CH₂Cl₂: C, 50.00; H, 3.53; S, 10.54. Found C, 49.81; H, 3.65; S, 10.02.

(**PPh₃)Pt(SCHMe₂)(S₂CSCHMe₂) (5a).** In a 100 mL Schlenk flask, carbon disulfide (10.0 mL) was added to a solid sample of *cis*-(PPh₃)₂-Pt(SCHMe₂)₂ (0.050 g, 0.057 mmol). The solution became dark red almost immediately, and the stirring was continued for 4 h. The volatile compounds were removed under vacuum. Recrystallization of the residue from hot hexanes gave purple crystals (0.031 g, 79%). Mp: 129–131°. IR (KBr, cm⁻¹): $\nu_{CS \text{ of } CS3}$ 985(s), $\nu_{CS \text{ of } SR}$ 799(s), 925(m). ¹H NMR (CDCl₃): δ 1.32 (d, 6H, SCH(CH₃)₂), 1.42 (d, 6H, SCH(CH₃)₂), 2.99 (septet, 1H, SCH(CH₃)₂), 4.06 (septet, 1H, SCH(CH₃)₂), 7.28 (m, 9H, PPh₃), 7.62 (m, 6H, PPh₃). ³¹P NMR (CDCl₃): δ 17.8 ($J_{Pt-P} = 3780$ Hz). Anal. Calcd for C₂₅H₂₉PPtS₄: C, 43.91; H, 4.27; S, 18.76. Found: C, 44.53; H, 4.33; S, 18.40.

(**PPh₃**)**Pt**(**SCMe₃**)(**S₂CSCMe₃**) (**5b**). In a 100 mL Schlenk flask, carbon disulfide (10.0 mL) was added to a solid sample of *cis*-(PPh₃)₂-Pt(SCMe₃)₂ (0.050 g, 0.056 mmol). The solution became dark red almost immediately, and the stirring was continued for 4 h. The volatile compounds were removed under vacuum. Recrystallization of the crude residue from hot hexanes gave purple crystals (0.031 g, 78%). Mp: 160–162°. IR (KBr, cm⁻¹): $\nu_{CS \text{ of } CS3} = 988(\text{m}), \nu_{CS \text{ of } SR} = 768(\text{s}), 922(\text{m}).$ ¹H NMR (CDCl₃): δ 1.35 (s, 9H, SC(CH₃)₃), 1.61 (s, 9H, SC(CH₃)₃), 7.37 (m, 9H, PPh₃), 7.67 (m, 6H, PPh₃). ³¹P NMR (CDCl₃): δ 17.1 ($J_{Pt-P} = 3780$ Hz). Anal. Calcd for C₂₇H₃₃PPtS₄: C, 45.56; H, 4.67; S, 18.02. Found C, 45.50; H, 4.86; S, 15.93.

(**PPh₃)Pt(S-4-C₆H₄Me)(S₂CS-4-C₆H₄Me) (5c).** In a 100 mL Schlenk flask, carbon disulfide (10.0 mL) was added to a solid sample of *trans*-(PPh₃)₂Pt(S-4-C₆H₄Me)₂ (0.05 g, 0.052 mmol). The solution became dark red after it was stirred overnight. The volatile compounds were removed under vacuum. Recrystallization of the residue from methylene chloride/hexanes gave red crystals (0.035 g, 86%). Mp: 196–198°. IR (KBr, cm⁻¹): ν_{CS} of _{CS3} 980 (s), ν_{CS} of _{SR} 805(s), 943(s). ¹H NMR (CDCl₃): δ 2.24 (s, 3H, SC₆H₄CH₃), 2.34 (s, 3H SC₆H₄CH₃), 6.88 (d, 2H, SC₆H₄CH₃), 7.12 (d, 2H, SC₆H₄CH₃), 7.25 (d, 2H, SC₆H₄Me), 7.29 (d, 2H, SC₆H₄Me), 7.45 (m, 9H, PPh₃), 7.60 (m, 6H, PPh₃). ³¹P NMR (CDCl₃): δ 16.8 (*J*_{Pt-P} = 3730 Hz). Anal. Calcd for C₃₃H₂₉PPtS₄: C, 50.82; H, 3.75; S, 16.45. Found: C, 49.77; H, 3.55; S, 15.08.

X-ray Structure Determination for 5c (Table 1).

Data for a red crystal of dimensions $0.48 \times 0.35 \times 0.17$ mm was measured on a Rigaku AFC6S diffractometer using $\omega/2\theta$ scan mode and Cu K α radiation. In all, 9408 reflections were measured of which 4731 were used for structure solution and refinement. The structure was solved by the Patterson method (SHELXS-96)⁹ and refined on F^2 using SHELXL-96.⁹ All non-hydrogen atoms are isotropic and were introduced in calculated positions. The structure was checked for missed symmetry and solvent voids using PLATONS.¹⁰

(10) Spek, A. L. Acta Cryst. 1990, A46, C34.

^{*} To whom correspondence should be addressed.

Shaver, A.; El-khateeb, M.; Lebuis, A.-M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2362.

⁽⁹⁾ Sheldrick, G. M. SHELXS-96; University of Gottingen: Germany, 1996.

Notes

 Table 1. Crystallographic Data for 5c

empirical formula C33H29S4PPt	FW 779.86
a 10.2050(10) Å	space group triclinic P1
b 11.206(2) Å	<i>T</i> 20 °C
c 15.235(2) Å	λ 1.54056
α 93.14(2)°	$d_{\rm calc} 1.636 {\rm g/cm^{-3}}$
β 92.54(2)°	$\mu \ 11.388 \ \mathrm{mm}^{-1}$
γ 114.14(1)°	trans range 0.02-0.14
V 1583.2(4) Å ³	$R_1 (I > 2\sigma I, \text{all}) 0.0390/0.0411^a$
Z 2	$\omega R_2 (I > 2\sigma I, \text{all}) 0.1073/0.1101^b$
reflns measured 9408	
unique refln (R_{int}) 4731 (0.053)	

 ${}^{a}R_{1} = \sum |F_{o}| - |F_{c}| / \sum |F_{o}|. {}^{b}\omega R_{2} = [\sum \omega (F_{o}^{2} - F_{c}^{2})^{2} / \sum (\omega (F_{o}^{2})^{2})]^{1/2}.$

Figure 1. ORTEP drawing of (PPh₃)Pt(SCS₂-4-C₆H₄Me)(S-4-C₆H₄-Me) (**5**c). Selected bond lengths (Å) and angles (deg): Pt-P, 2.246-(2); Pt-S(1), 2.382(2); Pt-S(2), 2.326(2); Pt-S(4), 2.293(2); P-Pt-S(1), 172.26(6); P-Pt-S(2), 98.72(6); P-Pt-S(4), 91.03(7); S(4)-Pt-S(2), 169.73(7); S(4)-Pt-S(1), 96.48; S(2)Pt-S(1), 73.68(6).

Results and Discussion

Complex 1 reacted with CS_2 to give $(PPh_3)_2Pt(S_2CS)$, 3, in 85% yield with evolution of H_2S (Equation 2).

$$\begin{array}{c} Ph_{3}P \\ Ph_{3}P \\ Ph_{3}P \end{array} \xrightarrow{Pt} SH + CS_{2} \xrightarrow{Ph_{3}P} Pt \xrightarrow{S} C=S + H_{2}S \quad (2) \\ 1 \\ 3 \end{array}$$

The yellow, air stable complex was identified by its spectroscopic properties⁶ and elemental analysis. The thiolato complexes $4\mathbf{a}-\mathbf{c}$ also reacted with CS₂ to give the thiolatothioxanthato complexes (PPh₃)Pt(SR)(S₂CSR) $5\mathbf{a}-\mathbf{c}$ in 78% to 86% yield (Equation 3).

The spectroscopic properties and elemental analyses of 5a-c suggested that only one CS₂ molecule had been incorporated while one PPh₃ ligand had been lost. This was confirmed by the X-ray structure determination of 5c shown in Figure 1. Complexes 1 and 4a did not react with CO₂ or COS at room temperature in THF or CH₂Cl₂.

The reactivity of CS_2 with **1** is similar to that of SO_2^{-1} in that only one molecule of each is incorporated, leading to elimination of H₂S and H₂O to give **3** and **2**, respectively. In the case of CS_2 , the probable intermediate contains the PtSC(S)SH moiety, which reacts internally with the other SH ligand. Similar intermediates were proposed^{5a} in the sequential reaction of CS_2 with two molecules of CpRu(PPh₃)₂SH to give Cp₂Ru₂(PPh₃)₃- CS_3 , which contains a bridging CS₃ ligand. The chemistry of CS_2 with **1** is similar to the Claus chemistry observed between **1** and SO₂. Complex **3** has also been prepared⁶ via Equation 4.

Complexes 4a-c, which do not contain the reactive Pt-SH moiety, react with CS₂ probably via an intermediate containing a monodentate thioxanthato ligand which becomes bidentate via loss of a PPh₃ ligand. The reactions between 4a-c and CS_2 were monitored by NMR spectroscopy. The rates of reaction with complexes containing electron releasing groups (CHMe₂, CMe₃) were much faster than that containing $4-C_6H_4Me$. There was no evidence of any intermediates. The rate increases with increasing CS₂ concentrations, decreases in the presence of added PPh₃, and is invariant in the presence of CO. These observations are very similar to those⁵ made for the reactions of CS₂ with CpRu(PPh₃)₂SR and CpW(CO)₂(PPh₃)SR. These latter reactions are thought to proceed via loss of PPh₃ and precoordination of CS₂ to the metal atoms followed by electrophilic attack by the CS_2 ligand on the sulfur atom of the thiolato ligand. The reactions of 4 with CS₂ are also consistent with precoordination of CS₂.

Acknowledgment. We thank the Natural Science and Engineering Research Council of Canada and the Quebec Department of Education for financial support. We thank McGill University for Fellowship support of M.E.

Supporting Information Available: X-ray crystallographic file, in CIF format, for the structure determination of **5c**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC000825+