The Preparation of $(\eta^5$ -C₅Me₅)Ir(PMe₃)S₄ from $(\eta^5$ -C₅Me₅)Ir(PMe₃)(SH)₂ and SO₂

Bouchra El Mouatassim, Céline Pearson, and Alan Shaver*

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

Received December 7, 2000

Introduction

A problem associated with burning petroleum and natural gas is air pollution due to the presence of sulfur compounds which must be removed. Hydrodesulfurization $(HDS)^1$ gives hydrocarbons and the toxic gas H_2S , which is treated by the Claus process to give sulfur and water.² Three simple conceptual models of the heterogeneously catalyzed Claus reaction can be described. Model **A** depicts attack of chemisorbed H_2S by free SO₂, model **B** represents the attack of chemisorbed SO₂ by free H₂S, and in model **C**, both SO₂ and H₂S are adsorbed before reaction. These three models are easily translated to homogeneous system as shown.

With respect to model **A**, we recently reported³ that *cis*-(PPh₃)₂Pt(SH)₂, **1**, homogeneously catalyzes the Claus Reaction. The catalytically active intermediate (PPh₃)₂PtS₃O, **2**, was isolated. The reaction of **1** with a molecule of SO₂ to give **2** and a molecule of H₂O may be the first step in the catalytic cycle.

The trans isomer of **1** was not catalytically active, which highlights the significance of the cis arrangement of the SH⁻ ligands. This created interest in the reactivity of other complexes which contain two adjacent SH⁻ ligands. Here we report the reaction of (η^{5} -C₅Me₅)Ir(PMe₃)(SH)₂, **3**, with excess SO₂ which, unexpectedly, gave a polysulfido complex, **4**.

 (a) Satterfield, C. N. *Heterogeneous Catalysis in Industrial Practice*, 2nd ed., McGraw-Hill: New York, 1991; p 378.
 (b) Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. *Chemistry of Catalytic Processes*; McGraw-Hill: New York, 1979; p 390.
 (c) Myers, A. W.; Jones, W. D. *Organometallics* 1996, 15, 2905.

Results and Discussion

Treatment of **3** in benzene or CH_2Cl_2 at room temperature with excess SO_2 led to a color change from yellow to dark red within 10 min. Subsequent work up gave red, air stable crystals of **4** in good yield. Sensitive TLC methods which have been developed³ to detect the presence of sulfur were applied, but no traces of sulfur were detected. Complex **3** reacts with sulfur to give **4**, but the reaction takes 24 h to go to completion. This is consistent with the direct reaction between **3** and SO_2 to produce the tetrasulfido ring.

This complex has been reported as a member of a mixture of the polysulfide complexes of the type^{4a} (η^{5} -C₅Me₅)Ir(PMe₃)-S_x, where x = 4, 5, 6, prepared from (η^{5} -C₅Me₅)Ir(PMe₃)Cl₂ and ammonium polysulfide. The analogous complex (η^{5} -C₅-Me₅)Ir(CO)S₄, obtained by photolysis of (η^{5} -C₅Me₅) Ir(CO)₂ in the presence of S₈,^{4b} and the rhodium complexes, CpRh-(PPh₃)S_x, where x = 4, 5, 6, are also known.⁵ X-ray crystal-lographic analysis of **4** (Figure 1) showed that it is isomorphous with its selenium analogue.⁶

The reaction of **3** with SO₂ in CD₂Cl₂ was monitored by proton NMR. When excess SO₂ was injected, the only peaks observed where those due to **4** and one at 11.6 ppm, presumably due to sulfuric acid. Addition of a drop of a dilute solution of H₂SO₄ in CD₂Cl₂ to the NMR tube confirmed the assignment of this peak to H₂SO₄. Control experiments confirmed that its presence was due to the reaction of SO₂ with **3**. SO₃ is extremely difficult to directly detect in these kind of reactions. We assume that the production of H₂SO₄ is indirect evidence of SO₃ formation during the reaction, especially in the presence of traces of water. When the SO₂ was carefully dried prior to injection

- (3) Shaver, A.; El-khateeb, M.; Lebuis, A.-M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2362.
- (4) (a) Herberhold, M.; Jin, G.-X.; Rheingold, A. L. Chem. Ber. 1991, 124, 2245. (b) Herberhold, M.; Jin, G.-X.; Milius, W. Chem. Ber. 1995, 128, 557.
- (5) Wakatsuki, Y.; Yamazaki, H.; Cheng, C. J. Organomet. Chem. 1989, 372, 437.
- (6) Klein, D. P.; Kloster, G. M.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 2022.

^{*} To whom the correspondence should be addressed. Fax: 514-398-3932. E-mail: shaver@artsci.lan.mcgill.ca.

^{(2) (}a) Yanxin, C.; Yi, J.; Wenhafo, L.; Rongchao, J.; Shaozhen, T.; Wenbin, H. *Catal. Today* **1999**, *50*, 39. (b) Stern, D. L.; Nariman, K. E.; Buchanan, J. S.; Bhore, N. A.; Johnson, D. L.; Grasselli, K. R. *Catal. Today*. **2000**, *55*, 311. (c) Grancher, P. *Hydrocarbon Process.* **1978**, *57*, 155. (d) Grancher, P. *Hydrocarbon Process.* **1978**, *57*, 257. (e) George, Z. M.; Tower, R. W. *Can. J. Chem. Eng.* **1985**, *63*, 618. (f) Datta, A.; Cavell, R. G.; Tower, T. W.; George, Z. M. *J. Phys. Chem.* **1985**, *89*, 443. (g) Datta, A.; Cavell, R. G. *J. Phys. Chem.* **1985**, *89*, 450. (h) Datta, A.; Cavell, R. G. *J. Phys. Chem.* **1985**, *89*, 450. (h) Datta, A.; Cavell, R. G. *J. Phys. Chem.* **1985**, *89*, 454. (i) Karge, H. G.; Dalla Lana, I. G. *J. Phys. Chem.* **1984**, *88*, 1958.

Figure 1. Platon drawing (40%) of (η^{5} -C₅Me₅)Ir(PMe₃)S₄. Selected bond lengths (Å) and angles (deg): Ir-S(1), 2.359(3); Ir-S(4), 2.365-(4); Ir-P, 2.258(4); S(1)-S(2), 2.057(6); S(2)-S(3), 2.034(8); S(3)-S(4), 2.065(7); P-Ir-S(1), 86.53(14); P-Ir-S(4), 90.57(16); S(1)-Ir-S(4), 92.41(15); S(3)-S(4)-Ir, 107.9(2).

|--|

chemical formula	$C_{13}H_{24}IrPS_4$
fw	531.75
cryst syst	orthorhombic
space group	$P2_{1}2_{1}2_{1}$
a	8.767(3) Å
b	13.443(5) Å
С	15.447(4) Å
V	1820.5(10) Å
Z=	1.940 g/cm ⁻³
$d_{ m calc}$	4
λ	0.70930 Å
Т	293(2) K
R_1^a	$0.053, 0.063 (I > 2\sigma(I), all)$
$\omega R_2 (\text{on } F_2)^b$	$0.126, 0.133 (I > 2\sigma(I), all)$
Flack ^{11d}	-0.01(2)
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} . {}^{b}\omega R_{2} = [\sum \omega (F_{o}^{2} - F_{c}^{2}) / \sum (\omega (F_{o}^{2})^{2}]^{1/2}.$	

in excess, several peaks were observed, suggesting the presence of many products including **4**. Injection of unpurified SO_2 in 1, 2, 3, or 4 equiv gave peaks due to **3** and **4** in the ratio consistent with the stoichiometry; no intermediates were observed. Addition of 5 equiv of SO_2 gave complete conversion, giving rise to the assigned stoichiometry of the reaction. Complex **4** does not react with H_2S or H_2 and, therefore, perhaps not surprisingly, neither **3** nor **4** catalyses the Claus process.

Treatment of $(\eta^{5}\text{-}C_{5}\text{Me}_{5})\text{Ir}(\text{PMe}_{3})(\text{SH})(\text{H})$ with SO₂ gave decomposition while $(\eta^{5}\text{-}C_{5}\text{Me}_{5})\text{Ir}(\text{PMe}_{3})(\text{SH})\text{Cl}$ gave $(\eta^{5}\text{-}C_{5}\text{-}\text{Me}_{5})\text{Ir}(\text{PMe}_{3})\text{Cl}_{2}$ and **4**, which is consistent with metathesis to form the dichloride and **3**. Similar treatment of $(\eta^{5}\text{-}C_{5}\text{Me}_{5})\text{Ir}(\text{PMe}_{3})(\text{SH})(\text{Br})$ gave **4**, some of the hexasulfide $(\eta^{5}\text{-}C_{5}\text{Me}_{5})\text{-}$ Ir $(\text{PMe}_{3})\text{S}_{6}$,^{4a} and $(\eta^{5}\text{-}C_{5}\text{Me}_{5})\text{Ir}(\text{PMe}_{3})\text{Br}_{2}$.

Kubas and co-workers have summarized the structure, bonding,^{7a} and reactivity^{7b} of SO₂ containing complexes. The formation of sulfato complexes has been observed previously via unusual reactions, such as that^{7c} between SO₂ and Ru(H)₂- $(PR_3)_x$, where x = 3 or 4, to give $Ru(SO_4)(SO_2)(PPh_3)(H_2O)$ wherein SO₂ disproportionation was proposed. SO₂ reacted with $(\eta^6-C_6H_6)_2Cr$ to give⁸ the salt $[\eta^6-C_6H_6)_2Cr]S_4O_{10}$, which contains the anion $S_2O_6 \cdot 2SO_2^{2-}$. The complex $(dppe)_2Mo(N_2)_2$ reacted⁹ with SO₂ to give *trans*- $(dppe)_2Mo(S)O$, the crystal structure of which contained SO₂ and H_2SO_4 in stoichiometric proportion in the lattice. Oxygen transfer from SO₂ has been observed¹⁰ in the reaction of SO₂ with $(\eta^5-C_5Me_5)Ru(CO)_2H$ to give $(\eta^5-C_5Me_5)Ru(CO)_2SO_3H$ and $[(\eta^5-C_5Me_5)Ru(CO)_2]_2$ - $(\mu$ -S₂O₃). The reaction between $(\eta^5-C_5Me_5)Ir(PMe_3)(SH)_2$ and SO₂ reported here has few precedents and represents another interesting example³ of Claus-like chemistry induced by a metal complex with two cis-oriented SH⁻ ligands.

Experimental Section

Cp*Ir(PMe₃)S₄, 4. (η^{5} -C₅Me₅)Ir(PMe₃)(SH)₂ (0.17 g, 0.36 mmol) was dissolved in CH₂Cl₂ (3 mL), and an excess of SO₂ was added by syringe. The reaction changed color immediately from yellow to red–orange. After 15 min, hexane (1.5 mL) was added, and the reaction was cooled to -15 °C. The red oil thus obtained was dissolved in methanol (5 mL) and left standing at room temperature to give large red crystals. Yield: 89%. The spectroscopic data was the same as that published in the literature.^{4a}

X-ray Structure Determination for 4 (Table 1). A red crystal of **4** (0.65 × 0.57 × 0.25 mm), obtained by slow evaporation of a methanolic solution, was mounted on a glass fiber. Intensity measurements were made using a Rigaku AFC6S diffractometer with Mo K α radiation. A total of 14 258 reflections were collected ($-10 \le h \le 10$, $-16 \le k < 16$, $-19 \le l < 19$) using $\omega/2\theta$ scan mode to a maximum 2θ value of 52°; of these 3 584 were unique (merging $R_{int} = 0.12$, decay = 0.8%). The number of reflections observed ($I \ge 2\sigma(I)$) was 3 157. The data were processed and corrected for absorption (ψ scans, transmission range 0.26–1.00 μ = 7.826 mm⁻¹). The structure was solved by direct methods using SHELXS^{11a} and difmap synthesis using SHELXL 96.^{11b} All non-hydrogen atoms were refined anisotropically, while the hydrogen atoms were calculated at idealized positions using riding model with different C–H distances for each type of hydrogen. Atomic scattering factors are from the usual sources.^{11c}

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supporting Information Available: Deposited material includes a complete table of X-ray data and references, final refined atomic, anisotropic thermal parameters, calculated hydrogen atom coordinates, complete table of bond lengths and angles, torsion angels, least-squares planes for complex 4, and an X-ray crystal-lographic file, in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC001385P

- (8) Elschenbroich, C.; Gondrum, R.; Massa, W. Angew. Chem., Int. Ed. Engl. 1985, 24, 11.
- (9) Lorenz, I.-P.; Walter, G.; Hiller, W. Chem. Ber. 1990, 123, 979.
- (10) Kubat-Martin, K. A.; Kubas, G. J.; Ryan, R. R. Organometallics, 1989, 8, 1910.
- (11) (a) Sheldrick, G. M. SHELXS, Program for the solution of crystal structures; University of Gottingen: Germany, 1990. (b) Sheldrick, G. M. SHELXI-96, Program for structure analysis; University of Gottingen: Germany, 1996. (c) International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, 1992; Vol. C, Tables 4, 2, and 6. (d) Flack, H. D. Acta Cryst. 1983, A39, 876–881.

^{(7) (}a) Ryan, R. R.; Kubas, G. J.; Moody, D. C.; Eller P. G. *Struct. Bonding* **1981**, *46*, 48. (b) Kubas, G. J. *Acc. Chem. Res.* **1994**, *27*, *183*. (c) Ghatak, I.; Mingos, D. M. P.; Hursthouse, M. B.; Abdul-Malik, K. M. Transition Met. Chem. (London) **1979**, *4*, 260.