New Layered Materials: Syntheses, Structures, and Optical and Magnetic Properties of CsGdZnSe₃, CsZrCuSe₃, CsUCuSe₃, and BaGdCuSe₃

Fu Qiang Huang, Kwasi Mitchell, and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208

Received April 24, 2001

Four new quaternary selenides CsGdZnSe₃, CsZrCuSe₃, CsUCuSe₃, and BaGdCuSe₃ have been synthesized with the use of traditional high-temperature solid-state experimental methods. These compounds are isostructural with KZrCuS₃, crystallizing with four formula units in the orthorhombic space group *Cmcm*. Cell constants (Å) at 153 K are CsGdZnSe₃ 4.1684(7), 15.765(3), 11.0089(18); CsZrCuSe₃ 3.903(2), 15.841(10), 10.215(6); CsUCuSe₃ 4.1443(7), 15.786(3), 10.7188(18); and BaGdCuSe₃ 4.1839(6), 13.8935(19), 10.6692(15). The structure of these ALnMSe₃ compounds (A = Cs, Ba; Ln = Zr, Gd, U; M = Cu, Zn) is composed of $\frac{2}{\infty}$ [LnMSe₃ⁿ⁻] (n = 1, 2) layers separated by A atoms. The Ln atom is octahedrally coordinated to six Se atoms, the M atom is tetrahedrally coordinated to four Se atoms, and the A atom is coordinated to a bicapped trigonal prism of eight Se atoms. Because there are no Se–Se bonds in the structure, the oxidation state of A is 1+ (Cs) or 2+ (Ba), that of Ln is 3+ (Gd) or 4+ (Zr, U), and that of M is 1+ (Cu) or 2+ (Zn). CsGdZnSe₃ and BaGdCuSe₃, which are paramagnetic, obey the Curie–Weiss law and have effective magnetic moments of 7.87(6) and 7.85(5) $\mu_{\rm B}$ for Gd³⁺, in good agreement with the theoretical value of 7.94 $\mu_{\rm B}$. Optical transitions at 1.88 and 2.92 eV for CsGdZnSe₃ and 1.96 eV for BaGdCuSe₃ were deduced from diffuse reflectance spectra.

Introduction

New compounds containing a combination of d- and felements are of great interest in solid-state chemistry and materials science because of their physical properties. Examples include the industrially important materials Nd:YIG1 and the permanent magnetic alloys SmCo₅ and Nd₂Fe₁₄B,² as well as the heavy fermion conductors CeRu₂Si₂³ and HoNi₂B₂C.⁴ The magnetic exchange energy in d/f compounds may comprise three different types of spin-spin interactions, namely, d-d, d-f, and f-f, to give materials suitable for magnetic storage.^{5,6} Additionally, d-element chalcogenide semiconductors, such as MQ (M = Zn, Cd; Q = S, Se, Te), are widely used for their optical properties.7 Traditional chalcogenide luminescent materials of this type may be doped with Cu⁺, Ag⁺, Mn²⁺, or f-metal Ln³⁺ cations that act as activators and modify the luminescent and magnetic properties of such materials.^{7–9} Consequently, chalcogenide compounds containing both d- and f-elements may display a host of interesting magnetic and optical properties.

Recently, many new quaternary alkaline-earth rare-earth d-element chalcogenides (A/Ln/M/Q) have been synthesized.

- (1) Helszan, J. YIG Resonators and Filters; John Wiley & Sons: New York, 1985.
- (2) Herbst, J. F. Rev. Mod. Phys. 1991, 63, 819-898.
- (3) Gupta, L. C.; MacLaughlin, D. E.; Tien, C.; Godart, C.; Edwards, M. A.; Parks, R. D. Phys. Rev. B 1983, 28, 3673–3676.
- (4) Goldman, A. I.; Stassis, C.; Canfield, P. C.; Zaretsky, J.; Dervenagas, P.; Cho, B. K.; Johnston, D. C.; Sternlieb, B. *Phys. Rev. B* 1994, 50, 9668–9671.
- (5) Wohlfarth, E. P. In *Ferromagnetic Materials*; Wohlfarth, E. P., Ed.; North-Holland: New York, 1980; Vol. 1, pp 1–70.
- (6) Buschow, K. H. J. In *Ferromagnetic Materials*; Wohlfarth, E. P., Ed.; North-Holland: New York, 1980; Vol. 1, pp 297–414.
- (7) West, A. R. Solid State Chemistry and its Applications; John Wiley & Sons: New York, 1984.
- (8) Lunn, B.; Davies, J. J. Semicond. Sci. Technol. 1990, 5, 1155-1160.
- (9) Isaacs, E. D.; Heiman, D.; Zayhowski, J. J.; Bicknell, R. N.; Schetzina, J. F. Appl. Phys. Lett. 1986, 48, 275–277.

The d-elements found in these compounds are typically coinage metals. Examples include RbLn₂CuSe₄ (Ln = Sm, Gd, Dy),¹⁰ Rb_{1.5}Ln₂Cu_{2.5}Se₅ (Ln = Gd, Dy),¹⁰ RbSm₂Ag₃Se₅,¹⁰ BaLnMQ₃ (Ln = rare earth; M = Cu, Ag, Au; Q = S, Se, Te),¹¹⁻¹⁴ Ba₂-LnAg₅S₆ (Ln = La, Y),¹⁵ KGd₂CuS₄,¹⁶ K₂CeCu₂S₄,¹⁷ ALnCu₂S₆ (A = K, Cs; Ln = La, Ce, Eu),¹⁷⁻¹⁹ K_{1.5}Dy₂Cu_{2.5}Te₅,¹⁴ K_{0.5}-Ba_{0.5}DyCu_{1.5}Te₃,¹⁴ CsUCuTe₃,²⁰ CsCeCuS₃,¹⁹ K₂CeAg₃Te₄,²¹ KCeCuTe₄,²² and Rb₂CeCu₃Te₅.²³

The present investigation details the synthesis and physical properties of four new quaternary chalcogenides in the A/Ln/M/Q series, namely, CsGdZnSe₃, CsZrCuSe₃, CsUCuSe₃, and BaGdCuSe₃. These compounds have the simple KZrCuS₃ structure type.²⁴ The simplicity of this structure type makes more tractable the correlation of physical properties with chemical substitution.

- (10) Huang, F. Q.; Ibers, J. A. J. Solid State Chem. 2000, 151, 317-322.
- (11) Christuk, A. E.; Wu, P.; Ibers, J. A. J. Solid State Chem. **1994**, 110, 330–336.
- (12) Wu, P.; Christuk, A. E.; Ibers, J. A. J. Solid State Chem. **1994**, 110, 337–344.
- (13) Wu, P.; Ibers, J. A. J. Alloys Compd. 1995, 229, 206-215.
- (14) Huang, F. Q.; Choe, W.; Lee, S.; Chu, J. S. Chem. Mater. 1998, 10, 1320–1326.
- (15) Wu, P.; Ibers, J. A. Z. Kristallogr. 1993, 208, 35-41.
- (16) Stoll, P.; Dürichen, P.; Näther, C.; Bensch, W. Z. Anorg. Allg. Chem. 1998, 624, 1807–1810.
- (17) Sutorik, A. C.; Albritton-Thomas, J.; Kannewurf, C. R.; Kanatzidis, M. G. J. Am. Chem. Soc. 1994, 116, 7706–7713.
- (18) Bensch, W.; Dürichen, P. Chem. Ber. 1996, 129, 1489-1492.
- (19) Sutorik, A. C.; Albritton-Thomas, J.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G. *Chem. Mater.* **1996**, *8*, 751–761.
 (20) Cody, J. A.; Ibers, J. A. *Inorg. Chem.* **1995**, *34*, 3165–3172.
- (21) Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. Inorg. Chem. 1998, 37, 6562–6563.
- *Chem.* **1998**, *37*, 6562–6563. (22) Patschke, R.; Heising, J.; Kanatzidis, M. *Chem. Mater.* **1998**, *10*, 695–
- 697. (23) Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. J. Mater.
- *Chem.* **1998**, 8, 2587–2589. (24) Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. J. Solid State Chem.
- (24) Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. J. Solid State Chem. 1992, 101, 257–264.

10.1021/ic0104353 CCC: \$20.00 © 2001 American Chemical Society Published on Web 08/22/2001

Experimental Section

Syntheses. The following reagents were used as obtained: Cs (Aldrich, 99.5%), Gd (Alfa, 99.9%), U (Omega, 99.7%), Zr (Aldrich, 99.9+%), Cu (Aldrich, 99.999%), Zn (Johnson Matthey, 99.99%), Se (Aldrich, 99.5%), BaSe (Alfa Aesar, 99.5%), and CsI (Aldrich, 99.99%). Cs₂Se₃, the reactive flux²⁵ employed in the syntheses, was prepared by the stoichiometric reaction of the elements in liquid NH₃. Reaction mixtures were loaded into fused-silica tubes under an Ar atmosphere in a glovebox. These tubes were sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The products of these reactions were consistent with the stated compositions, as determined by the examination of selected single crystals with an EDX-equipped Hitachi S-4500 SEM. The compounds are moderately stable in air.

CsGdZnSe₃ was obtained from the reaction of 0.5 mmol of Cs₂Se₃, 1.0 of mmol Gd, 1.0 mmol of Zn, and 2.0 mmol of Se with the addition of approximately 150 mg of CsI as flux. The sample was heated to 1273 K in 48 h, kept at 1273 K for 50 h, and cooled at 4 K/h to 473 K, and then the furnace was turned off. The product was washed with *N*,*N*-dimethylformamide (dmf) and water and finally dried with acetone. The product consisted of ivory flat needles and plates of CsGdZnSe₃ in 90–95% yield (based upon Gd).

CsZrCuSe₃ and CsUCuSe₃ were obtained from the reaction of 0.5 mmol of Cs₂Se₃, 0.5 mmol of Ln (Zr or U), 0.5 mmol of Cu, and 2.0 mmol of Se. The samples were heated to 1073 K in 24 h, kept at 1073 for 72 h, and cooled at 4 K/h to 423 K, and then the furnace was turned off. The products were washed with dmf and dried with acetone. CsZrCuSe₃ and CsUCuSe₃ crystallize as black needles. In addition to the desired products, nearly indistinguishable black needles of Cs/Ln/Se ternaries and Ln/Se binaries were also obtained. Owing to the similar appearance of these various products and the fragile nature of crystals of CsZrCuSe₃ and CsUCuSe₃, the yields of these reactions are unknown and physical measurements, other than structure determinations, could not be performed.

BaGdCuSe₃ was prepared from the reaction of 1.0 mmol of BaSe, 1.0 mmol of Gd, 1.0 mmol of Cu, and 2.0 mmol of Se. The sample was heated to 1223 K in 48 h, kept at 1223 K for 72 h, and cooled to 293 K at the rate of 50 K/h. The product was washed with dmf and water and finally dried with acetone. The product consisted of dark-red powder and needles of BaGdCuSe₃ in 90–95% yield (based on Gd).

Structure Determinations. Single-crystal X-ray diffraction data were collected with the use of graphite-monochromatized Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 153 K on a Bruker Smart-1000 CCD diffractometer.²⁶ The crystal-to-detector distance was 5.023 cm. Crystal decay was monitored by re-collecting 50 initial frames at the end of data collection. Data were collected by a scan of 0.3° in ω in groups of 606, 606, 606, and 606 frames at φ settings of 0°, 90°, 180°, and 270° for CsGdZnSe₃, in groups of 606, 606, and 606 frames at φ settings of 0°, 120°, and 240° for CsZrCuSe3 and CsUCuSe3, and in groups of 606, 435, and 230 frames at φ settings of 0°, 90°, and 180° for BaGdCuSe₃. The exposure time was either 10 or 15 s/frame. The collection of the intensity data was carried out with the program SMART.²⁶ Cell refinement and data reduction were carried out with the use of the program SAINT,26 and face-indexed absorption corrections were performed numerically with the use of the program XPREP.27 Then the program SADABS²⁶ was employed to make incident beam and decay corrections.

The structures were solved with the direct methods program SHELXS and refined with the full-matrix least-squares program SHELXL of the SHELXTL.PC suite of programs.²⁸ Each final refinement included anisotropic displacement parameters and a secondary extinction correction. Additional experimental details are shown in Table 1. Table 2 presents selected bond distances.

Table 1. Crystal Data and Structure Refinements for CsGdZnSe₃, CsZrCuSe₃, CsUCuSe₃, and BaGdCuSe₃^{*a*}

	$CsGdZnSe_3$	$CsZrCuSe_3$	CsUCuSe ₃	$BaGdCuSe_3$
fw	592.41	524.55	671.36	595.01
a, Å	4.1684(7)	3.903(2)	4.1443(7)	4.1839(6)
b, Å	15.765(3)	15.841(10)	15.786(3)	13.8935(19)
<i>c</i> , Å	11.0089(18)	10.215(6)	10.7188(18)	10.6692(15)
V, Å ³	723.4(2)	631.6(7)	701.3(2)	620.19(15)
$ ho_{\rm c}, {\rm g}~{\rm cm}^{-3}$	5.439	5.517	6.359	6.372
μ , cm ⁻¹	323.29	278.42	466.54	377.05
$R(F)^b$	0.0196	0.0284	0.0284	0.0218
$R_{ m w}(F^2)^c$	0.0495	0.0660	0.0717	0.0526

^{*a*} For all structures Z = 4, space group = Cmcm, T = 153(2) K, and $\lambda = 0.71073$ Å. ^{*b*} $R(F) = \sum ||F_o| - |F_c||/\sum |F_o|$ for $F_o^2 > 2\sigma(F_o^2)$. ^{*c*} $R_w(F^2) = \{\sum [w(F_o^2 - F_c^2)^2]/\sum wF_o^4\}^{1/2}$ for all data. $w^{-1} = \sigma^2(F_o^2) + (0.04F_o^2)^2$ for $F_o^2 \ge 0$ and $w^{-1} = \sigma^2(F_o^2)$ for $F_o^2 < 0$.

Table 2. Selected Bond Lengths (Å) for CsGdZnSe₃, CsZrCuSe₃, CsUCuSe₃, and BaGdCuSe₃

	$CsGdZnSe_3$	CsZrCuSe ₃	CsUCuSe ₃	BaGdCuSe ₃
$A-Se1 \times 4$	3.6816(6)	3.6061(14)	3.6592(11)	3.3228(6)
$A-Se1 \times 2$	3.9101(7)	3.6824(18)	3.8246(11)	3.6656(8)
$A-Se2 \times 2$	3.5993(8)	3.5373(19)	3.5825(16)	3.2289(9)
$Ln-Se1 \times 4$	2.8831(5)	2.7119(12)	2.8611(8)	2.8997(5)
$Ln-Se2 \times 2$	2.8894(5)	2.7158(14)	2.8265(6)	2.8359(5)
$M-Se1 \times 2$	2.4350(7)	2.4123(15)	2.4581(14)	2.4691(10)
$M-Se2 \times 2$	2.5663(7)	2.4463(15)	2.5256(15)	2.5250(9)

Magnetic Susceptibility Measurements. These measurements on a 30.6 mg sample of crystals of CsGdZnSe₃ and 116.6 mg sample of crystals of BaGdCuSe₃ were carried out with the use of a Quantum Design SQUID magnetometer (MPMS5 Quantum Design). The composition of each sample was verified by EDX measurements. The samples were loaded into gelatin capsules. Zero-field cooled (ZFC) and field-cooled (FC) susceptibility data were collected between 5 and 300 K. The applied field was 100 G. All measurements were corrected for core diamagnetism.²⁹

UV–Vis Diffuse Reflectance Spectroscopy. A Cary 1E UV–visible spectrophotometer with a diffuse reflectance accessory was used to measure the diffuse reflectance spectra of the compounds $CsGdZnSe_3$ and $BaGdCuSe_3$ over the range 200 nm (6.20 eV) to 900 nm (1.38 eV) at 293 K.

Results and Discussion

The structure of the isostructural compounds CsGdZnSe₃, CsZrCuSe₃, CsUCuSe₃, and BaGdCuSe₃ is illustrated in Figure 1. It is composed of two-dimensional ${}^{2}_{m}$ [LnMSe₃^{*n*-}] (*n* = 1 for Cs, n = 2 for Ba) layers parallel to (101) separated by A atoms. Each A atom, which is located at a site with mm symmetry, is coordinated to a bicapped trigonal prism of eight Se atoms (Figure 2). Each bicapped trigonal prism has two face-sharing neighbors along [100] and four edge-sharing ones along [001] to form a two-dimensional ${}^{2}_{\infty}$ [ASe₃^{*n*-}] (*n* = 5 for Cs, *n* = 4 for Ba) layer, as shown in Figure 2. Each Ln atom, which is located at a site with 2/m symmetry, is coordinated to a slightly distorted octahedron of six Se atoms (Figure 3 and Table 2). Each M atom, which is located at a site with mm symmetry, is coordinated to a distorted tetrahedron of four Se atoms (Figure 3 and Table 2). The ${}^{2}_{m}$ [LnMSe₃^{*n*-}] layer is constructed from these LnSe₆ octahedra and MSe₄ tetrahedra, as shown in Figure 3. Each octahedron shares its edges (four Se1) with two other octahedra along [100] to form a one-dimensional $\frac{1}{2}$ [LnSe₄] chain.

⁽²⁵⁾ Sunshine, S. A.; Kang, D.; Ibers, J. A. J. Am. Chem. Soc. **1987**, 109, 6202–6204.

⁽²⁶⁾ SMART Version 5.054 Data Collection and SAINT-Plus Version 6.02A Data Processing Software for the SMART System; Bruker Analytical X-Ray Instruments, Inc.: Madison, WI, 2000.

⁽²⁷⁾ Sheldrick, G. M. SHELXTL DOS/Windows/NT Version 5.10; Bruker Analytical X-Ray Instruments, Inc.: Madison, WI, 1997.

⁽²⁸⁾ Sheldrick, G. M. SHELXTL PC Version 5.0 An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data; Siemens Analytical X-Ray Instruments, Inc.: Madison, WI, 1994.

⁽²⁹⁾ Mulay, L. N. In *Theory and Applications of Molecular Diamagnetism*; Boudreaux, E. A., Ed.; Wiley-Interscience: New York, 1976.

Figure 1. Unit cell of ALnMSe3 viewed down [100].

 \bigcirc A \bigcirc Se

Figure 2. $\sum_{\infty}^{2} [ASe_{3^{n-1}}]$ (n = 5 for Cs, n = 4 for Ba) layer viewed down [010].

Figure 3. ${}^{2}_{\infty}$ [LnMSe₃^{*n*-}] (*n* = 1 for Cs, *n* = 2 for Ba) layer viewed down [010].

Each LnSe₆ octahedron in the ${}^{1}_{\infty}$ [LnSe₄] chain shares its vertices (two Se2) with two other octahedra in different chains to form a two-dimensional ${}^{2}_{\infty}$ [LnSe₃^{*n*-}] layer. The MSe₄ tetrahedra form one-dimensional ${}^{1}_{\infty}$ [MSe₃] chains along [100] by the sharing of vertices (Se2) with two neighboring tetrahedra. Each tetrahedron in the ${}^{1}_{\infty}$ [MSe₃] chain links with four LnSe₆ octahedra by edge sharing along [001] to form the ${}^{2}_{\infty}$ [LnMSe₃^{*n*-}] layers.

Selected bond distances for ALnMSe₃ are displayed in Table 2. These bond lengths are normal. The ranges of distances are Gd-Se, 2.8359(5)-2.8997(5) Å; Zr-Se, 2.7119(12)-2.7158-(14) Å; U-Se, 2.8265(6)-2.8611(8) Å; Zn-Se, 2.4350(7)-2.5663(7) Å; and Cu-Se, 2.4123(15)-2.5256(15) Å. These

Figure 4. Plots of the molar susceptibility (χ) vs *T* for CsGdZnSe₃ and BaGdCuSe₃.

Figure 5. Plots of the inverse molar susceptibility $(1/\chi)$ vs *T* for (a) CsGdZnSe₃ and (b) BaGdCuSe₃.

ranges are consistent, for example, with those of 2.8871(1)– 2.928(1) Å for Gd–Se in BaGdAuSe₃;³⁰ 2.704(1)–2.718(1) Å for Zr–Se in KZrCuSe₃;²⁴ 2.839(1)–2.848(1) Å for U–Se in KUCuSe₃;¹⁹ 2.478(2)–2.577(2) Å for Cu–Se in β -BaLa-CuSe₃;¹¹ and the Zn–Se distance of 2.439(1) Å in ZnGa_{0.4}-Cr_{1.6}Se₄.³¹

Because there are no Se–Se bonds in the structure of ALnMSe₃ the oxidation state of A is 1+ (Cs) or 2+ (Ba), that of Ln is 3+ (Gd) or 4+ (Zr, U), and that of M is 1+ (Cu) or 2+ (Zn). Several other isostructural compounds are known with the oxidation states A/Ln/M/Q of (1+ or 2+)/(3+ or 4+)/1+/ 2-, such as KZrCuQ₃ (Q = S, Se, Te)²⁴ CsUCuTe₃,²⁰ KUCuSe₃,¹⁹ CsCeCuS₃,¹⁹ TIZrCuTe₃,³² and BaLnCuQ₃ (Ln = rare earth, Y).^{11,12,14} However, to the best of our knowledge CsGdZnSe₃ is the only example with M²⁺ in the KZrCuS₃ family.²⁴ This finding is significant because it implies that more substitutional chemistry can be performed within the KZrCuS₃ structure type.²⁴ RbSbHgTe₃, which contains Hg²⁺, has a structure³³ that is closely related to the present one, but the Sb³⁺ atom occupies the Wyckoff *8f* site with an occupancy of 0.5 rather than the *4a* site for the Ln atom in ALnMQ₃.

Plots of the molar susceptibility (χ) vs temperature (*T*) for CsGdZnSe₃ and BaGdCuSe₃ are shown in Figure 4. The values of χ in both the ZFC and FC experiments for CsGdZnSe₃ and BaGdCuSe₃ are almost exactly the same. Plots of the reciprocal of the molar susceptibility ($1/\chi$) vs *T* for CsGdZnSe₃ and BaGdCuSe₃ are shown in Figure 5. CsGdZnSe₃ and BaGdCuSe₃

- (30) Yang, Y.; Ibers, J. A. J. Solid State Chem. 1999, 147, 366-371.
- (31) Okonska-Kozlowska, I.; Malicka, E.; Waskowska, A.; Mydlarz, T. J. Solid State Chem. 1999, 148, 215–219.
- (32) Pell, M. A.; Ibers, J. A. J. Alloys Compd. 1996, 240, 37-41.
- (33) Li, J.; Chen, Z.; Wang, X.; Proserpio, D. M. J. Alloys Compd. 1997, 262–263, 28–33.

Figure 6. Diffuse reflectance spectrum of (a) CsGdZnSe₃ and (b) BaGdCuSe₃.

are paramagnetic in the range 5–300 K. The susceptibility data were fit by a least-squares method to the Curie–Weiss equation $\chi = C/(T - \theta_p)$, where *C* is the Curie constant and θ_p is the Weiss constant. The resulting values for *C* and θ_p are 7.74(4) emu K mol⁻¹ and –5.12(6) K for CsGdZnSe₃, and 7.67(3) emu K mol⁻¹ and –3.11(3) K for BaGdCuSe₃. The calculated effective magnetic moments of 7.87(6) and 7.85(5) μ_B agree well with the theoretical value of 7.94 μ_B for Gd³⁺.³⁴

The diffuse reflectance spectra of $CsGdZnSe_3$ and $BaGd-CuSe_3$ are shown in Figure 6. The optical band gaps of 658 nm (1.88 eV) and 425 nm (2.92 eV) for CsGdZnSe_3 and 633 nm

(34) Kittel, C. Introduction to Solid State Physics, 6th ed.; Wiley: New York, 1986. (1.96 eV) for BaGdCuSe₃ were deduced with the use of a straightforward extrapolation method.³⁵ The gradual slope of the optical absorption edge for both of these compounds is indicative of a complex electronic structure with the existence of indirect transitions. CsGdZnSe₃ absorbs minimal light from 658 nm (orange-red) to 425 nm (violet), as shown in Figure 6. These observations are consistent with the ivory color of CsGdZnSe₃ and the brick-red color of BaGdCuSe₃. Contrast these colors with that of black for CsZrCuSe₃ and CsUCuSe₃.

This study demonstrates the sensitivity of the optical properties of ALnMSe₃ compounds of the KZrCuSe₃ structure type²⁴ to the electronic configurations of Ln and M. Given the stability of this structure type over a wide range of Ln and M, we expect to find diverse optical properties as we prepare additional compounds. Moreover, the combination of magnetic M species with magnetic Ln species will certainly lead to new compounds with interesting magnetic properties.

Acknowledgment. This research was supported by NSF Grant DMR00-96676 and an IMGIP fellowship to K.M. Use was made of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

Supporting Information Available: Crystallographic files in CIF format for CsGdZnSe₃, CsZrCuSe₃, CsUCuSe₃, and BaGdCuSe₃. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0104353

⁽³⁵⁾ Schevciw, O.; White, W. B. Mater. Res. Bull. 1983, 18, 1059–1068.