Magnetic-Field-Dependent Heat Capacity of the Single-Molecule Magnet $[Mn_{12}O_{12}(O_2CEt)_{16}(H_2O)_3]^{\#}$

Yuji Miyazaki,[†] Ashis Bhattacharjee,^{†,} Motohiro Nakano,[‡] Kazuya Saito,[†] Sheila M. J. Aubin,[§] Hilary J. Eppley,^{II,O} George Christou,^{II,V} David N. Hendrickson,^{*,§} and Michio Sorai^{*,†,⊥}

Research Center for Molecular Thermodynamics, Graduate School of Science, and Department of Molecular Chemistry, Graduate School of Engineering, Osaka University, Toyonaka, Osaka 560-0043, Japan, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0358, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405-4001

Received May 29, 2001

Accurate heat capacities of the single-molecule magnet $[Mn_{12}O_{12}(O_2CEt)_{16}(H_2O)_3]$ were measured from 0.3 to 311 K by adiabatic calorimetry without an external magnetic field. Heat-capacity anomalies were separated by assuming several contributions including lattice vibration, magnetic anisotropy, and hyperfine splitting. Among them, a tiny thermal anomaly between 1 and 2 K is attributable to the presence of Jahn-Teller isomers. The heat capacities of the polycrystalline sample were also measured with applied magnetic fields from 0 to 9 T in the 2-20 K temperature region by the relaxation method. With an applied magnetic field of up to 2 T, a steplike heat-capacity anomaly was observed around the blocking temperature $T_{\rm B} \approx 3.5$ K. The magnitude of the anomaly reached a maximum at 0.7 T. With a further increase in the magnetic field, the step was decreasing, and finally it disappeared above 3 T. The step at $T_{\rm B}$ under 0.7 T can be roughly accounted for by assuming that a conversion between the up-spin and down-spin states is allowed above $T_{\rm B}$ by phonon-assisted quantum tunneling, while it is less effective below $T_{\rm B}$. Excess heat capacity under a magnetic field revealed a large heat-capacity hump around 14 K and 2 T, which would be attributed to a thermal excitation from the S = 9 ground state to the spin manifold with different S values, where S is the total spin quantum number.

Introduction

Magnetic clusters having a large-spin ground state, such as Mn₁₂ and Fe₈, have currently been attracting many physicists and chemists as a result of their unusual magnetic properties. They are called "single-molecule magnets" because they show hysteresis of magnetization even in a single cluster. They also exhibit characteristics of "superparamagnetism", which is usually encountered in very fine magnetic particles. They give rise to magnetic relaxation because of the interconversion between up- and down-spin states governed by a thermally activated Arrhenius type of relaxation and quantum tunneling of magnetization (OTM).¹⁻⁷

- ¹ Tel: +81-6-6850-5523. Fax: +81-6-6850-5526. E-mail: sorai@chem. sci.osaka-u.ac.jp.
- ^o Present address: Department of Chemistry, Depauw University, Greencastle, IN 46135.
- ^v Present address: Department of Chemistry, University of Florida, Gainesville, FL 32611-7200. • Present address: Department of Physics, St. Joseph's College, North
- Point, Darjeeling-734104, West Bengal, India.
- (1) DeFranzo, A.; Klik, I.; Gunther, L.; Swanson, A. G.; Brooks, J. S. J. Appl. Phys. 1988, 63, 4234.
- (2) Chudnovsky, E. M.; Gunther, L. Phys. Rev. Lett. 1988, 60, 661.
- (3) Barbara, B.; Chudnovsky, E. M. Phys. Lett. A 1990, 145, 205.
- (4) Awschalom, D. D.; Smyth, J. F.; Grinstein, G.; Divincenzo, D. P.; Loss, D. Phys. Rev. Lett. 1992, 68, 3092.
- (5) Awschalom, D. D.; DiVincenzo, D. P.; Smith, J. F. Science 1992, 258, 414.

The Mn₁₂ cluster complex $[Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4]$. 2MeCO₂H·H₂O (hereafter Mn₁₂Ac), which was first synthesized by Lis in 1980,⁸ is a representative single-molecule magnet. The Mn₁₂ cluster comprises an inner cuban cluster containing four Mn(IV) ions (spin quantum number $S = \frac{3}{2}$), which are interacted ferromagnetically, and an outer ring consisting of eight ferromagnetically interacted Mn(III) ions (S = 2). Because the magnetic interaction between the inner cluster and the outer ring is antiferromagnetic, the resultant ferrimagnetic state is stabilized at low temperatures, and the ground spin state becomes S = 10.9 This cluster is characterized by a strong magnetic anisotropy because of the Jahn-Teller distortions arising from the eight Mn(III) ions. Consequently, each Mn-(III) ion exhibits a single-ion zero-field splitting. However, because their distortion axes are oriented parallel to an identical direction (i.e., z axis), one may treat the cluster as if it were a pseudosingle spin. Therefore, the spin Hamiltonial \hat{H} for this system may be written¹⁰⁻¹² as

$$\hat{H} = D\hat{S}_z^2 - g\mu_B\hat{S}B + \hat{H}' \tag{1}$$

where D stands for the uniaxial zero-field splitting parameter for the molecular single spin, g the gyromagnetic ratio, $\mu_{\rm B}$ the Bohr magneton, B the external magnetic field, and \hat{H}' a

- (6) Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R. Science 1994, 265, 1054.
- (7)Awschalom, D. D.; DiVincenzo, D. P. Phys. Today 1995, 48 (4), 43.
- (8) Lis, T. Acta Crystallogr., Sect. B 1980, 36, 2042.
- (9) Caneschi, A.; Gatteschi, D.; Sessoli, R. J. Am. Chem. Soc. 1991, 113, 5873.
- (10) Politi, P.; Rettori, A.; Hartmann-Boutron, F.; Villain, J. Phys. Rev. Lett. 1995, 75, 537.
- (11) Barra, A. L.; Gatteschi, D.; Sessoli, R. Phys. Rev. B 1997, 56, 8192. (12) Luis, F.; Bartolomé, J.; Fernández, J. F. Phys. Rev. B 1998, 57, 505.
- 10.1021/ic010567w CCC: \$20.00 © 2001 American Chemical Society Published on Web 11/10/2001

[#] Contribution No. 50 from the Research Center for Molecular Thermodynamics.

Corresponding authors.

Graduate School of Science, Osaka University.

[‡] Graduate School of Engineering, Osaka University.

[§] University of California at San Diego.

Indiana University.

$$E_{m_{\rm s}} = Dm_{\rm s}^{2} - g\mu_{\rm B}Bm_{\rm s} \quad (m_{\rm s} = -S, -S+1, ..., S-1, S)$$
(2)

where m_s is the spin magnetic quantum number. Under a zero magnetic field, the 21-fold degenerated energy levels of the ground S = 10 spin state split into 10 doublets and 1 singlet. When *D* is negative, the $m_s = \pm 10$ levels become the lowest-energy state. This brings about an Ising-type anisotropy. Whenever the magnetic field fulfills the condition of $B = nD/g\mu_B$ (*n* being an integer), two Zeeman splitting energy levels belonging to different m_s states coincide, and the QTM may occur.^{13,14}

Calorimetric^{15–23} and magnetic^{13,14,17,18,24–29} studies hitherto done for single-molecule magnets fundamentally support the validity of the QTM mechanism. However, such studies have mostly addressed $Mn_{12}Ac$ and $[Fe_8O_2(OH)_{12}(tacn)_6]Br_8 \cdot 9H_2O$ (tacn = triazacyclononane). To throw more light on the magnetic properties of single-molecule magnets, further studies dealing with other single-molecule magnets are desired.

In the present work, we studied an analogous Mn_{12} cluster complex $[Mn_{12}O_{12}(O_2CEt)_{16}(H_2O)_3]$ (abbreviated as $Mn_{12}Pr$), which is obtained by treating $Mn_{12}Ac$ with an excess of EtCO₂H in toluene.³⁰ X-ray structure analysis³⁰ of a solvated crystal Mn_{12} - $Pr \cdot 4H_2O$ revealed that this complex crystallizes in the triclinic space group $P\bar{1}$, which has lower symmetry than the tetragonal space group $I\bar{4}$ of $Mn_{12}Ac$.⁸ Only three H₂O molecules are ligated to peripheral Mn(III) ions in the present Mn_{12} cluster, different from the coordination of four H₂O molecules in most of the Mn_{12} complexes.^{8,28,29,31–33} Magnetization measure-

- (13) Friedman, J. R.; Sarachik, M. P.; Tejada, J.; Ziolo, R. Phys. Rev. Lett. **1996**, *76*, 3830.
- (14) Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi, D.; Sessoli, R.; Barbara, B. *Nature* **1996**, *383*, 145.
- (15) Novak, M. A.; Sessoli, R.; Caneschi, A.; Gatteschi, D. J. Magn. Magn. Mater. 1995, 146, 211.
- (16) Fominaya, F.; Villain, J.; Gandit, P.; Chaussy, J.; Caneschi, A. Phys. Rev. Lett. 1997, 79, 1126.
- (17) Gomes, A. M.; Novak, M. A.; Sessoli, R.; Caneschi, A.; Gatteschi, D. Phys. Rev. B 1998, 57, 5021.
- (18) Novak, M. A.; Gomes, A. M.; Rapp, R. E. J. Appl. Phys. **1998**, 83, 6943.
- (19) Fernández, J. F.; Luis, F.; Bartolomé, J. Phys. Rev. Lett. 1998, 80, 5659.
- (20) Fominaya, F.; Villain, J.; Fournier, T.; Gandit, P.; Chaussy, J.; Fort, A.; Caneschi, A. *Phys. Rev. B* **1999**, *59*, 519.
- (21) Sales, M.; Hernandez, J. M.; Tejada, J.; Martínez, J. L. Phys. Rev. B 1999, 60, 14557.
- (22) Fominaya, F.; Gandit, P.; Gaudin, G.; Chaussy, J.; Sessoli, R.; Sangregorio, C. J. Magn. Magn. Mater. 1999, 195, L253.
- (23) Luis, F.; Mettes, F. L.; Tejada, J.; Gatteschi, D.; de Jongh, L. J. Phys. Rev. Lett. 2000, 85, 4377.
- (24) Paulsen, C.; Park, J.-G.; Barbara, B.; Sessoli, R.; Caneschi, A. J. Magn. Magn. Mater. 1995, 140–144, 379.
- (25) Paulsen, C.; Park, J.-G.; Barbara, B.; Sessoli, R.; Caneschi, A. J. Magn. Magn. Mater. 1995, 140–144, 1891.
- (26) Luis, F.; Bartolomé, J.; Fernández, J. F.; Tejada, J.; Hernández, J. M.; Zhang, X. X.; Ziolo, R. Phys. Rev. B 1997, 55, 11448.
- (27) Sangregorio, C.; Ohm, T.; Paulsen, C.; Sessoli, R.; Gatteschi, D. Phys. Rev. Lett. 1997, 78, 4645.
- (28) Aubin, S. M. J.; Sun, Z.; Guzei, I. A.; Rheingold, A. L.; Christou, G.; Hendrickson, D. N. Chem. Commun. 1997, 2239.
- (29) Ruiz, D.; Sun, Z.; Albela, B.; Folting, K.; Ribas, J.; Christou, G.; Hendrickson, D. N. Angew. Chem., Int. Ed. 1998, 37, 300.
- (30) Eppley, H. J.; Tsai, H.-L.; de Vries, N.; Folting, K.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1995, 117, 301.
- (31) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804.

ments³⁰ showed that this complex has an S = 9 ground state with $D/k_{\rm B} = -0.86$ K and g = 1.95 and that it exhibits a welldefined hysteresis loop. The ac magnetic susceptibility of the powder sample³⁰ has two peaks in the imaginary component; thus, two different relaxation processes are likely to exist, corresponding to Jahn–Teller isomers.^{28,30,32,33}

Heat-capacity calorimetry is one of the powerful experimental methods to elucidate temperature-dependent magnetic behaviors of single-molecule magnets. In this study, we measured heat capacities of $Mn_{12}Pr$ with a magnetic field of up to 9 T to confirm the anomalous spin ground state of S = 9 and the presence of Jahn–Teller isomers. We also obtained an interesting temperature and magnetic-field dependence of the heat capacity.

Experimental Section

The present complex was synthesized according to the method reported elsewhere.³⁰ The elemental analytical result of the desolvated sample is as follows. Anal. Calcd for $Mn_{12}Pr$ ($C_{48}H_{86}O_{47}Mn_{12}$): C, 27.79; H, 4.18; Mn, 31.78. Found: C, 28.15; H, 4.13; Mn, 31.6.

Accurate heat-capacity measurements of the sample without an external magnetic field were performed by the use of two adiabatic calorimeters: a very-low-temperature adiabatic calorimeter workable with a ³He/⁴He dilution refrigerator³⁴ in the 0.3–19 K temperature range and a low-temperature adiabatic calorimeter for small samples in the 7–311 K temperature range.³⁵ For the former calorimeter, 1.046 60 g of the polycrystalline sample was pressed to form a disk with a 2 cm diameter and loaded into a gold-plated copper cell without any heat exchange medium. For the latter calorimeter, 0.808 65 g of the sample was put into a gold-plated copper cell and sealed with indium wire in 1 atm of a ⁴He gas atmosphere to aid thermal equilibration. Buoyancy correction for the sample weights was made by assuming the density of 1.217 g cm⁻³.³⁰

The heat capacities of the complex under a magnetic field were measured with a commercial calorimeter based on the relaxation method (Quantum Design, model PPMS 6000). A small part (1.7461 mg after buoyancy correction) of the disk used for the very-low-temperature heat-capacity measurement was employed for this measurement. It was glued onto the calorimetric platform with a small amount of Apiezon N grease. The heat-capacity measurements were carried out in the temperature region from 2 to 20 K and with applied magnetic fields between 0 and 9 T. The contribution of the addenda (platform + grease) was subtracted from the gross data. The magnetic-field dependencies of the working thermometer (Cernox) and the materials involved in the addenda at various magnetic fields. However, no remarkable difference was detected, even between 0 and 9 T.

Results and Discussion

Heat-capacity results under a zero magnetic field are shown in Figure 1. A very small excess heat capacity between 1 and 2 K and a heat-capacity increase below 0.5 K were observed. Similar thermal anomalies were also found in $Mn_{12}Ac.$ ^{18,23} We shall discuss the origin of these thermal anomalies later.

Heat-capacity data at some magnetic fields are plotted against temperature in Figures 2 and 3. The heat capacity at 0 T increases monotonically with temperature. As the magnetic field is increased, a steplike heat-capacity anomaly appears around

- (33) Sun, Z.; Ruiz, D.; Dilley, N. R.; Soler, M.; Ribas, J.; Folting, K.; Maple, M. B.; Christou, G.; Hendrickson, D. N. *Chem. Commun.* **1999**, 1973.
- (34) Murakawa, S.; Wakamatsu, T.; Nakano, M.; Sorai, M.; Suga, H. J. Chem. Thermodyn. 1987, 19, 1275.
- (35) Kume, Y.; Miyazaki, Y.; Matsuo, T.; Suga, H. J. Phys. Chem. Solids 1992, 53, 1297.

⁽³²⁾ Sun, Z.; Ruiz, D.; Rumberger, E.; Incarvito, C. D.; Folting, K.; Rheingold, A. L.; Christou, G.; Hendrickson, D. N. *Inorg. Chem.* **1998**, *37*, 4758.

Figure 1. Molar heat capacities of $Mn_{12}Pr$ obtained by adiabatic calorimetry on (a) logarithmic and (b) linear scales.

Figure 2. Molar heat capacities of $Mn_{12}Pr$ at lower magnetic fields in (a) whole and (b) low-temperature regions. For the sake of clarity, the origin of each isofield plot is located at intervals of (a) 20 J K⁻¹ mol⁻¹ and (b) 3 J K⁻¹ mol⁻¹.

3.5 K, corresponding to the blocking temperature. The blocking temperature $T_{\rm B} \approx 3.5$ K is very close to $T_{\rm B} \approx 3$ K reported for Mn₁₂Ac.^{13,25,36} To see a magnetic-field dependence of the heat capacity, we plotted, in Figure 4, the heat-capacity difference between the data obtained under magnetic field *B*, $C_p(B)$, and those under zero field, $C_p(0)$, at 2.5 K ($< T_{\rm B}$) and 5 K ($> T_{\rm B}$). The magnitude of the difference shows a maximum around 0.7

Figure 3. Molar heat capacities of $Mn_{12}Pr$ at higher magnetic fields in (a) whole and (b) low-temperature regions. For the sake of clarity, the origin of each isofield plot is located at intervals of (a) 20 J K⁻¹ mol⁻¹ and (b) 3 J K⁻¹ mol⁻¹.

Figure 4. Heat-capacity difference between the data obtained under magnetic field $C_p(B)$ and those under a zero field $C_p(0)$ at $(< T_B, \bullet)$ 2.5 K and $(> T_B, \bigcirc)$ 5 K. The broken curve stands for the simulated Schottky anomaly C_{spin} at 5 K.

T. As the magnetic field is further increased, the heat-capacity difference, and thus the steplike anomaly, becomes smaller, and it disappears above 3 T. The heat-capacity step at $T_{\rm B} \approx 3.5$ K is attributable to a glass transition. Below $T_{\rm B}$, the conversion between up-spin ($m_{\rm s} = +S$) and down-spin ($m_{\rm s} = -S$) states is effectively blocked, and the heat capacity from equilibration between these Zeeman splitting levels $m_{\rm s} = \pm S$ is diminished. In the case of Mn₁₂Ac single crystals, the thermal anomaly at $T_{\rm B}$ appeared explicitly at parallel magnetic fields $B = nD/g\mu_{\rm B} \approx 0.4n$ T, where the spin energy levels make crossing (which is called "phonon-assisted quantum tunneling").^{16,20,21} In the case of Mn₁₂Pr, we evaluated the level-crossing field to be $B \approx 0.66n$ T, assuming parameters S = 9, $D/k_{\rm B} = -0.86$ K, and g = 1.95.³⁰

⁽³⁶⁾ Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141.

Figure 5. Fitting results of molar heat capacities of $Mn_{12}Pr$ at a zero magnetic field below 5 K. Thick-solid, dashed, dotted, dash-dotted, and thin-solid curves indicate the Debye heat capacity, the spin level heat capacities with D_1 and D_2 , the contribution from the hyperfine interaction, and the resultant heat capacity, respectively.

Actually, we observed the largest heat-capacity increase around 0.7 T (see Figure 4).

 C_p may involve three different contributions: a lattice vibration (C_{lat}), a Schottky anomaly arising from spin energy levels (C_{spin}), and a hyperfine interaction of Mn nuclei (C_{hf}), that is,

$$C_p = C_{\text{lat}} + C_{\text{spin}} + C_{\text{hf}} \tag{3}$$

At low temperatures, C_{lat} can be well approximated by the Debye heat capacity with 3 degrees of freedom. The electronspin heat capacity $C_{\rm spin}$ can be calculated from the energy scheme deduced by eq 1. The heat capacity due to the hyperfine interaction of the Mn nuclei $C_{\rm hf}$ was actually observed in Mn₁₂-Ac.^{18,23} In the case of $Mn_{12}Pr$, C_{hf} is remarkably below 0.5 K. In the analysis of the results below 5 K in a zero magnetic field using eq 3, it was revealed that two kinds of spin clusters characterized by different D values should be incorporated into the model. This just corresponds to the Jahn-Teller isomers mentioned previously. A previous magnetic study on Mn₁₂Pr³⁰ also revealed the existence of two different magnetic relaxations, corresponding to two Jahn-Teller isomers. A similar observation was reported by Novak et al.¹⁸ The best-fitting result is as follows: a Debye temperature for 3 degrees of freedom $\Theta_D =$ 30 K, two zero-field splitting parameters corresponding to Jahn-Teller isomers, $D_1/k_B = -0.96$ K and $D_2/k_B = -0.19$ K, the fraction of the second component $f_2 = 0.069$, and a contribution from a hyperfine interaction 0.042 T^{-2} J K mol⁻¹. These results are summarized graphically in Figure 5. We performed a similar analysis assuming S = 10, but we obtained poorer results. This fact confirms that $Mn_{12}Pr$ has indeed the S = 9 ground state.

By applying the optimized parameters (S = 9, g = 1.95, $D_1/k_B = -0.96$ K, $D_2/k_B = -0.19$ K, and $f_2 = 0.069$) to eq 1 neglecting the perturbation term and also by adopting a powder average concerning the magnetic-field direction, we calculated the $C_{spin}(B) - C_{spin}(0)$ values at 5 K as a function of magnetic field and showed them in Figure 4 by a broken curve. The tendency of the magnetic-field dependence is quite similar between the experimental and calculated values. This fact also supports the validity of the present model.

The estimated Debye temperature $\Theta_D = 30$ K is very close to the values reported previously, $\Theta_D = 36$ K,¹⁵ 38 K,¹⁷ and 41 K²⁰ for Mn₁₂Ac. The *D* value and the fraction of the minor

species seem to be too small in comparison to those estimated from the ac magnetic susceptibility data.³⁰ This might arise from a crystal deformation because of a slight difference in the synthesis condition or a slight dehydration from the crystal,³³ which would orient some Mn(III) Jahn–Teller elongated axes to diminish the molecular D value.

Generally, the heat capacity due to a hyperfine interaction appears at very low temperatures, and their high-temperature tails are well approximated by³⁷

$$C_{\rm hf} \approx \frac{nN_{\rm A}k_{\rm B}}{3} \left(\frac{I+1}{I}\right) \left(\frac{\mu_{\rm n}\mu_{\rm N}B_{\rm eff}}{k_{\rm B}}\right)^2 \frac{1}{T^2}$$
(4)

where *n* is the total number of nuclei having the nuclear spin quantum number *I*, N_A Avogadro's number, k_B the Boltzmann constant, μ_n the nuclear magneton number in the unit of a nuclear Bohr magneton (μ_N), and B_{eff} the mean effective magnetic field acting on the nucleus. In the manganese nucleus, $I = \frac{5}{2}$ for ⁵⁵Mn and the natural abundance of ⁵⁵Mn is 100%. Equation 4 can be rewritten by use of the zero-field resonance frequency ν_n of the nucleus as follows:

$$C_{\rm hf} \approx \frac{nN_{\rm A}k_{\rm B}}{3}I(I+1)\left(\frac{h\nu_{\rm n}}{k_{\rm B}}\right)^2 \frac{1}{T^2}$$
(5)

where *h* is the Planck constant. By using the resonance frequencies of the ⁵⁵Mn nucleus (229.8 MHz for four Mn(IV) ions and 285.0 and 365.0 MHz for the respective four Mn(III) ions) observed in nuclear magnetic resonance spectroscopy³⁸ of Mn₁₂Ac powder crystals at a zero magnetic field, we estimated the hyperfine contribution to be $C_{\rm hf} \approx 0.060 \ T^{-2}$ J K mol⁻¹. This estimation is a little bit larger than the experimental value of 0.042 T^{-2} J K mol⁻¹. The slight difference would be attributed to the difference between the resonance frequencies of the ⁵⁵Mn nucleus in Mn₁₂Pr and in Mn₁₂Ac.

The remarkable step behavior around $T_{\rm B}$ was analyzed by using the parameter set optimized for the zero-field results. As seen from eq 1, above $T_{\rm B}$, the $C_{\rm spin}$ term was easily evaluated by a thermal population over (2S + 1)-fold spin energy levels under magnetic fields. On the other hand, a trick is required to evaluate nonequilibrium C_{spin} values below $T_{\rm B}$. We assumed that the conversion between up-spin and down-spin states is completely forbidden so that it is allowed to make Boltzmann averaging separately for the up-spin and down-spin species, which have their own S-fold energy level schemes. In both cases, above and below $T_{\rm B}$, the spin-level schemes were calculated by diagonalizing the spin Hamiltonian (eq 1) without the perturbation term, and the powder-average procedure was adopted for the magnetic-field direction,³⁹ because the heatcapacity data were obtained for the powder crystalline sample. In Figure 6, $C_p(0 \text{ T})$ and $C_p(0.7 \text{ T})$ are plotted together with the equilibrium C_{spin} (dashed curve) and nonequilibrium C_{spin} (dotted curve). The difference between these two theoretical curves is shown by a thin solid curve. The sum of this difference and $C_p(0 \text{ T})$ is shown in Figure 6 by a thick solid curve for a comparison with $C_p(0.7 \text{ T})$. A small disagreement between C_p -(0.7 T) above $T_{\rm B}$ and the thick solid curve may be caused by the imperfect powder averaging for the pressed-pellet sample.

(39) Eden, M.; Levitt, M. H. J. Magn. Reson. 1998, 132, 220.

⁽³⁷⁾ Affronte, M.; Lasjaunias, J. C.; Cornia, A.; Caneschi, A. Phys. Rev. B 1999, 60, 1161.

⁽³⁸⁾ Goto, T.; Kubo, T.; Koshiba, T.; Fujii, Y.; Oyamada, A.; Arai, J.; Takeda, K.; Awaga, K. *Physica B* 2000, 284–288, 1227.

Figure 6. Molar heat capacities of $Mn_{12}Pr$ at (\bigcirc) 0 T and (\bigcirc) 0.7 T. Dotted and dashed curves stand for the Schottky heat capacities calculated from the energy scheme deduced by eq 1 with B = 0.7 T when conversion between the up-spin and down-spin states may be forbidden or allowed, respectively. The thin-solid curve implies the difference between these two Schottky heat capacities. The thick-solid curve is the sum of the heat capacity measured at 0 T and the Schottky difference.

Figure 7. Three-dimensional plot of the difference between the Schottky heat capacities arising from spin energy levels of the S = 9 ground state in Mn₁₂Pr with and without magnetic fields against temperature and a magnetic field.

Finally, we shall discuss the temperature and magnetic-field dependence of the heat capacity of Mn₁₂Pr over wide temperature and magnetic-field ranges. Figure 7 shows a threedimensional plot of the difference between the heat capacities with and without a magnetic field, which are simulated by using the parameters optimized for the zero-field data. The theoretical value below $T_{\rm B} \approx 3.5$ K is inappropriate, because conversion between up-spin and down-spin states is blocked below $T_{\rm B}$. To compare the experimental heat capacities with the theoretical ones, we simultaneously plotted the experimental and theoretical heat-capacity differences at B = 0.3, 0.7, 1, 2, and 3 T in Figure 8. As already shown in Figures 2 and 3, a steplike heat-capacity anomaly is found around $T_{\rm B} \approx 3.5$ K, when the magnetic field is less than 3 T. This anomaly has a maximum at 0.7 T, where the level crossing takes place in the crystallites where the easy axis is aligned parallel to the magnetic field. Interestingly, a large heat-capacity hump was detected around 14 K with a

Figure 8. Temperature dependence of the differences between the heat capacities of $Mn_{12}Pr$ with and without a magnetic field at B = 0.3, 0.7, 1, 2, and 3 T. The solid curves show the simulated values at the respective magnetic fields.

maximum at 2 T. Because the lattice heat capacity of magnetic materials is scarcely affected by a magnetic field, the present magnetic-field dependence of the heat capacity would be caused by the magnetic-field effect on the spin-level heat capacity $C_{\rm spin}$ deduced from eq 1. The temperature dependence of the experimental heat-capacity difference between 5 and 10 K is similar to that of the theoretical one. This suggests that the heat-capacity difference between 5 and 10 K should arise only from the Schottky contribution of the S = 9 ground state. However, the observed thermal anomaly centered around 14 K does not coincide with the theoretical value. This thermal anomaly would be attributed to a thermal excitation from the S = 9 ground state to the spin manifold with different S values, presumably S = 10 or S = 8.

In summary, we measured heat capacities of polycrystalline $Mn_{12}Pr$ not only with a zero magnetic field but also with an applied magnetic field. Analysis of the very-low-temperature heat capacities under a zero magnetic field confirmed the presence of Jahn–Teller isomers. The heat capacities under a magnetic field revealed that a steplike heat-capacity anomaly appears around $T_B \approx 3.5$ K. This steplike anomaly was explained by assuming that the conversion between up-spin and downspin states is allowed above T_B by phonon-assisted quantum tunneling, while it is not allowed below T_B .

Acknowledgment. This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas "Metalassembled Complexes" (Area No. 401/12023229) from the Ministry of Education, Science, Sports and Culture, Japan, and also by a Grant-in-aid for the Japan Society for the Promotion of Science (JSPS) Fellow (No. 98199).

Supporting Information Available: Molar heat capacities of Mn_{12} -Pr by adiabatic calorimetry are provided as Table 1. This material is available free of charge via the Internet at http://pubs.acs.org.

IC010567W