Synthesis and Structural Characterization of PhP[(C₅Me₄)₂], a Monodentate Chiral Phosphine Derived from Intramolecular C-C Coupling of Tetramethylcyclopentadienyl Groups: An Evaluation of Steric and Electronic Properties

Jun Ho Shin, Brian M. Bridgewater, David G. Churchill, and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027

Received April 26, 2001

The chiral monodentate phosphine PhP[(C_5Me_4)₂] is readily obtained by oxidation of the lithium complex Li_2 [PhP(C₅Me₄)₂] with I₂, which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of $PhP[(C_5Me_4)_2]$ have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including $Ph[(C_5Me_4)_2]PE$ (E = S, Se), $Cp*MCl_4\{P[(C_5Me_4)_2]-C_5Me_4)_2]$ Ph} (M = Mo, Ta), Ir{P[(C_5Me_4)_2]Ph}_2(CO)Cl, and CpFe(CO){PhP[(C_5Me_4)_2]}Me. For comparison purposes, derivatives of the related phospholane ligand PhP[Me₂C₄H₆] have also been investigated, including Ph[Me₂C₄H₆]-PS, Ir{Ph[Me₂C₄H₆]}₂(CO)Cl, Ir{Ph[Me₂C₄H₆]}₂(CO)Me, Ir{PPh[Me₂C₄H₆]}(COD)(Cl), and Pd{P[Me₂C₄H₆]- $Ph_{\eta^2-C_6H_4C(H)(Me)NMe_2|Cl.}$ The steric and electronic properties of $PhP_{(C_5Me_4)_2}$ are determined to be intermediate between those of PPh₂Me and PPh₃. Thus, the crystallographic cone angles increase in the sequence $PPh_2Me (134.5^\circ) \le PhP[(C_5Me_4)_2] (140.2^\circ) \le PPh_3 (148.2^\circ)$, while the electron donating abilities decrease in the sequence $PPh_2Me > PhP[(C_5Me_4)_2] > PPh_3$. Finally, $PhP[(C_5Me_4)_2]$ has a smaller cone angle and is less electron donating than the structurally similar phosphine, $PhP[Me_2C_4H_6]$.

Introduction

Tertiary phosphine ligands are a prominent feature of inorganic chemistry.¹ Their ubiquity is a consequence of the fact that the phosphorus substituents have a significant impact on the steric and electronic properties of the phosphine ligand, which thereby influences the chemistry of the metal center to which it is attached. Furthermore, the use of enantiomerically pure chiral phosphines has had a profound influence on the field of asymmetric catalysis,² as illustrated by the commercial synthesis of L-DOPA.³ In this paper, we report the synthesis and structural characterization of a new chiral phosphine, PhP- $[(C_5Me_4)_2]$ (Figure 1), and present an evaluation of its steric and electronic properties.

Results and Discussion

Much attention has been directed towards the synthesis and application of new multidentate phosphine ligands, particularly with respect to their use in asymmetric catalysis.^{2,4} Multidentate phosphine ligands have received more attention than their monodentate counterparts because it is generally considered that the former frequently exhibit greater degrees of asymmetric induction.⁵ This observation is often rationalized by the notion that chelation inhibits rotation about the metal-phosphorus bond and thereby provides greater stereocontrol. Recently, however,

- (1) (a) Mason, R.; Meek, D. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 183-194. (b) Mayer, H. A.; Kaska, W. C. Chem. Rev. 1994, 94, 1239-1272. (c) Dias, P. B.; Minas de Piedade, M. E.; Martinho Simões, J. A. Coord. Chem. Rev. 1994, 135/136, 737-807.
- (2) See, for example: (a) Burk, M. J. Acc. Chem. Res. 2000, 33, 363-372. (b) Burk, M. J. Chemtracts - Org. Chem. 1998, 11, 787-802.
- (3) Knowles, W. S. J. Chem. Educ. 1986, 63, 222-225.
- (4) Handy, S. T. Curr. Org. Chem. 2000, 4, 363-395.
- (5) (a) Kagan, H. B.; Dang, T.-P. J. Am. Chem. Soc. 1972, 94, 6429-6433. (b) Chaloner, P. A.; Esteruelas, M. A.; Joó, F.; Oro, L. A. Homogeneous Hydrogenation; Kluwer: London, 1994.

PhP[Me₂C₄H₆]

Figure 1. $PhP[(C_5Me_4)_2]$ and $PhP[Me_2C_4H_6]$ ligands.

useful applications of chiral monophosphines and related ligands in asymmetric organometallic catalysis have been recognized.⁶ For example, monodentate biarylphosphonite ligands derived from 2,2'-binaphthol and 9,9'-biphenanthrol have been demonstrated to be superior to bidentate counterparts in certain instances.^{7,8} Furthermore, monodentate phosphine ligands continue to be employed as important catalyst components for a variety of organic transformations,9 and so it is evident that the synthesis of new phosphine ligands with unusual structures is

- (7) Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.; Martorell, A.; Orpen, A. G.; Pringle, P. G. Chem. Commun. 2000, 961-962.
- (8) For additional studies on monophosphonite,^a monophosphite,^{b, c} monophosphoramidite,^d and monophosphine^{e-h} ligands in asymmetric catalysis, see: (a) Reetz, M. T.; Sell, T. Tetrahedron Lett. 2000, 41, 6333-6336. (b) Reetz, M. T.; Mehler, G. Angew. Chem., Int. Ed. Engl. 2000, 39, 3889-3890. (c) Chen, W.; Xiao, J. Tetrahedron Lett. 2001, 42, 2897-2899. (d) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539-11540. (e) Graf, C.-D.; Malan, C.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1998, 37, 3014-3016. (f) Graf, C.-D.; Malan, C.; Harms, K.; Knochel, P. J. Org. Chem. 1999, 64, 5581-5588. (g) Chen, Z.; Jiang, Q.; Zhu, G.; Xiao, D.; Cao, P.; Guo, C.; Zhang, X. J. Org. Chem. 1997, 62, 4521-4523. (h) Hamada, Y.; Seto, N.; Ohmori, H.; Hatano, K. Tetrahedron Lett. 1996, 37, 7565-7568.

^{(6) (}a) Lagasse, F.; Kagan, H. B. Chem. Pharm. Bull. 2000, 48, 315–324.
(b) Komarov, I. V.; Börner, A. Angew. Chem., Int. Ed. Engl. 2001, 40, 1197-1200. (c) Hayashi, T. Acc. Chem. Res. 2000, 33, 354-362

of relevance to both catalysis and coordination chemistry. For this reason, we report here the synthesis and structural characterization of the chiral phosphine $PhP[(C_5Me_4)_2]$.

The phosphine PhP[(C_5Me_4)₂] is readily obtained by oxidation of the lithium complex Li₂[PhP(C_5Me_4)₂]¹⁰ with I₂, which couples the cyclopentadienyl groups to form a five-membered heterocyclic ring (Scheme 1). While phospholane derivatives are common, they are not generally prepared by a C–C coupling reaction.¹¹ The C–C coupling reaction also occurs in an asymmetric manner, such that the two methyl groups of the ring junction adopt a trans, rather than cis, disposition. The asymmetric nature of the coupling is readily indicated by the observation that PhP[(C₅Me₄)₂] is characterized by distinct signals for the eight inequivalent methyl groups in the ¹H NMR spectrum, only two of which overlap. The molecular structure of PhP[(C₅Me₄)₂] has been determined by X-ray diffraction, as illustrated in Figure 2, thereby confirming the chiral nature of the compound.^{12,13,14}

The influence of a tertiary phosphine on a metal center is dictated by its steric and electronic properties. The size of a

- (10) Shin, J. H.; Hascall, T.; Parkin, G. Organometallics 1998, 18, 6-9.
- (11) Dimroth, K. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press, New York, 1984; Vol. 1, Chapter 1.17.
- (12) The enantiomers of PhP[(C₅Me₄)₂] may be separated using a Chiralpak AD analytical column eluted with 0.7% 2-propanol in hexane at a rate of 0.5 mL per min. We thank Professor S. L. Buchwald and Dr. J. M. Fox for determining these conditions.
- (13) A chiral phosphole ligand which incorporates two (-)-menthyl groups at the 2- and 5-positions has recently been synthesized. See: Ogasawara, M.; Yoshida, K.; Hayashi, T. Organometallics **2001**, 20, 1014–1019.

Figure 2. Molecular structure of PhP[(C_5Me_4)₂]. Selected bond lengths (Å) and angles (deg): P-C(11) 1.828(3), P-C(21) 1.815(3), P-C(51) 1.827(3), C(15)-C(25) 1.559(4); C(11)-P-C(21) 87.8(1), C(11)-P-C(51) 106.2(1), C(21)-P-C(51) 106.5(1).

phosphine ligand has traditionally been classified by its cone angle, as originally described by Tolman.¹⁵ While the Tolman cone angles were calculated using idealized space-filling CPK models, Mingos has recently reported a simple algorithm that allows calculation of cone angles from crystallographic data, so-called "crystallographic cone angles". 16,17 Therefore, to assess the steric properties of $PhP[(C_5Me_4)_2]$, we have synthesized several derivatives, namely $Ph[(C_5Me_4)_2]PE$ (E = S, Se), $Cp*MCl_{4}{P[(C_{5}Me_{4})_{2}]Ph} (M = Mo, Ta),^{18} and Ir{P[(C_{5}Me_{4})_{2}]} Ph_2(CO)Cl$ (Schemes 2 – 4), and determined their structures by X-ray diffraction (Figures 3 - 7). The most extensive comparison can be made for the sulfido and selenido complexes $Ph[(C_5Me_4)_2]PE$ (E = S, Se), since a large variety of R_3PE derivatives have been structurally characterized. As would be expected, the P=S bond length in $Ph[(C_5Me_4)_2]PS$ [1.965(1) Å] is comparable to the mean value of 1.95 Å for structurally characterized analogues listed in the Cambridge Structural Database (CSD);¹⁹ likewise, the P=Se bond length in Ph- $[(C_5Me_4)_2]$ PSe [2.126(1) Å] compares favorably with the CSD mean value of 2.10 Å.

- (14) The uncoupled achiral phosphine PhP(C₃Me₄H)₂ has been reported, but neither it nor any of its derivatives have been structurally characterized by X-ray diffraction, thereby precluding any comparisons.^a The related achiral phosphole ligand, PhP[C₄Me₄], is also known.^b (a) Wong, W.-K.; Chow, F. L.; Chen, H.; Au-Yeung, B. W.; Wang, R.-J.; Mak, T. C. W. *Polyhedron* **1990**, *9*, 2901–2909.
 (b) Muir, K. W.; Pétillon, F. Y.; Rumin, R.; Schollhammer, P.; Talarmin, J. J. Organomet. Chem. **2001**, 622, 297–301.
- (15) (a) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956–2965. (b) Tolman, C. A. Chem. Rev. 1977, 77, 313–348.
- (16) Müller, T. E.; Mingos, D. M. P. Transition Met. Chem. (London) 1995, 20, 533–539.
- (17) More complex analyses pertaining to the steric properties of ligands are available. See, for example, ref 1c and: (a) White, D.; Coville, N. J. Adv. Organomet. Chem. 1994, 36, 95–158. (b) White, D.; Taverner, B. C.; Leach, P. G. L.; Coville, N. J. J. Comput. Chem. 1993, 14, 1042–1049. (c) Brown, T. L.; Lee, K. J. Coord. Chem. Rev. 1993, 128, 89–116. (d) Polosukhin, A. I.; Kovalevskii, A. Y.; Gavrilov, K. N. Russ. J. Coord. Chem. 1999, 25, 758–761. (e) Steinmetz, W. E. Quant. Struct.-Act. Relat. 1996, 15, 1–6. (f) Smith, J. M.; Taverner, B. C.; Coville, N. J. J. Organomet. Chem. 1997, 530, 131–140.
- (18) Complexes of the type (Cp^R)MCl₄(PR₃) are known for a variety of metals, including Nb,^a Ta,^b Mo,^{c-g} W,^c and Re.^h See: (a) Fettinger, J. C.; Keogh, D. W.; Poli, R. *Inorg. Chem.* **1995**, *34*, 2343–2347. (b) Hadi, G. A. A.; Fromm, K.; Blaurock, S.; Jelonek, S.; Hey-Hawkins, E. Polyhedron **1997**, *16*, 721–731. (c) Murray, R. C.; Blum, L.; Liu, A. H.; Schrock, R. R. Organometallics **1985**, *4*, 953–954. (d) Felsberg, R.; Blaurock, S.; Jelonek, S.; Gelbrich, T.; Kirmse, R.; Voigt, A.; Hey-Hawkins, E. *Chem. Ber.-Recl.* **1997**, *130*, 807–812. (e) Morise, X.; Green, M. L. H.; McGowan, P. C.; Simpson, S. J. J. Chem. Soc., Dalton Trans. **1994**, 871–878. (f) MacLaughlin, S. A.; Murray, R. C.; Dewan, J. C.; Schrock, R. R. *Organometallics* **1985**, *4*, 796–798. (g) Harlan, C. J.; Jones, R. A.; Koschmieder, S. U.; Nunn, C. M. *Polyhedron* **1990**, *9*, 669–679. (h) Herrmann, W. A.; Voss, E.; Küsthardt, U.; Herdtweck, E. J. Organomet. Chem. **1985**, *294*, C37–C40.

⁽⁹⁾ See, for example: (a) Chen, J.-X.; Daeuble, J. F.; Stryker, J. M. *Tetrahedron* 2000, 56, 2789–2798. (b) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. *J. Am. Chem. Soc.* 1999, 121, 9473–9474. (c) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. *J. Am. Chem. Soc.* 1999, 121, 4369–4378. (d) Yamamoto, T.; Nishiyama, M.; Koie, Y. *Tetrahedron Lett.* 1998, 39, 2367–2370. (e) Nishiyama, M.; Yamamoto, T.; Koie, Y. *Tetrahedron Lett.* 1998, 39, 617–620. (f) Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* 2001, 123, 2719–2724.

Table 1. Crystallographic Cone Angles for $PhP[(C_5Me_4)_2]$ and $PhP[Me_2C_4H_6]$ in Their Complexes

compound	cone angle (deg)	average cone angle (deg)
Ph[(C ₅ Me ₄) ₂]PS Ph[(C ₅ Me ₄) ₂]PSe	172.4 171.1	171.8
$Cp*MoCl_{4}{P[(C_{5}Me_{4})_{2}]Ph} \\ Cp*TaCl_{4}{P[(C_{5}Me_{4})_{2}]Ph} \\ Ir{P[(C_{5}Me_{4})_{2}]Ph}_{2}(CO)Cl$	138.8 140.3 141.4 ^a	140.2
$ \begin{array}{l} Ph[Me_{2}C_{4}H_{6}]PO \\ Ph[Me_{2}C_{4}H_{6}]PS \\ Ir\{P[Me_{2}C_{4}H_{6}]Ph)_{2}(CO)Me \\ Ir\{P[Me_{2}C_{4}H_{6}]Ph)_{2}(CO)Cl \\ Ir\{P[Me_{2}C_{4}H_{6}]Ph)(COD)Cl \\ Pd\{P[Me_{2}C_{4}H_{6}]Ph)[\eta^{2}-C_{6}H_{4C}(H)(Me)NMe_{2}] \end{array} $	153.8 149.7 148.3b 147.5b 150.1 148.6	149.7

^{*a*} Since one of the phosphine ligands is disordered, the value listed is that for the ordered one. ^{*b*} Average values.

Figure 3. Molecular structure of $Ph[(C_5Me_4)_2]PS$. Selected bond lengths (Å) and angles (deg): P-S 1.965(1), P-C(11) 1.800(2), P-C(21) 1.785(2), P-C(51) 1.814(2); S-P-C(11) 115.4(1), S-P-C(21) 116.3(1), S-P-C(51) 111.5(1).

The determination of the crystallographic cone angle of PhP- $[(C_5Me_4)_2]$ in one of its derivatives requires the ligated atom to be artificially shifted along the M-P bond vector to a position 2.28 Å from the phosphorus atom.¹⁶ This procedure allows comparison with the original Tolman values that were derived using a model in which the phosphine was attached to a nickel center with a Ni–P bond length of 2.28 Å. The data presented in Table 1 indicate that the crystallographic cone angle of PhP- $[(C_5Me_4)_2]$ in these complexes varies over quite a large range, from 138.8° to 172.4°. However, it is clear that the complexes fall into two categories, namely the chalcogenido complexes, $Ph[(C_5Me_4)_2]PE$ (E = S, Se), and the metal complexes, $Cp*MCl_4{P[(C_5Me_4)_2]Ph}$ (M = Mo, Ta), and Ir{P[(C_5Me_4)_2]- $Ph_{2}(CO)Cl$. The chalcogenido complexes have the greater values because the absence of substituents on the chalcogen means that the phenyl group can rotate to a position that minimizes intraligand repulsions.²⁰ The metal complexes, in contrast, have smaller cone angles because the phenyl group rotates about the P-Ph bond to a position that minimizes interactions with the ligands attached to the metal. For comparison, the conformations of $PhP[(C_5Me_4)_2]$ in its various derivatives are illustrated in Figure 8.

The crystallographic cone angle of PhP[(C_5Me_4)₂] in its metal complexes varies over the narrow range 138.8° to 141.4°, averaging 140.2°. It is, therefore, evident that it is the latter value that is best representative of the cone angle for PhP-[(C_5Me_4)₂] as applied to transition metal chemistry. For

Figure 4. Molecular structure of $Ph[(C_5Me_4)_2]PSe$. Selected bond lengths (Å) and angles (deg): P–Se 2.126(1), P–C(11) 1.813(3), P–C(21) 1.783(3), P–C(51) 1.823(3); Se–P–C(11) 115.6(1), Se–P–C(21) 115.9(1), Se–P–C(51) 111.9(1).

Figure 5. Molecular structure of $Cp*MoCl_4{P[(C_5Me_4)_2]Ph}$. Selected bond lengths (Å): Mo-Cl(1) 2.296(3), Mo-Cl(2) 2.300(3), Mo-Cl(3) 2.294(3), Mo-Cl(4) 2.321(3), Mo-P 2.627(3).

Figure 6. Molecular structure of $Cp*TaCl_4{P[(C_5Me_4)_2]Ph}$ (only one of the crystallographically independent molecules is shown). Selected bond lengths (Å): Ta(1)-Cl(11) 2.391(1), Ta(1)-Cl(12) 2.391(1), Ta(1)-Cl(13) 2.403(1), Ta-Cl(14) 2.387(1), Ta(1)-P(1) 2.832(1), Ta(2)-Cl(21) 2.411(1), Ta(2)-Cl(22) 2.401(1), Ta(2)-Cl(23) 2.380(1), Ta(2)-Cl(24) 2.382(1), Ta(2)-P(2) 2.803(1).

comparison, cone angle data for other phosphines are listed in Table 2, thereby demonstrating that the value for PhP[(C_5Me_4)₂] is intermediate between that of PPh₂Me (134.5°) and PPh₃ (148.2°). It is also pertinent to compare the steric properties of

⁽¹⁹⁾ CSD Version 5.20. 3D Search and Research Using the Cambridge Structural Database, Allen, F. H.; Kennard, O. Chem. Design Automation News 1993, 8 (1), 1, 31–37.

⁽²⁰⁾ Furthermore, the crystallographic cone angle calculated for the uncomplexed PhP[(C_5Me_4)₂] ligand is 163.9°. This value was determined by placing a hypothetical atom 2.28 Å from the phosphorus atom in the remaining tetrahedral position as determined by SHELXTL.

Figure 7. Molecular structure of $Ir{P[(C_5Me_4)_2]Ph}_2(CO)Cl$. The CO and Cl ligands are disordered, as is the phosphine configuration at P(1). Selected bond lengths (Å): Ir-P(1) 2.315(2), Ir-P(2) 2.314(2), $Ir-Cl_{av} 2.31$, $Ir-C_{av} 1.94$ (see text).

Figure 8. Conformations of the PhP[$(C_5Me_4)_2$] ligand in PhP-[$(C_5Me_4)_2$], Ph[$(C_5Me_4)_2$]PS, Ph[$(C_5Me_4)_2$]PS, Cp*TaCl₄{P[$(C_5Me_4)_2$]Ph}, Cp*MoCl₄{P[$(C_5Me_4)_2$]Ph}, and Ir{P[$(C_5Me_4)_2$]Ph}₂(CO)Cl.

 Table 2.
 Comparison of Cone Angles for Selected Phosphines in Transition Metal Complexes^a

	crystallographic cone angle (deg)	Tolman cone angle (deg)
PMe ₃	111.1	118
PEt ₃	137.3	132
PCy ₃	160.1	170
PPhMe ₂	119.9	122
PPh ₂ Me	134.5	136
PPh ₃	148.2	145
$PhP[(C_5Me_4)_2]$	140.2	
PhPIMe ₂ C ₄ H ₆]	149.7	

 $^{\it a}$ With the exception of PhP[(C_5Me_4)_2] and PhP[Me_2C_4H_6], all data taken from refs 15 and 16.

 $PhP[(C_5Me_4)_2]$ with that of $PhP[Me_2C_4H_6]$,^{21,22} a structurally similar phosphine (Figure 1).

Interestingly, although PhP[Me₂C₄H₆] is readily available in enantiomerically pure form, PhP[(2R,5R)-Me₂C₄H₆],²¹ its applications have been almost completely unexplored, and there

Figure 9. Molecular structure of $Ph[R,R-Me_2C_4H_6]PO$. Selected bond lengths (Å) and angles (deg): P-O 1.489(3), P-C(2) 1.821(4), P-C(5) 1.828(4), P-C(11) 1.822(3); O-P-C(2) 114.7(2), O-P-C(5) 115.8(2), O-P-C(11) 111.0(2).

Figure 10. Molecular structure of $Ph[R,R-Me_2C_4H_6]PS$ (only one of the crystallographically independent molecules is shown). Selected bond lengths (Å) and angles (deg): P(1)-S(1) 1.952(2), P(1)-C(2) 1.828-(5), P(1)-C(5) 1.832(5), P(1)-C(21) 1.817(5), P(2)-S(2) 1.953(2), P(2)-C(12) 1.833(5), P(2)-C(15) 1.849(5), P(2)-C(31) 1.813(5); S(1)-P(1)-C(2) 116.7(2), S(1)-P(1)-C(5) 114.8(2), S(1)-P(1)-C(21) 113.3(2), S(2)-P(2)-C(12) 113.8(2), S(2)-P(2)-C(15) 115.7(2), S(2)-P(2)-C(31) 112.7(2).

are no structurally characterized derivatives listed in the Cambridge Structural Database. Determination of the cone angle of PhP[Me₂C₄H₆], therefore, required the synthesis of several derivatives, as illustrated in Schemes 2 – 5. Of these complexes, the structures of Ph[*R*,*R*-Me₂C₄H₆]PO (Figure 9),²³ Ph[*R*,*R*-Me₂C₄H₆]PS (Figure 10), Ir{Ph[*R*,*R*-Me₂C₄H₆]}₂(CO)Cl (Figure 11), Ir{Ph[*R*,*R*-Me₂C₄H₆]}₂(CO)Me (Figure 12), Ir{PPh[*R*,*R*-Me₂C₄H₆]}(COD)(Cl) (Figure 13), and Pd{P[*R*,*R*-Me₂C₄H₆]Ph}-[η^2 -C₆H₄C(H)(Me)NMe₂]Cl (Figure 14) were determined by X-ray diffraction. Examination of these structures indicates that the crystallographic cone angle for the PhP[Me₂C₄H₆] ligand shows little variation (147.5–150.1°), and has an average value of 149.7° (Table 1). As such, PhP[(C₅Me₄)₂] is less sterically demanding than PhP[Me₂C₄H₆].

It is also appropriate to emphasize that the structures of Ph-[R,R-Me₂C₄H₆]PS, Ir{Ph[R,R-Me₂C₄H₆]}₂(CO)Cl, Ir{Ph[R,R-Me₂C₄H₆]}₂(CO)Me, Ir{PPh[R,R-Me₂C₄H₆]}(COD)(Cl), and Pd{P[R,R-Me₂C₄H₆]Ph}[S- η ²-C₆H₄C(H)(Me)NMe₂]Cl were determined using enantiomerically pure phosphine, PhP[R,R-

- (22) For related bis and tris phospholane derivatives, see ref 2 and: (a) Burk, M. J.; Harlow, R. L. Angew. Chem., Int. Ed. Engl. 1990, 29, 1462–1464. (b) Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125–10138.
- (23) The structure of $Ph[Me_2C_4H_6]PO$ has been cited, but no details were reported. See ref 21a.

^{(21) (}a) Wilson, S. R.; Pasternak, A. Synlett. 1990, 199–200. (b) Burk, M. J.; Feaster, J. E.; Harlow, R. L. Organometallics 1990, 9, 2653–2655. (c) Burk, M. J.; Feaster, J. E.; Harlow, R. L. Tetrahedron: Asymmetry 1991, 2, 569–592. (d) Nandi, M.; Jin, J.; RajanBabu, T. V. J. Am. Chem. Soc. 1999, 121, 9899–9900.

Figure 11. Molecular structure of $Ir{Ph[R,R-Me_2C_4H_6]}_2(CO)Cl$. The CO and Cl ligands are disordered. Selected bond lengths (Å): Ir-P(1) 2.315(2), Ir-P(2) 2.334(2), $Ir-C(1_{av})$ 1.75, $Ir-Cl_{av}$ 2.37 Å (see text).

Figure 12. Molecular structure of $Ir{Ph[R,R-Me_2C_4H_6]}_2(CO)Me$. Selected bond lengths (Å) and angles (deg): Ir-C(1) 2.134(4), Ir-C(2) 1.832(4), Ir-P(1) 2.272(1), Ir-P(2) 2.293(1), C(2)-O1.150(5); C(1)-Ir-P(1) 86.6(1), P(1)-Ir-C(2) 92.7(1), C(2)-Ir-P(2)92.7(1).

Figure 13. Molecular structure of $Ir{PPh[R,R-Me_2C_4H_6]}_2(COD)(Cl)$. Selected bond lengths (Å): Ir-Cl 2.347(1), Ir-P 2.311(1), Ir-C(33) 2.106(4), Ir-C(34) 2.111(4), Ir-C(37) 2.207(4), Ir-C(38) 2.196(4).

Me₂C₄H₆]. The high quality of the structure determinations, together with the known *S*-configuration of the carbon atom (C*) of the [η^2 -C,*N*-C₆H₄C*(H)(Me)NMe₂] ligand,²⁴ provides definitive proof for the *R*,*R*-configurations of the two α -ring carbon atoms in the chiral phosphine PhP[*R*,*R*-Me₂C₄H₆]. Prior to this result, the *R*,*R*-configuration was inferred by assuming the configurational transformations proposed in Scheme 6. In this regard, we have also structurally characterized the optically active sulfate precursor, [(2*S*,*SS*)-Me₂C₄H₆(O₂SO₂)], and have thereby confirmed the proposed configuration.

The electronic properties of phosphine ligands are as diverse as their steric properties and are frequently classified by determining the impact on the ν (CO) stretching frequency of a metal carbonyl complex.^{15,25,26} Consideration of ν (CO) for a series of *trans*-Ir(PR₃)₂(CO)Cl complexes places the elec-

Figure 14. Molecular structure of $Pd\{P[R,R-Me_2C_4H_6]Ph\}[S-\eta^2-C_6H_4C(H)(Me)NMe_2]Cl.$ Selected bond lengths (Å) and angles (deg): Pd-C(31) 2.017(2), Pd-N 2.158(2), Pd-Cl 2.424(1), Pd-P 2.253(1); C(31)-Pd-N 81.40(7), N-Pd-Cl 92.86(5), Cl-Pd-P 91.67(2), P-Pd-C(31) 94.18(5).

Scheme 2

Scheme 3

Scheme 4

tron donating ability of PhP[(C_5Me_4)₂] as intermediate between PPh₂Me and PPh₃. Thus, the electron donating abilities of these phosphines, as judged by the ν (CO) stretching frequen-

⁽²⁴⁾ For studies pertaining to the configuration of the precursor, {Pd-[S-η²-C,N-C₆H₄C*(H)(Me)NMe₂](μ-Cl)}₂, derived from the reaction of [PdCl₄]²⁻ with (S)-PhCH(Me)NMe₂, see: (a) Tani, K.; Brown, L. D.; Ahmed, J.; Ibers, J. A.; Yokata, M.; Nakamura, A.; Otsuka, S. J. Am. Chem. Soc. 1977, 99, 7876–7886. (b) Otsuka, S.; Nakamura, A.; Kano, T.; Tani, K. J. Am. Chem. Soc. 1971, 93, 4301–4303.

⁽²⁵⁾ Verkade, J. G. Coord. Chem. Rev. 1972/73, 9, 1-106.

Scheme 5

Scheme 6

Table 3. Comparison of ν (CO) for Selected *trans*-Ir(PR₃)₂(CO)Cl Complexes

PR ₃	ν (CO)/cm ⁻¹ (Nujol)
PMe ₃	1938, ^{<i>a</i>} 1943 ^{<i>b</i>}
PEt_3	1929, ^{<i>a</i>} 1944 ^{<i>b</i>}
PPhMe ₂	1960, ^{<i>a</i>} 1954, ^{<i>b</i>} 1957 ^{<i>c</i>}
PPh ₂ Me	1950^{b}
PPh ₃	1961 ^d
$PhP[(C_5Me_4)_2]$	1955
PhP[Me ₂ C ₄ H ₆]	1937

^a Deeming, A. J.; Shaw, B. L. J. Chem. Soc. (A) **1968**, 1887–1889. ^b Field, L. D.; Lawrenz, E. T.; Ward, A. J. Polyhedron **1999**, 18, 3031– 3034. ^c Smith, L. R.; Lin, S. M.; Chen, M. G.; Mondal, J. U.; Blake, D. M. Inorg. Synth. **1982**, 21, 97–99. ^d Collman, J. P.; Sears, C. T., Jr.; Kubota, M. Inorg. Synth. **1990**, 28, 92–94.

cies of Ir(PR₃)₂(CO)Cl in Nujol (Table 3), decrease in the following sequence: PPh₂Me (1950 cm⁻¹) > PhP[(C₅Me₄)₂] (1955 cm⁻¹) > PPh₃ (1961 cm⁻¹). A similar consideration for Ir{PPh[Me₂C₄H₆]}₂(CO)Cl indicates that PhP[(C₅Me₄)₂] is less electron donating than PhP[Me₂C₄H₆]. ν (CO) stretching frequencies for a series of CpFe(PR₃)(CO)Me derivatives have also been used as an indicator of electron donating ability.²⁶ In this regard, ν (CO) for CpFe{P[Me₂C₄H₆]Ph}(CO)Me (1914 cm⁻¹) and CpFe{P[(C₅Me₄)₂]Ph}(CO)Me (1921 cm⁻¹) also indicate that PhP[(C₅Me₄)₂] is less electron donating than PhP-[Me₂C₄H₆].

The aforementioned coordination of $PhP[(C_5Me_4)_2]$ and $PhP-[Me_2C_4H_6]$ to $Cp*TaCl_4$ is reversible, and treatment of

Cp*TaCl₄{P[(C₅Me₄)₂]Ph} and Cp*TaCl₄{P[Me₂C₄H₆]Ph} with PR₃ generates Cp*TaCl₄(PR₃) (PR₃ = PPh₂Me, PPhMe₂). A consideration of the equilibria for the various exchange reactions indicates that the strength of the Ta-PR₃ interaction increases in the sequence PPh₃²⁷ \ll PhP[(C₅Me₄)₂] < PhP[Me₂C₄H₆] < PPh₂Me \ll PPhMe₂. Since PhP[Me₂C₄H₆] has a larger cone angle than PhP[(C₅Me₄)₂], it is evident that the stronger binding of the former ligand is a consequence of its greater electron donating ability.

Experimental Section

General Considerations. All manipulations were performed using a combination of glovebox, high-vacuum or Schlenk techniques.²⁸ Solvents were purified and degassed by standard procedures. NMR spectra were recorded on Bruker Avance 300wb DRX, Bruker Avance 400 DRX, and Bruker Avance 500 DMX spectrometers. ¹H and ¹³C chemical shifts are reported in ppm relative to SiMe₄ ($\delta = 0$) and were referenced internally with respect to the protio solvent impurity or the ¹³C resonances, respectively. ³¹P NMR spectra are referenced relative to 85% H₃PO₄ ($\delta = 0$) using P(OMe)₃ as an external reference ($\delta =$ 141.0). All coupling constants are reported in Hz. IR spectra were recorded as KBr pellets on Perkin-Elmer 1430 or 1600 spectrophotometers and are reported in cm⁻¹. C, H, and N elemental analyses were measured using a Perkin-Elmer 2400 CHN Elemental Analyzer. {Pd[*S*- η^2 -*C*,*N*-C₆H₄C*(H)(Me)NMe₂](μ -Cl)}² was obtained from Aldrich.

PhP[R,R-Me₂C₄H₆] was obtained from (2*S*,5*S*)-hexanediol (Aldrich) by the literature method,^{21d} with the exception of using BuⁿLi instead of KH.

Synthesis of PhP[(C₅Me₄)₂]. A solution of I₂ (4.49 g, 17.69 mmol) in toluene (100 mL) was slowly added to a suspension of Li2[PhP-(C₅Me₄)₂] (8.00 g, 22.08 mmol) in toluene (150 mL) at -78 °C. The mixture was warmed to room temperature, then heated at 80 °C for 4 days. After this period, the mixture was filtered and the residue was extracted into toluene (100 mL) and filtered. The volatile components were removed from the combined filtrate in vacuo, and the resulting oily residue was extracted into pentane (200 mL) and filtered. The filtrate was concentrated (to 5 mL), cooled to -78 °C, filtered and the precipitate was dried in vacuo to give PhP[(C5Me4)2] as a pale brown solid (3.10 g, 50% based on I₂). Anal. calcd for C₂₄H₂₉P: C, 82.7%; H, 8.4%. Found: C, 82.8%; H, 8.1%. IR Data (KBr disk, cm⁻¹): 3070 (m), 3055 (m), 3028 (m), 3010 (m), 2953 (vs), 2918 (vs), 2857 (vs), 2728 (m), 1638 (m), 1601 (w), 1585 (m), 1566 (s), 1480 (m), 1436 (vs), 1384 (s), 1371 (vs), 1360 (vs), 1325 (m), 1314 (m), 1275 (w), 1195 (m), 1178 (m), 1123 (w), 1111 (m), 1092 (s), 1071 (s), 1028 (m), 1013 (m), 1001 (m), 986 (m), 964 (w), 946 (w), 914 (w), 853 (w), 765 (w), 748 (vs), 701 (vs), 658 (m), 645 (m), 633 (m), 610 (m), 598 (s), 568 (m), 524 (w), 501 (s), 482 (m), 451 (s). ¹H NMR (C₆D₆): 0.84 [s, 3 H of C₁₀(CH₃)₈P], 0.91 [s, 3 H of C₁₀(CH₃)₈P], 1.65 [s, 3 H of $C_{10}(CH_3)_8P$], 1.68 [s, 3 H of $C_{10}(CH_3)_8P$], 1.77 [d, ${}^4J_{P-H} = 4$, 3 H of $C_{10}(CH_3)_8P$], 1.85 [s, 6 H of $C_{10}(CH_3)_8P$], 2.02 [d, ${}^4J_{P-H} = 2, 3 H$ of C₁₀(CH₃)₈P], 7.07 [t, ${}^{3}J_{H-H} = 7$, 1 H of C₆H₅], 7.16 [t, ${}^{3}J_{H-H} = 7$, 2 H of C₆H₅], 7.82 [t, ${}^{3}J_{P-H} = {}^{3}J_{H-H} = 8$, 2 H of C₆H₅]. ${}^{13}C$ NMR (C₆D₆): 11.3 [q, ${}^{1}J_{C-H} = 126$, 2 C of C₁₀(CH₃)₈P], 13.3 [q, ${}^{1}J_{C-H} =$ 126, 2 C of $C_{10}(CH_3)_8P$], 14.3 [q, ${}^1J_{C-H} = 126$, 1 C of $C_{10}(CH_3)_8P$], 14.6 [dq, ${}^{1}J_{C-H} = 126$, ${}^{3}J_{P-C} = 10$, 1 C of C₁₀(*C*H₃)₈P], 18.7 [q, ${}^{1}J_{C-H}$ = 128, 1 C of $C_{10}(CH_3)_8P$], 19.1 [dq, ${}^1J_{C-H}$ = 128, ${}^4J_{P-C}$ = 4, 1 C of $C_{10}(CH_3)_{8}P$], 64.8 [d, ${}^{2}J_{P-C} = 5$, 1 C of $C_{10}(CH_3)_{8}P$], 69.4 [s, 1 C of $C_{10}(CH_3)_{8}P$], 133.6 [dd, ${}^{1}J_{C-H} = 159$, ${}^{2}J_{P-C} = 20$, 2 C of C_6H_5 (other phenyl resonances obscured by overlap with C_6D_6], 137.9 [d, ${}^1J_{P-C}$ =

⁽²⁶⁾ Rahman, M. M.; Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1–7.

⁽²⁷⁾ The coordination of PPh₃ is sufficiently weak that Cp*TaCl₄(PPh₃) is not spectroscopically detected.

^{(28) (}a) McNally, J. P.; Leong, V. S.; Cooper, N. J. in *Experimental Organometallic Chemistry*; Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; chapter 2, pp 6–23. (b) Burger, B. J.; Bercaw, J. E. in *Experimental Organometallic Chemistry*; Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; chapter 4, pp 79–98. (c) Shriver, D. F.; Drezdzon, M. A.; *The Manipulation of Air-Sensitive Compounds*, 2nd ed.; Wiley-Interscience: New York, 1986.

27, 1 C of C_6H_5], 138.0 [d, ${}^{2}J_{P-C} = 8$, 1 C of $C_{10}(CH_3)_8P$], 138.4 [s, 1 C of $C_{10}(CH_3)_8P$], 141.0 [d, ${}^{2}J_{P-C} = 11$, 1 C of $C_{10}(CH_3)_8P$], 144.7 [d, ${}^{3}J_{P-C} = 3$, 1 C of $C_{10}(CH_3)_8P$], 147.3 [s, 1 C of $C_{10}(CH_3)_8P$], 151.0 [d, ${}^{1}J_{P-C} = 25$, 1 C of $C_{10}(CH_3)_8P$], 152.0 [s, 1 C of $C_{10}(CH_3)_8P$], 155.2 [d, ${}^{1}J_{P-C} = 15$, 1 C of $C_{10}(CH_3)_8P$]. ${}^{31}P$ NMR (C₆D₆): -47.1 [s].

Synthesis of Ph[(C₅Me₄)₂]PS. A mixture of PhP[(C₅Me₄)₂] (150 mg, 0.43 mmol) and sulfur (13 mg, 0.41 mmol) in toluene (10 mL) was stirred at room temperature for 1 h. After this period, the volatile components were removed from the mixture in vacuo, and the residue was washed with pentane $(2 \times 5 \text{ mL})$ and dried in vacuo to give Ph[(C₅Me₄)₂]PS as a pale brown solid (80 mg, 52%). Anal. calcd for C₂₄H₂₉PS: C, 75.8%; H, 7.7%. Found: C, 73.9%; H, 7.4%. IR Data (KBr disk, cm⁻¹): 3071 (m), 3048 (m), 2959 (vs), 2921 (vs), 2859 (s), 1632 (m), 1583 (s), 1563 (s), 1478 (m), 1437 (vs), 1376 (s), 1322 (s), 1299 (m), 1275 (m), 1194 (s), 1176 (m), 1117 (s), 1096 (vs), 1076 (s), 1043 (m), 1026 (m), 1000 (m), 986 (m), 968 (w), 906 (w), 855 (w), 768 (m), 754 (vs), 744 (vs), 715 (vs), 691 (vs), 660 (s), 645 (vs), 614 (vs), 584 (s), 569 (m), 529 (s), 502 (vs), 494 (vs), 466 (s), 412 (m). ¹H NMR (C₆D₆): 0.80 [s, 3 H of C₁₀(CH₃)₈P], 1.22 [s, 3 H of C₁₀(CH₃)₈P], 1.44 [s, 3 H of C₁₀(CH₃)₈P], 1.53 [d, ${}^{4}J_{P-H} = 3$, 3 H of C₁₀(CH₃)₈P], 1.56 [s, 3 H of C₁₀(CH₃)₈P], 1.71 [s, 3 H of C₁₀(CH₃)₈P], 1.75 [s, 3 H of 2 $C_{10}(CH_3)_8P$], 2.24 [d, ${}^4J_{P-H} = 3$, 3 H of $C_{10}(CH_3)_8P$], 7.09 [m, 1 H of C₆H₅], 7.15 [m, 2 H of C₆H₅], 8.34 [dd, ${}^{3}J_{P-H} = 14.5$, ${}^{3}J_{H-H} = 8, 2 \text{ H of } C_{6}H_{5}$]. ${}^{13}C \text{ NMR } (C_{6}D_{6})$: 10.7 [q, ${}^{1}J_{C-H} = 126, 1$ C of $C_{10}(CH_3)_8P$], 10.8 [q, ${}^1J_{C-H} = 126$, 1 C of $C_{10}(CH_3)_8P$], 13.2 [q, ${}^{1}J_{C-H} = 126, 1 \text{ C of } C_{10}(CH_{3})_{8}P], 13.3 \text{ [dq, } {}^{1}J_{C-H} = 127, {}^{3}J_{P-C} = 3, 1$ C of $C_{10}(CH_3)_8P$], 13.5 [q, ${}^1J_{C-H} = 126$, 1 C of $C_{10}(CH_3)_8P$], 13.8 [dq, ${}^{1}J_{C-H} = 127, {}^{4}J_{P-C} = 4, 1 \text{ C of } C_{10}(CH_3)_{8}P], 19.0 \text{ [q, } {}^{1}J_{C-H} = 129, 1$ C of $C_{10}(CH_3)_8P$], 19.1 [q, ${}^1J_{C-H} = 128$, 1 C of $C_{10}(CH_3)_8P$], 65.0 [d, ${}^{2}J_{P-C} = 13, 1 \text{ C of } C_{10}(CH_{3})_{8}P], 65.8 \text{ [d, } {}^{2}J_{P-C} = 15, 1 \text{ C of } C_{10}(CH_{3})_{8}P],$ 128.3 [dd, ${}^{1}J_{C-H} = 159$, ${}^{3}J_{P-C} = 9$, 2 C of C₆H₅], 130.9 [dd, ${}^{1}J_{C-H} =$ 159, ${}^{4}J_{P-C} = 3$, 1 C of $C_{6}H_{5}$], 132.3 [dd, ${}^{1}J_{C-H} = 162$, ${}^{2}J_{P-C} = 13$, 2 C of C_6H_5], 135.7 [dt, ${}^2J_{C-H} = 7$, ${}^1J_{P-C} = 84$, 1 C of C_6H_5], 137.8 [d, ${}^{2}J_{P-C}$ = 15, 1 C of $C_{10}(CH_{3})_{8}P$], 139.1 [d, ${}^{2}J_{P-C}$ = 14, 1 C of $C_{10}(CH_3)_{8}P$], 146.7 [d, ${}^{1}J_{P-C} = 94$, 1 C of $C_{10}(CH_3)_{8}P$], 147.7 [d, ${}^{3}J_{P-C}$ = 5, 1 C of $C_{10}(CH_3)_{8}P$], 147.9 [d, ${}^{3}J_{P-C} = 9$, 1 C of $C_{10}(CH_3)_{8}P$], 149.3 [d, ${}^{1}J_{P-C} = 98$, 1 C of $C_{10}(CH_{3})_{8}P$], 149.4 [d, ${}^{3}J_{P-C} = 4$, 1 C of $C_{10}(CH_3)_8P$], 157.6 [d, ${}^3J_{P-C} = 10$, 1 C of $C_{10}(CH_3)_8P$]. ${}^{31}P$ NMR (C_6D_6) : 11.1 [t, ${}^{3}J_{P-H} = 14$].

Synthesis of Ph[R,R-Me₂C₄H₆]PS. A mixture of PhP[R,R-Me₂C₄H₆] (100 mg, 0.52 mmol) and sulfur (16 mg, 0.50 mmol) in toluene (10 mL) was stirred at room temperature for 1.5 h. After this period, the volatile components were removed from the mixture in vacuo giving an oily residue. The residue was dissolved in pentane (15 mL) and the solution was concentrated (to 1 mL) and cooled at 0 °C, thereby depositing a precipitate. The precipitate was isolated by filtration and dried in vacuo giving Ph[R,R-Me₂C₄H₆]PS as a white cotton-like solid (100 mg, 86%). Anal. calcd For $C_{12}H_{17}PS$: C, 64.3%; H, 7.6%. Found: C, 64.4%; H, 7.5%. IR Data (KBr disk, cm⁻¹): 3071 (m), 3049 (m), 2963 (s), 2924 (s), 2860 (s), 1478 (m), 1436 (vs), 1372 (m), 1310 (m), 1279 (m), 1249 (w), 1178 (w), 1160 (m), 1102 (vs), 1074 (s), 1052 (m), 1027 (m), 1000 (m), 986 (m), 924 (m), 849 (w), 819 (m), 752 (s), 698 (vs), 649 (vs), 576 (vs), 538 (m), 481 (s), 406 (w). ¹H NMR (C₆D₆): 0.64 [dd, ${}^{3}J_{P-H} = 17$, ${}^{3}J_{H-H} = 7$, 3 H of 2 CH₃], 0.89 $[ddq, J = 13, 5, 3, 1 H of 2 CH_2], 1.21 [dd, {}^{3}J_{P-H} = 18, {}^{3}J_{H-H} = 7, 3$ H of 2 CH_3], 1.33 [ddq, J = 13, 5, 3, 1 H of 2 CH_2], 1.64 [m, 2 H of 2 CH2], 2.01 [m, 1 H of 2 CH], 2.24 [m, 1 H of 2 CH], 7.07 [m, 3 H of C₆H₅], 7.81 [m, 2 H of C₆H₅]. ¹³C NMR (CDCl₃): 13.9 [q, ¹J_{C-H} = 128, 1 C of 2 CH₃], 14.6 [q, ${}^{1}J_{C-H}$ = 129, 1 C of 2 CH₃], 33.5 [dt, ${}^{1}J_{C-H} = 127, {}^{2}J_{P-C} = 8, 1 \text{ C of } 2 CH_{2}, 33.7 \text{ [dt, } {}^{1}J_{C-H} = 127, {}^{2}J_{P-C}$ = 7, 1 C of 2 CH_2], 35.6 [dd, ${}^{1}J_{C-H}$ = 132, ${}^{1}J_{P-C}$ = 53, 1 C of 2 CH], 45.1 [dd, ${}^{1}J_{C-H} = 130$, ${}^{1}J_{P-C} = 53$, 1 C of 2 CH], 128.3 [dd, ${}^{1}J_{C-H} =$ 162, ${}^{2}J_{P-C} = 11$, 2 C of $C_{6}H_{5}$], 130.3 [d, ${}^{1}J_{P-C} = 65$, 1 C of $C_{6}H_{5}$], 131.5 [dd, ${}^{1}J_{C-H} = 161$, ${}^{4}J_{P-C} = 3$, 1 C of $C_{6}H_{5}$], 131.9 [dd, ${}^{1}J_{C-H} =$ 161, ${}^{3}J_{P-C} = 9$, 2 C of $C_{6}H_{5}$]. ${}^{31}P$ NMR ($C_{6}D_{6}$): 66.1 [s].

Synthesis of Ph[(C₅Me₄)₂]PSe. A mixture of PhP[(C₅Me₄)₂] (200 mg, 0.57 mmol) and selenium (50 mg, 0.63 mmol) in toluene (10 mL) was stirred at room temperature for 1 h. After this period, the mixture was filtered and the volatile components were removed from the filtrate in vacuo. The residue was washed with pentane (2 × 5 mL) and dried in vacuo to give Ph[(C₅Me₄)₂]PSe as a pale brown solid (180 mg, 73%).

Anal. calcd For C₂₄H₂₉PSe: C, 67.4%; H, 6.8%. Found: C, 67.8%; H, 6.7%. IR Data (KBr disk, cm⁻¹): 2968 (s), 2928 (vs), 2860 (s), 1632 (m), 1566 (vs), 1478 (m), 1436 (vs), 1379 (s), 1322 (s), 1276 (w), 1197 (m), 1177 (m), 1159 (w), 1118 (m), 1094 (vs), 1076 (m), 1041 (w), 1028 (m), 990 (m), 969 (w), 915 (vw), 858 (vw), 770 (m), 746 (vs), 706 (vs), 695 (vs), 660 (m), 632 (m), 619 (m), 601 (vs), 576 (s), 541 (vs), 497 (vs), 487 (s), 464 (m), 444 (m), 412 (w). ¹H NMR (C₆D₆): 0.79 [s, 3 H of C₁₀(CH₃)₈P], 1.23 [s, 3 H of C₁₀(CH₃)₈P], 1.43 [s, 3 H of $C_{10}(CH_3)_8P$], 1.54 [s, 3 H of $C_{10}(CH_3)_8P$], 1.56 [d, ${}^4J_{P-H} =$ 3, 3 H of C₁₀(CH₃)₈P], 1.73 [s, 3 H of C₁₀(CH₃)₈P], 1.75 [s, 3 H of $C_{10}(CH_3)_8P$], 2.23 [d, ${}^4J_{P-H} = 3$, 3 H of $C_{10}(CH_3)_8P$], 7.06 [m, 1 H of C_6H_5], 7.12 [m, 2 H of C_6H_5], 8.35 [dd, ${}^{3}J_{P-H} = 15$, ${}^{3}J_{H-H} = 7$, 2 H of C_6H_5]. ¹³C NMR (C_6D_6): 10.7 [q, ¹ J_{C-H} = 126, 1 C of $C_{10}(CH_3)_8$ P], 10.8 [q, ${}^{1}J_{C-H} = 126$, 1 C of C₁₀(CH₃)₈P], 13.1 [q, ${}^{1}J_{C-H} = 126$, 1 C of $C_{10}(CH_3)_{8}P$], 13.1 [dq, ${}^{1}J_{C-H} = 125$, ${}^{3}J_{P-C} = 5$, 1 C of $C_{10}(CH_3)_{8}P$], 13.4 [q, ${}^{1}J_{C-H} = 126$, 1 C of C₁₀(*C*H₃)₈P], 14.1 [dq, ${}^{1}J_{C-H} = 126$, ${}^{3}J_{P-C}$ = 4, 1 C of $C_{10}(CH_3)_8P$], 19.2 [q, ${}^1J_{C-H}$ = 128, 1 C of $C_{10}(CH_3)_8P$], 19.6 [q, ${}^{1}J_{C-H} = 129$, 1 C of C₁₀(*C*H₃)₈P], 65.7 [d, ${}^{2}J_{P-C} = 15$, 1 C of $C_{10}(CH_3)_8P$], 65.9 [d, ${}^2J_{P-C} = 12$, 1 C of $C_{10}(CH_3)_8P$], 131.0 [dd, ${}^1J_{C-H}$ = 161, ${}^{4}J_{P-C}$ = 3, 1 C of C₆H₅], 132.7 [dd, ${}^{1}J_{C-H}$ = 162, ${}^{2}J_{P-C}$ = 13, 2 C of C_6H_5], 134.4 [dt, ${}^2J_{C-H} = 7$, ${}^1J_{P-C} = 74$, 1 C of C_6H_5 (other phenyl resonances obscured by overlap with C_6D_6], 137.9 [d, ${}^2J_{P-C}$ = 15, 1 C of $C_{10}(CH_3)_8P$], 139.2 [d, ${}^2J_{P-C} = 15$, 1 C of $C_{10}(CH_3)_8P$], 144.4 [d, ${}^{1}J_{P-C} = 87$, 1 C of $C_{10}(CH_3)_8P$], 147.6 [d, ${}^{1}J_{P-C} = 89$, 1 C of $C_{10}(CH_3)_{8}P$], 147.9 [d, ${}^{3}J_{P-C} = 8$, 1 C of $C_{10}(CH_3)_{8}P$], 148.0 [d, ${}^{3}J_{P-C}$ = 5, 1 C of $C_{10}(CH_3)_8P$], 149.5 [d, ${}^{3}J_{P-C}$ = 4, 1 C of $C_{10}(CH_3)_8P$], 158.2 [d, ${}^{3}J_{P-C} = 10$, 1 C of $C_{10}(CH_{3})_{8}P$]. ${}^{31}P$ NMR (C₆D₆): -7.3 [t, ${}^{3}J_{P-H} = 14$, ${}^{1}J_{P-Se} = 730$]. ${}^{77}Se$ NMR (C₆D₆): -231 [d, ${}^{1}J_{Se-P} = 730$].

Synthesis of Ph[R,R-Me2C4H6]PSe. A mixture of PhP[R,R- $Me_2C_4H_6$] (100 mg, 0.52 mmol) and selenium powder (80 mg, 1.01 mmol) in toluene (10 mL) was stirred at room temperature for 2 h. After this period, the mixture was filtered, and the volatile components were removed from the filtrate in vacuo giving oily residue. The residue was dissolved in pentane (15 mL) and the solution was concentrated (to 1 mL) and cooled at 0 °C, thereby depositing a precipitate. The precipitate was isolated by filtration and dried in vacuo giving Ph[R,R-Me₂C₄H₆]PSe as a white cotton-like solid (135 mg, 96%). Anal. calcd For C₁₂H₁₇PSe: C, 53.2%; H, 6.3%. Found: C, 53.4%; H, 6.1%. IR Data (KBr disk, cm⁻¹): 3070 (m), 3046 (m), 2962 (s), 2922 (vs), 2857 (s), 1477 (m), 1435 (vs), 1372 (m), 1341 (w), 1310 (m), 1277 (m), 1249 (m), 1180 (w), 1156 (m), 1099 (vs), 1074 (s), 1051 (s), 1027 (m), 999 (s), 924 (m), 847 (w), 817 (m), 752 (vs), 697 (vs), 657 (vs), 642 (vs), 547 (vs), 526 (vs), 483 (s), 463 (s), 405 (m). ¹H NMR (C₆D₆): 0.61 [dd, ${}^{3}J_{P-H} = 18$, ${}^{3}J_{H-H} = 7$, 3 H of 2 CH₃], 0.87 [ddq, J = 13, 5, 3, 1 H of 2 CH₂], 1.21 [dd, ${}^{3}J_{P-H}$ = 19, ${}^{3}J_{H-H}$ = 7, 3 H of 2 *CH*₃], 1.29 [ddq, *J* = 13, 5, 3, 1 H of 2 *CH*₂], 1.56 [m, 2 H of 2 *CH*₂], 2.04 [m, 1 H of 2 CH], 2.45 [m, 1 H of 2 CH], 7.04 [m, 3 H of C₆H₅], 7.84 [m, 2 H of C₆ H_5]. ¹³C NMR (CDCl₃): 14.0 [dq, ¹ $J_{C-H} = 128$, ${}^{2}J_{P-C} = 2, 1 \text{ C of } 2 \text{ CH}_{3}$], 16.1 [q, ${}^{1}J_{C-H} = 129, 1 \text{ C of } 2 \text{ CH}_{3}$], 33.6 $[dt, {}^{1}J_{C-H} = 131, {}^{2}J_{P-C} = 8, 1 C of 2 CH_{2}], 34.5 [dt, {}^{1}J_{C-H} = 131,$ ${}^{2}J_{P-C} = 6, 1 \text{ C of } 2 CH_{2}, 35.3 \text{ [dd, } {}^{1}J_{C-H} = 127, {}^{1}J_{P-C} = 46, 1 \text{ C of}$ 2 CH], 46.1 [dd, ${}^{1}J_{C-H} = 130$, ${}^{1}J_{P-C} = 48$, 1 C of 2 CH], 128.3 [dd, ${}^{1}J_{C-H} = 161, {}^{2}J_{P-C} = 11, 2 \text{ C of } C_{6}H_{5}], 128.7 \text{ [d, } {}^{1}J_{P-C} = 57, 1 \text{ C of }$ $C_{6}H_{5}$], 131.6 [dd, ${}^{1}J_{C-H} = 163$, ${}^{4}J_{P-C} = 3$, 1 C of $C_{6}H_{5}$], 132.7 [dd, ${}^{1}J_{C-H} = 161, {}^{3}J_{P-C} = 9, 2 \text{ C of } C_{6}H_{5}]. {}^{31}P \text{ NMR } (C_{6}D_{6}): 58.9 \text{ [s, } {}^{1}J_{P-Se}$ = 747]. ⁷⁷Se NMR (C₆D₆): -394 [d, ¹J_{P-Se} = 747].

Preparation of Cp*TaCl₄{**PhP**[(**C**₅**Me**₄)₂]}. A mixture of Cp*TaCl₄ (15 mg, 0.04 mmol) and PhP[(C₅Me₄)₂] (10 mg, 0.03 mmol) was treated with benzene (1 mL), resulting in the immediate formation of an orange-yellow solution. After 30 min, the solution was filtered and the volatile components were removed from the filtrate in vacuo to give Cp*TaCl₄{PhP[(C₅Me₄)₂]} as an orange-yellow solid. ¹H NMR (C₆D₆): 0.61 [s, 3 H of C₁₀(*CH*₃)₈P], 1.16 [s, 3 H of C₁₀(*CH*₃)₈P], 1.59 [s, 3 H of C₁₀(*CH*₃)₈P], 1.65 [s, 3 H of C₁₀(*CH*₃)₈P], 1.81 [s, 3 H of C₁₀(*CH*₃)₈P], 2.21 [s, 15 H of C₅(*CH*₃)₅], 2.47 [s, 3 H of C₁₀(*CH*₃)₈P], 2.49 [d, ⁴J_{P-H} = 2, 3 H of C₁₀(*CH*₃)₈P], 6.98 [td, ⁵J_{P-H} = 2, ³J_{H-H} = 7, 1 H of C₆H₅], 7.15 [td, ⁴J_{P-H} = 2, ³J_{H-H} = 8, 2 H of C₆H₅], 8.15 [t, ⁵J_{P-H} = ³J_{H-H} = 8, 2 H of C₆H₅]. ³¹P NMR (C₆D₆): -9.1 [br. s].

Preparation of Cp*TaCl₄{PhP[R,R-Me₂C₄H₆]}. A mixture of Cp*TaCl₄ (15 mg, 0.04 mmol) and PhP[R,R-Me₂C₄H₆] (10 mg, 0.052

mmol) was treated with benzene (1 mL) giving immediately an orangeyellow solution. After 30 min, the solution was filtered and the volatile components were removed from the filtrate in vacuo, and the residue was washed with pentane (1 mL) to give Cp*TaCl₄{PhP[*R*,*R*-Me₂C₄H₆]} as an orange-yellow solid. ¹H NMR (C₆D₆): 1.06 [m, 1H of 2 CH₂], 1.47 [dd, ³J_{H-H} = 7, ³J_{P-H} = 12, 3 H of 2 CH₃], 1.76 [dd, ³J_{H-H} = 7, ³J_{P-H} = 13, 3 H of 2 CH₃], 1.82 [m, 2 H of 2 CH₂], 1.92 [m, 1 H of 2 CH₂], 2.21 [s, 15 H of C₅(CH₃)₅], 3.01 [br. s, 1 H of 2 CH], 3.48 [m, 1 H of 2 CH], 7.04 [t, ³J_{H-H} = 7, 1 H of C₆H₅], 7.13 [t, ³J_{H-H} = 7, 2 H of C₆H₅], 7.75 [t, ³J_{H-H} = ³J_{P-H} = 7, 2 H of C₆H₅]. ³¹P NMR (C₆D₆): 27.6 [s].

Preparation of Cp*MoCl₄{PhP[(C₅Me₄)₂]}. A mixture of Cp*MoCl₄ (15 mg, 0.04 mmol) and PhP[(C₅Me₄)₂] (10 mg, 0.03 mmol) in benzene (1 mL) was allowed to stand at room-temperature overnight. After this period, the volatile components were removed in vacuo. The residue was extracted into pentane (3 mL) and filtered. The volatile components were removed from the filtrate in vacuo to give Cp*MoCl₄{PhP-[(C₅Me₄)₂]} as a purple solid.

Synthesis of trans-Ir{P[(C5Me4)2]Ph}2(CO)Cl. A mixture of $[(COD)Ir(\mu-Cl)]_2$ (105 mg, 0.16 mmol) and PhP $[(C_5Me_4)_2]$ (230 mg, 0.66 mmol) in toluene (20 mL) was stirred at room temperature for 30 min to give an orange solution which was treated with CO (1 atm) and stirred at room-temperature overnight to give a yellow solution. After this period, the volatile components were removed in vacuo to yield a yellow residue that was washed with pentane (2 \times 10 mL) and dried to give yellow $Ir{P[(C_5Me_4)_2]Ph}_2(CO)Cl$ as a 1:1 mixture of ${R/R}$, S/S} and R/S diasteromers (270 mg, 91%). Anal. calcd for C₄₉H₅₈OP₂-ClIr: C, 61.8%; H, 6.1%. Found: C, 62.2%; H, 6.7%. IR Data (KBr disk, cm⁻¹): 3054 (w), 2964 (s), 2921 (s), 2860 (m), 2732 (w), 1953 (vs) [v(CO)], 1638 (w), 1570 (m), 1480 (w), 1435 (s), 1375 (m), 1321 (w), 1277 (w), 1197 (w), 1124 (w), 1092 (m), 1076 (m), 1026 (w), 985 (w), 852 (vw), 766 (w), 740 (s), 701 (s), 658 (w), 632 (vw), 618 (w), 599 (s), 573 (w), 510 (s), 486 (m), 458 (w). v(CO): 1955 (Nujol), 1960 (pentane). ¹H NMR (C₆D₆): 0.79 [d, ${}^{4}J_{P-H} = 3$, 6 H of 2 $C_{10}(CH_3)_8P$], 1.20 [d, ${}^4J_{P-H} = 3$, 6 H of 2 $C_{10}(CH_3)_8P$], 1.53 [s, 6 H of 2 C10(CH3)8P], 1.64 [s, 6 H of 2 C10(CH3)8P], 1.79 [s, 6 H of 2 $C_{10}(CH_3)_{8}P$], 1.81 [s, 6 H of 2 $C_{10}(CH_3)_{8}P$], 2.19 [d, ${}^{4}J_{P-H} = 2$, 6 H of 2 C₁₀(CH₃)₈P], 2.61 [s, 6 H of 2 C₁₀(CH₃)₈P], 7.04 [t, ${}^{3}J_{H-H} = 7, 2 H$ of 2 C₆H₅], 7.17 [dt, ${}^{3}J_{H-H} = 8$, ${}^{4}J_{P-H} = 4$, 4 H of 2 C₆H₅], 8.23 [m, 4 H of 2 C₆H₅]. ¹³C NMR (C₆D₆): 11.1 [q, ¹J_{C-H} = 126, 2 C of 2 $C_{10}(CH_3)_8P$], 11.2 [q, ${}^1J_{C-H} = 126$, 2 C of 2 $C_{10}(CH_3)_8P$], 13.3 [q, ${}^1J_{C-H}$ = 125, 4 C of 2 C₁₀(CH₃)₈P], 15.0 [q, ${}^{1}J_{C-H}$ = 127, 2 C of 2 $C_{10}(CH_3)_8P$], 15.8 [dq, ${}^1J_{C-H} = 125$, ${}^3J_{P-C} = 5$, 2 C of 2 $C_{10}(CH_3)_8P$], 19.9 [q, ${}^{1}J_{C-H} = 129$, 1 C of 2 C₁₀(CH₃)₈P], 20.0 [q, ${}^{1}J_{C-H} = 129$, 1 C of 2 C₁₀(*C*H₃)₈P], 20.1 [q, ${}^{1}J_{C-H} = 129$, 1 C of 2 C₁₀(*C*H₃)₈P], 20.1 [q, ${}^{1}J_{C-H} = 129, 1 \text{ C of } 2 \text{ C}_{10}(CH_3)_8 \text{P}, 65.5 \text{ [s, } 2 \text{ C of } 2 \text{ C}_{10}(CH_3)_8 \text{P}, 67.8$ [s, 2 C of 2 C₁₀(*C*H₃)₈P], 127.6 [d, ${}^{1}J_{C-H} = 156$, 2 C of *C*₆H₅], 129.3 $[d, {}^{1}J_{C-H} = 160, 1 \text{ C of } C_{6}H_{5}], 134.0 [dt, {}^{1}J_{C-H} = 160, {}^{2}J_{P-C} = 7, 1 \text{ C}$ of C_6H_5], 134.1 [dt, ${}^{1}J_{C-H} = 161$, ${}^{2}J_{P-C} = 7$, 1 C of C_6H_5], 135.6 [t, ${}^{1}J_{P-C} = 25, 1 \text{ C of } C_{6}H_{5}], 138.4 \text{ [t, } {}^{3}J_{P-C} = 6, 2 \text{ C of } 2 C_{10}(CH_{3})_{8}P],$ 138.7 [t, ${}^{3}J_{P-C} = 5$, 2 C of 2 $C_{10}(CH_{3})_{8}P$], 145.6 [t, ${}^{2}J_{P-C} = 31$, CO], 145.7 [t, ${}^{2}J_{P-C} = 31$, CO], 147.2 [d, ${}^{2}J_{P-C} = 10$, 2 C of 2 C_{10} (CH₃)₈P], 147.3 [t, ${}^{3}J_{P-C} = 5$, 1 C of 2 C_{10} (CH₃)₈P], 147.4 [t, ${}^{3}J_{P-C} = 5$, 1 C of 2 C_{10} (CH₃)₈P], 148.3 [d, ${}^{1}J_{P-C} = 58$, 2 C of 2 C_{10} (CH₃)₈P], 148.3 [s, 2 C of 2 C_{10} (CH₃)₈P], 148.3 [d, ${}^{1}J_{P-C} = 58$, 2 C of 2 C_{10} (CH₃)₈P], 154.4 [t, ${}^{2}J_{P-C} = 7$, 2 C of 2 C_{10} (CH₃)₈P]. 31 P NMR (C₆D₆): -14.9 [t, ${}^{3}J_{P-H} = 5$], -15.2 [t, ${}^{3}J_{P-H} = 5$] (the two signals correspond to the 1:1 mixture of $\{R/R, S/S\}$ and R/S diasteromers).

Synthesis of *trans*-**Ir**{**PPh**[(*R*,*R*)-**Me**₂C₄**H**₆]}₂(**CO**)**Cl.** A mixture of [(COD)Ir(μ -Cl)]₂ (720 mg, 1.07 mmol) and PhP[(*R*,*R*)-Me₂C₄**H**₆] (900 mg, 4.73 mmol) in toluene (50 mL) was stirred at room temperature for 1 h to give an orange solution. The orange solution was treated with CO (1 atm) and stirred at room-temperature overnight and then heated at 80 °C for 2 h to give a yellow solution. After this period, the solution was filtered, and the volatile components were removed from the filtrate in vacuo. The yellow residue was washed with pentane (3 × 10 mL) and dried in vacuo to give *trans*-Ir{PPh-[(*R*,*R*)-Me₂C₄H₆]₂(CO)Cl as a bright yellow solid (1.3 g, 95%). Anal. calcd for C₂₅H₃₄OP₂ClIr: C, 46.9%; H, 5.4%. Found: C, 46.9%; H, 5.2%. IR Data (KBr disk, cm⁻¹): 3078 (m), 3054 (m), 2952 (s), 2924 (s), 2860 (s), 1937 (vs) [ν (CO)], 1481 (m), 1446 (s), 1432 (s), 1376

(m), 1308 (w), 1275 (w), 1249 (m), 1183 (m), 1157 (m), 1101 (s), 1074 (m), 1050 (m), 1027 (w), 1005 (m), 940 (w), 919 (w), 845 (w), 816 (w), 747 (s), 696 (s), 637 (vs), 599 (m), 546 (s), 517 (vs), 474 (m). v(CO): 1937 (in Nujol), 1957 (in pentane). ¹H NMR (C₆D₆): 0.85 $[q, {}^{3}J_{H-H} = {}^{3}J_{P-H} = 7, 3 H \text{ of } 2 CH_{3}], 1.14 [m, 1 H \text{ of } 2 CH_{2}], 1.40$ [m, 1 H of 2 CH₂], 1.69 [q, ${}^{3}J_{H-H} = {}^{3}J_{P-H} = 8$, 3 H of 2 CH₃], 1.71 [m, 1 H of 2 CH2], 1.90 [m, 1 H of 2 CH2], 2.84 [m, 1 H of 2 CH], 3.32 [m, 1 H of 2 CH], 7.07 [t, ${}^{3}J_{H-H} = 8$, 1 H of C₆H₅], 7.15 [t, ${}^{3}J_{H-H}$ = 8, 2 H of C₆H₅], 7.93 [m, 2 H of C₆H₅]. ¹³C NMR (CDCl₃): 14.9 $[q, {}^{1}J_{C-H} = 126, 1 \text{ C of } 2 CH_{3}], 21.4 [tq, {}^{1}J_{C-H} = 128, {}^{2}J_{P-C} = 5, 1 \text{ C}$ of 2 *C*H₃], 33.3 [dt, ${}^{1}J_{C-H} = 135$, ${}^{1}J_{P-C} = 16$, 1 C of 2 *C*H], 34.5 [dt, ${}^{1}J_{C-H} = 135$, ${}^{1}J_{P-C} = 17$, 1 C of 2 CH], 35.0 [dd, ${}^{1}J_{C-H} = 130$, 1 C of 2 CH₂], 35.5 [t, ${}^{1}J_{C-H} = 130$, 1 C of 2 CH₂], 127.7 [dt, ${}^{1}J_{C-H} = 159$, ${}^{3}J_{P-C} = 5, 2 \text{ C of } C_{6}\text{H}_{5}$], 130.0 [d, ${}^{1}J_{C-H} = 161, 1 \text{ C of } C_{6}\text{H}_{5}$], 132.3 $[t, {}^{1}J_{P-C} = 41, 1 \text{ C of } C_{6}H_{5}], 134.6 \text{ [dt, } {}^{1}J_{C-H} = 166, {}^{2}J_{P-C} = 11, 2 \text{ C}$ of C₆H₅], (CO not located). ³¹P NMR (C₆D₆): 42.8 [s].

Synthesis of *trans*-Ir{Ph[*R*,*R*-Me₂C₄H₆]}₂(CO)Me. A suspension of Ir{Ph[*R*,*R*-Me₂C₄H₆]}₂(CO)Cl (200 mg, 0.31 mmol) in Et₂O (20 mL) was treated with MeLi (0.30 mL, 1.4 M solution in ether) at room temperature for 1 h giving orange-yellow suspension. After this period, the volatile components were removed from the mixture in vacuo, and the residue was extracted into pentane (100 mL), filtered, concentrated (to 1 mL) and filtered. The yellow residue was dried in vacuo to give Ir{Ph[R,R-Me₂C₄H₆]}₂(CO)Me as a yellow solid (130 mg, 67% yield). Anal. calcd For $C_{26}H_{37}OP_2Ir$: C, 50.4%; H, 6.0%. Found: C, 50.3%; H, 6.0%. IR Data (KBr disk, cm⁻¹): 2923 (s), 2861 (s), 1916 (vs) [v(CO)], 1481 (m), 1446 (s), 1432 (s), 1374 (m), 1309 (w), 1273 (w), 1249 (w), 1183 (w), 1157 (w), 1100 (s), 1073 (m), 1050 (w), 1026 (w), 1003 (m), 939 (w), 918 (w), 848 (vw), 814 (w), 748 (s), 698 (s), 475 (m), 455 (m), 410 (w). v(CO): 1933 (in pentane). ¹H NMR (C₆D₆): 0.26 [t, ${}^{3}J_{P-H} = 9$, Ir-CH₃], 0.94 [q, ${}^{3}J_{H-H} = {}^{3}J_{P-H} = 7$, 3 H of 2 CH₃], 1.22 [m, 1 H of 2 CH₂], 1.33 [m, 1 H of 2 CH₂], 1.49 [q, ${}^{3}J_{H-H} = {}^{3}J_{P-H} = 8, 3 H \text{ of } 2 CH_{3}, 1.67 [m, 1 H \text{ of } 2 CH_{2}], 2.00 [m, 1 H \text{ of } 2 CH_{2}], 2.00 [m]$ 1 H of 2 CH₂], 2.80 [m, 2 H of 2 CH], 7.07 [t, ${}^{3}J_{H-H} = 7$, 1 H of C_6H_5], 7.15 [t, ${}^{3}J_{H-H} = 7$, 2 H of C_6H_5], 7.87 [m, 2 H of C_6H_5]. ${}^{13}C$ NMR (C₆D₆): 1.4 [tq, ${}^{1}J_{C-H} = 120$, ${}^{2}J_{P-C} = 11$, Ir-CH₃], 14.2 [q, ${}^{1}J_{C-H} = 127, 1 \text{ C of } 2 \text{ } CH_{3}$], 22.0 [tq, ${}^{1}J_{C-H} = 127, {}^{2}J_{P-C} = 5, 1 \text{ C of}$ 2 CH₃], 32.6 [dt, ${}^{1}J_{C-H} = 129$, ${}^{1}J_{P-C} = 16$, 1 C of 2 CH], 35.1 [t, ${}^{1}J_{C-H}$ = 129, 1 C of 2 CH₂], 35.6 [t, ${}^{1}J_{C-H}$ = 128, 1 C of 2 CH₂], 37.6 [dt, ${}^{1}J_{C-H} = 132$, ${}^{1}J_{P-C} = 16$, 1 C of 2 CH], 127.5 [dt, ${}^{1}J_{C-H} = 167$, ${}^{3}J_{P-C}$ = 5, 2 C of C_6H_5], 129.6 [d, ${}^{1}J_{C-H}$ = 160, 1 C of C_6H_5], 134.0 [t, ${}^{1}J_{P-C}$ = 19, 1 C of C_6H_5], 135.1 [dt, ${}^{1}J_{C-H}$ = 160, ${}^{2}J_{P-C}$ = 6, 2 C of C_6H_5], CO [not located]. ³¹P NMR (C₆D₆): 48.4 [s].

Synthesis of Ir{**PPh**[*R*,*R*-**Me**₂C₄**H**₆]}(**COD**)**Cl.** A mixture of [(COD)Ir(μ -Cl)]₂ (10 mg, 0.015 mmol) and PhP[*R*,*R*-Me₂C₄**H**₆] (10 mg, 0.052 mmol) in benzene (1 mL) was left at room-temperature overnight. After this period, the volatile components were removed from the mixture in vacuo, and the residue was washed with pentane (1 mL) to give Ir{PPh[*R*,*R*-Me₂C₄**H**₆]}(COD)Cl as a yellow-orange solid. ¹H NMR (C₆D₆): 0.75 [dd, ³J_{P-H} = 14, ³J_{H-H} = 7, 3 H of 2 CH₃], 0.91 [m, 1 H of 2 CH₂], 1.35 [m, 2 H of 2 CH₂], 1.48 [br s, 1 H of COD], 1.5–1.7 [m, 1 H of 2 CH₂ and 2 H of COD], 1.63 [dd, ³J_{P-H} = 18, ³J_{H-H} = 7, 3 H of 2 CH₃], 1.79 [m, 1 H of 2 CH₂], 1.97 [br s, 2 H of COD], 2.13 [br s, 2 H of COD], 2.65 [m, 1 H of 2 CH₂], 2.71 [br s, 1 H of COD], 1, 2.93 [br s, 2 H of COD], 1, 5.36 [br s, 2 H of COD], 6.98–7.09 [m, 3 H of C₆H₅], 7.44 [t, ³J_{H-H} = 8, 2 H of C₆H₅]. ³¹P NMR (C₆D₆): 34.3 [s].

Synthesis of Pd{P[*R***,***R***-Me₂C₄H₆]Ph}[\eta^2-***S***-C₆H₄C(H)(Me)-NMe₂]Cl. A mixture of Pd{[\eta^2-***S***-C₆H₄C(H)(Me)NMe₂]Cl}₂ (15 mg, 0.026 mmol) and PhP[***R***,***R***-Me₂C₄H₆] (10 mg, 0.052 mmol) in C₆D₆ (1 mL) was kept in an NMR tube at room temperature for 30 min. After this period, the volatile components were removed from the mixture in vacuo, and the residue was washed with pentane (1 mL) to give Pd{P[R,R-Me₂C4H6]Ph}[\eta^2-***S***-C₆H₄C(H)(Me)NMe₂]Cl as a pale brown solid. ¹H NMR (C₆D₆): 0.89 [dd, ³J_{P-H} = 16, ³J_{H-H} = 7, 3 H of 2 CH₃], 1.15 [m, 1 H of 2 CH₂], 1.39 [m, 1 H of 2 CH₂], 1.40 [d, ³J_{H-H} = 7, 3 H of CH(CH₃)N(CH₃)₂], 1.60 [m, 1 H of 2 CH₂], 1.61 [dd, ³J_{P-H} = 20, ³J_{H-H} = 7, 3 H of 2 CH₃], 1.94 [m, 1 H of 2 CH₂], 2.56 [d, ⁴J_{H-H} = 2, 3 H of CH(CH₃)N(CH₃)₂], 2.60 [d, ⁴J_{H-H} = 3, 3 H of CH(CH₃)N(CH₃)₂], 2.62 [m, 1 H of 2 CH], 3.22 [m, 1 H of CH(CH₃)-N(CH₃)₂], 3.90 [m, 1 H of 2 CH], 6.59 [t, ³J_{H-H} = 7, 1 H of C₆/₄/₄**

Table 4. Crystal, Intensity, Collection, and Refinement
--

	$PhP[(C_5Me_4)_2]$	$Ph[(C_5Me_4)_2]PS$		Ph[(C ₅ Me ₄) ₂]PSe	Cp*MoCl ₄ {P[$Cp*MoCl_4\{P[(C_5Me_4)_2]Ph\}$	
lattice	orthorhombic	monocl	inic	monoclinic	monocl	inic	
formula	$C_{24}H_{29}P$	$C_{24}H_{29}H_{2$	PS	C24H29PSe	$C_{34}H_{44}H_{44}H_{4$	Cl ₄ MoP	
formula weight	348.44	380.50		427.40	721.40		
space group	$Pna2_1$	$P2_{1}/c$		$P2_{1}/c$	$P2_{1}/n$		
a/A	14.043(1)	16.022(2)		16.250(4)	12.236(12)	
b/A	8.804(1)	7.391(1)	7.503(2)	14.601(15)	
c/A	16.407(2)	19.181(2)		19.078(4)	19.078(4) 16.572(16)		
α/deg	90	90		90	90 90		
β /deg	90	112.27(1)	111.95(1)	99.93(2	.)	
γ/deg	90	90	2)	90	90		
V/A ³	2028.4(4)	2101.9(3)		2157.4(9)	2157.4(9) 2916(5)		
Z	4	4		4	4		
temperature (K)	223	238		238	.38 233		
radiation (λ , A)	0./10/3	0.71073		0./10/3	0./10/3 0./10/3		
ρ (calcd.), g cm ⁻¹	1.141	1.202		1.310	.316 1.643		
μ (NIO Ku), mm ⁻¹	0.159	0.255		1.820	820 0.897		
o max, deg	20.5	20.3		20.4 4770	.4 28.9		
no. of parameters	226	4099		4779	79 7070		
D1	250	244		244	30 0.0646		
NI wD2	0.00521	0.0393		0.0430	0.0646		
WK2 COE	1.087	0.1144		1.002	0941 0.1278		
abs struct param	0.06(12)	1.055 NA		1.095 NA	1.015 NA		
abs. suuet. paraill.	0.00(12)	11/2		11/2	NA NA		
	$Cp*TaCl_4{P[(C_5Me_4)_2]Ph}$	$I \} Ir \{ P[(C_5Me_4)_2 $	$_2$]Ph} ₂ (CO)Cl F	$Ph[R,R-Me_2C_4H_6]Pe$	O Ph[R,R -Me ₂ C ₄	₄ H ₆]PS	
lattice	triclinic	triclinic		monoclinic	triclinic	;	
tormula	$C_{34}H_{44}Cl_4T_aP$	C49H580	CIIIrOP ₂	C ₁₂ H ₁₇ PO	C ₁₂ H ₁₇ H	28	
formula weight	806.41	952.54		208.23	224.29		
space group	P1	P1		$P2_1$	PI	、 、	
a/A	9.924(2)	11.967(2)		6.392(7)	7.166(1)	
b/A	17.206(3)	13.805(2)		7.497(8)	.497(8) 9.100(2)		
c/A	21.312(4)	14.918(2)		12.274(10)	10.080(2)		
α/deg	104.329(3)	92.172(4)		90	75.803(4)		
p/deg	99.530(3)	102.033(3)		100.71(2)	1(2) 84.522(3) 82.010(4)		
γ/deg	2284 8(10)	113.022(2)		90 577 0(12)	63.910(4)		
V/A ² 7	3384.8(10)	2190.0(5)	2	7.9(12) 052.1(2)		
L temperature (K)	4 238	2		2	2		
radiation $(\lambda, \dot{\lambda})$	0.71073	0.71073	2	255	255 0.71073		
α (calcd) α cm ⁻³	1 582	1 / 39)	1 107	0.71075		
μ (Mo K α) mm ⁻¹	3 633	1.439		0.205	0.345		
$A \max deg$	28.4	5.204 28.4		28.2	28.2		
no of data	14936	9553		2335	3357	20.2 3357	
no. of parameters	748	582		131	259		
R1	0.0317	0.0549		0.0518	0.0486		
wR2	0.0676	0.0946		0.0885	.0885 0.0954		
GOF	1.015	1.022		1.023	1.045		
abs. struct. param.	NA	NA		0.18(15)	0.00(13)	
	$Ir{Ph[R.R-Me_2C_4H_4]}_{2-}$ $Ir{I}$	$Ph[R_R-Me_2C_4H_4]$	Ir{PPh[R.R-Me ₂ C ₄]	\mathbf{I}_{2} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{1}	$R-Me_2C_4H_2Ph)$	S.S-Me ₂ C ₄ H ₆ -	
	(CO)Cl	(CO)Me	(COD)(Cl)	$[S-\eta^2-C_6H_4]$	$C(H)(Me)-N-Me_2]Cl$	$(O_2 S O_2)$	
lattice	monoclinic	monoclinic	orthorhombic	or	thorhombic	orthorhombic	
formula	C ₂₅ H ₃₄ ClIrOP ₂	C ₂₆ H ₃₇ IrOP ₂	C ₂₀ H ₂₉ ClIrP	C	2H31CINPPd	$C_6H_{12}O_4S$	
formula weight	640.11	619.70	528.05	48	32.30	180.22	
space group	$P2_1$	$P2_1$	$P2_{1}2_{1}2_{1}$	P2	212121	$P2_{1}2_{1}2_{1}$	
a/Å	9.244(5)	9.1715(6)	9.8883(4)	9.2	261(2)	6.515(3)	
$b/\text{\AA}$	14.891(9)	14.780(1)	13.9564(7)	11	.872(2)	11.386(5)	
c/Å	9.648(5)	9.7107(6)	14.3346(7)	20	.943(4)	11.817(4)	
α/deg	90	90	90	90		90	
β/deg	100.88(1)	101.541(1)	90	90)	90	
ν/deg	90	90	90	90)	90	
$V/Å^3$	1304(1)	1289.7(2)	1978.3(2)	23	02.7(8)	876.5(6)	
Z	2	2	4	4		4	
temperature (K)	233	233	233	23	3	238	
radiation (λ, A)	0.71073	0.71073	0.71073	0.7	71073	0.71073	
ρ (calcd), g cm ⁻³	1.630	1.596	1.773	1.3	391	1.366	
μ (Mo K α), mm ⁻¹	5.358	5.315	6.963	0.0	997	0.337	
θ max, deg.	28.2	28.2	28.3	28	3.3	28.3	
no. of data	5190	5392	4553	51	79	1984	
no. of parameters	288	277	211	24	1	104	
R1	0.0364	0.0210	0.0225	0.0	0165	0.0346	
wR2	0.0991	0.0534	0.0538	0.0	0438	0.0736	
GOF	1.095	1.027	1.044	1 (039	1.050	
abs struct param	0.01(1)	0.000(7)	-0.013(7)	0.0	00(2)	0.05(8)	
Purum	·····		0.010(1)	0.0	~~\ - /		

CH(CH₃)N(CH₃)₂], 6.65 [t, ${}^{3}J_{H-H} = {}^{4}J_{P-H} = 7$, 1 H of C₆H₄CH(CH₃)-N(CH₃)₂], 6.71 [d, ${}^{3}J_{H-H} = 7$, 1 H of C₆H₄CH(CH₃)N(CH₃)₂], 6.80 [t, ${}^{3}J_{H-H} = 7$, 1 H of C₆H₄CH(CH₃)N(CH₃)₂], 6.94 [m, 3 H of C₆H₅P], 7.65 [m, 2 H of C₆H₅P]. 31 P NMR (C₆D₆): 66.8 [s].

Synthesis of CpFe(CO){PhP[(C₅Me₄)₂]}Me. (a) A mixture of CpFe(CO)₂Me (ca. 10 mg) and PhP[(C₅Me₄)₂] (ca.20 mg) in C₆D₆ (1 mL) was heated at 80 °C for 5 days. After this period, the volatile components were removed from the mixture in vacuo, and the residue was extracted into pentane (2 mL) and filtered. The pentane was removed from the filtrate to give CpFe(CO){PhP[(C₅Me₄)₂]}Me as a brown solid. IR Data (cyclohexane, cm⁻¹): 1921 (s). ¹H NMR (C₆D₆): ²⁹ 0.23 [d, ³J_{P-H} = 8 Hz, Fe-CH₃], 0.48 [d, ³J_{P-H} = 8 Hz, Fe-CH₃], 4.19 [d, ³J_{P-H} = 1 Hz, C₅H₅], 4.30 [d, ³J_{P-H} = 1 Hz, C₅H₅]. ³¹P{¹H} NMR (C₆D₆): 37.5 (s), 44.8 (s). (b) A mixture of CpFe(CO)₂Me (ca. 10 mg) and PhP[(C₅Me₄)₂] (ca.20 mg) in C₆D₆ (1 mL) was photolyzed for 5 h. After this period, the volatile components were removed from the mixture in vacuo, and the residue was extracted into pentane (2 mL) and filtered, and pentane was removed from the filtrate to give CpFe(CO)(PhP[(C₅Me₄)₂])Me as a brown solid.

Synthesis of CpFe(CO){P[*R*,*R*-Me₂C₄H₆]Ph}Me. (a) Preparation via CpFe(CO){P[R,R-Me₂C₄H₆]Ph}I. A mixture of CpFe(CO)₂I (ca. 10 mg) and PhP[R,R-Me₂C₄H₆] (ca.10 mg) in C₆D₆ (1 mL) was heated at 80 °C overnight giving a green solution. After this period, the volatile components were removed from the solution in vacuo, and the residue was extracted into benzene (1 mL) and filtered. The benzene was removed from the filtrate and the residue was washed with pentane (1 mL) to give CpFe(CO){P[R,R-Me₂C₄H₆]Ph}I as a green solid. ¹H NMR (C_6D_6) :³⁰ 4.01 [d, ³ $J_{P-H} = 2$ Hz, C_5H_5], 4.04 [d, ³ $J_{P-H} = 2$ Hz, C_5H_5]. ³¹P{¹H} NMR (C₆D₆): 74.0 (s), 78.0 (s). A mixture of CpFe(CO)- $\{P[R,R-Me_2C_4H_6]Ph\}I$ (ca. 10 mg) and MeLi (ca.10 mg) in C₆D₆ (1 mL) was heated at 80 °C overnight. After this period, the volatile components were removed from the mixture in vacuo, and the residue was extracted into pentane (2 mL) and filtered. The pentane was removed from the filtrate to give $CpFe(CO){P[R,R-Me_2C_4H_6]Ph}Me$ as a brown solid. IR Data (cyclohexane, cm⁻¹): 1913 (s). ¹H NMR (C_6D_6) :³⁰ 0.09 [d, ³J_{P-H} = 6 Hz, Fe-CH₃], 0.41 [d, ³J_{P-H} = 5 Hz, Fe-CH₃], 4.06 [d, ${}^{3}J_{P-H} = 1$ Hz, C₅H₅], 4.11 [d, ${}^{3}J_{P-H} = 1$ Hz, C₅H₅]. ${}^{31}P{}^{1}H}$ NMR (C₆D₆): 87.0 (s), 90.6 (s).

(b) Photolytic reaction of CpFe(CO)₂Me (ca. 10 mg) with PhP[R,R-Me₂C₄H₆]. A mixture of CpFe(CO)₂Me (ca. 10 mg) and PhP[R,R-Me₂C₄H₆] (ca.10 mg) in C₆D₆ (1 mL) was photolyzed for 3 h. After this period, the volatile components were removed from the mixture in vacuo, and the residue was extracted into pentane (2 mL) and filtered, and pentane was removed from the filtrate to give CpFe(CO){P[R,R-Me₂C₄H₆]Ph)}Me as a brown solid.

(c) Thermal reaction of CpFe(CO)₂Me with PhP[R,R-Me₂C₄H₆]. A mixture of CpFe(CO)₂Me (ca. 10 mg) and PhP[R,R-Me₂C₄H₆] (ca.10 mg) in C₆D₆ (1 mL) was heated at 80 °C for 5 days. After this period, the volatile components were removed from the mixture in vacuo, and the residue was extracted into pentane (2 mL) and filtered. The pentane

was removed from the filtrate to give a mixture of CpFe(CO){P[*R*,*R*-Me₂C₄H₆]Ph}Me and CpFe(CO){P[*R*,*R*-Me₂C₄H₆]Ph}[C(O)Me] as a brown solid. Spectral data for CpFe(CO){P[*R*,*R*-Me₂C₄H₆]Ph}[C(O)-Me]: IR Data (cyclohexane, cm⁻¹): 1914 [ν (C=O)], 1609 [ν (C=O)]. ¹H NMR (C₆D₆):³⁰ 2.67 [s, Fe-C(O)CH₃], 2.83 [d, ⁴*J*_{P-H} = 1 Hz, Fe-C(O)CH₃], 4.11 [d, ³*J*_{P-H} = 1 Hz, C₅H₅], 4.21 [d, ³*J*_{P-H} = 1 Hz, C₅H₅]. ³¹P{¹H} NMR (C₆D₆): 83.7 (s), 83.9 (s).

X-ray Structure Determinations. X-ray diffraction data were collected on a Bruker P4 diffractometer equipped with a SMART CCD detector and crystal data, data collection and refinement parameters are summarized in Table 4. The structures were solved using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (Version 5.03).³⁰ Hydrogen atoms on carbon were included in calculated positions. The CO and Cl ligands of Ir{P[(C₅Me₄)₂]Ph}₂(CO)Cl and *trans*-Ir{PPh[(*R*,*R*)-Me₂C₄H₆])₂(CO)Cl are disordered, which is a common feature of such complexes.³¹ As a consequence, the bond lengths associated with these ligands are not necessarily accurate.³²

Summary

In conclusion, the chiral monodentate phosphine PhP-[(C₅Me₄)₂] has been synthesized by oxidation of Li₂[PhP-(C₅Me₄)₂] with I₂. The steric and electronic properties of PhP-[(C₅Me₄)₂] are intermediate between those of PPh₂Me and PPh₃. Thus, structural characterization of several derivatives indicates that the crystallographic cone angles increase in the sequence: PPh₂Me (134.5°) < PhP[(C₅Me₄)₂] (140.2°) < PPh₃ (148.2°). Likewise, the electron donating abilities of these phosphines, as judged by the ν (CO) stretching frequencies of Ir(PR₃)₂(CO)-Cl in Nujol, decrease in the sequence: PPh₂Me (1950 cm⁻¹) > PhP[(C₅Me₄)₂] (1955 cm⁻¹) > PPh₃ (1961 cm⁻¹). Finally, PhP[(C₅Me₄)₂] has a smaller cone angle and is less electron donating than the structurally similar phosphine, PhP[Me₂C₄H₆].

Acknowledgment. We thank the U. S. Department of Energy, Office of Basic Energy Sciences (#DE-FG02-93ER-14339), for support of this research.

Supporting Information Available: X-ray crystallographic files in CIF format for all structures. This material is available free of charge via the Internet at http://pubs.acs.org.

IC010443J

- (31) Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; University of Göttingen: Göttingen, Federal Republic of Germany, 1981.
- (32) See, for example: Parkin, G. Chem. Rev. 1993, 93, 887-911.
- (33) The mean Ir-Cl, Ir-CO, and C-O bond lengths for complexes listed in the CSD (Version 5.20) are 2.41, 1.87, and 1.15 Å, respectively.
- (34) Deeming, A. J.; Shaw, B. L. J. Chem. Soc. (A) 1968, 1887–1889.
 (35) Field, L. D.; Lawrenz, E. T.; Ward, A. J. Polyhedron 1999, 18, 3031–
- 3034. (36) Smith, L. R.; Lin, S. M.; Chen, M. G.; Mondal, J. U.; Blake, D. M.

(30) Smith, L. R.; Eln, S. M.; Chen, M. G.; Mondal, J. U.; Blake, D. M. Inorg. Synth. 1982, 21, 97–99.

(37) Collman, J. P.; Sears, C. T., Jr.; Kubota, M. Inorg. Synth. 1990, 28, 92-94.

⁽²⁹⁾ A sub-stoichiometric amount of I_2 is used because PhP[(C₅Me₄)₂] reacts with excess I_2 .

⁽³⁰⁾ 1 H NMR data are not listed for the phosphine ligand due to its complexity.