A Baker–Figgis Isomer of Conventional Sandwich Polyoxometalates. H₂Na₁₄[Fe^{III}₂(NaOH₂)₂(P₂W₁₅O₅₆)₂], a Diiron Catalyst for Catalytic H₂O₂-Based Epoxidation

Xuan Zhang, Travis M. Anderson, Qin Chen, and Craig L. Hill*

Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received August 22, 2000

The Wells-Dawson-derived sandwich-type polyoxometalates (POMs) are a versatile and robust group of compounds with applications in catalysis,¹⁻⁵ molecular magnetism,^{6,7} and other areas. These compounds (formula [M₄(H₂O)₂(P₂W₁₅O₅₆)]ⁿ⁻ where $M = Co^{II}$, Mn^{II} , Cu^{II} , Zn^{II} , and Fe^{III}) are isostructural with a central planar tetrameric M₄ unit bound to two trivacant α -[P₂W₁₅O₅₆]¹²⁻ units.^{8–13} We report here a new type of synthesis which results in a new type of sandwich POM. This complex, H₂Na₁₄[Fe^{III}₂- $(NaOH_2)_2(P_2W_{15}O_{56})_2$ (Na1), is a structural isomer of the conventional Wells-Dawson and B-Keggin-derived sandwich POMs. It differs in the way the two α -[P₂W₁₅O₅₆]¹²⁻ units are bound to the central unit in a manner analogous to Baker-Figgis (cap rotation) isomers (e.g., α - versus β -[XM₁₂O₄₀]^{*n*-} and α versus β -[P₂W₁₈O₆₂]⁶⁻), and it contains only two central d-electron metals. This structurally novel diiron POM, unlike previously reported Fe^{III}-containing sandwiches^{1,8,14} and [FePW₁₁O₃₉],¹⁵ is an effective catalyst for H₂O₂-based epoxidation, exhibiting selectivity and rates that approach the Neumann/Khenkin systems.

Reaction of α -[P₂W₁₅O₅₆]¹²⁻ with 2.0 equiv of Fe(II) in aqueous NaCl followed by air oxidation produces Na1.¹⁶ The synthesis of 1 requires Fe(II), H₂O, and Na⁺. Use of Fe(III) in place of Fe(II) produces only the conventional Wells–Dawson sandwich POM, [(Fe^{III}OH₂)₂(Fe^{III})₂(P₂W₁₅O₅₆)₂]¹²⁻ (2). If the Fe(II)/ α -[P₂W₁₅O₅₆)₂]¹²⁻ mixture is phase transferred from H₂O to CH₂Cl₂ using tetra-*n*-butylammonium chloride (TBACl) prior to air oxidation, only TBA2 is formed. In the preparation of 1, the new dark green air-sensitive complex, [Fe^{II}₄(P₂W₁₅O₅₆)₂]¹⁶⁻, forms initially (the Fe/P/W ratios are 2/2/15, and the IR spectrum is virtually identical to that of [Zn^{II}₄(P₂W₁₅O₅₆)₂]¹⁶⁻).¹³ During the O₂ oxidation process, the iron atoms with terminal aqua ligands exchange with the sodium atoms in solution. While 2 is stable over the pH range in which Na1 is prepared (pH 4.5–5), 2 is not observed as an intermediate in the synthesis of 1.

The X-ray structure¹⁷ reveals that only two d-electron metals reside in the central unit. The other positions in this central unit

- (1) Khenkin, A. M.; Hill, C. L. Mendeleev Commun. 1993, 140-141.
- (2) Neumann, R.; Khenkin, A. M. Inorg. Chem. 1995, 34, 5753-5760.
- (3) Neumann, R.; Gara, M. J. Am. Chem. Soc. 1995, 117, 5066-5074.
- (4) Neumann, R.; Khenkin, A. M. J. Mol. Catal. A: Chem. 1996, 114, 169– 180.
- (5) Neumann, R.; Dahan, M. Polyhedron 1998, 17, 3557-3564.
- (6) Clemente-Juan, J. M.; Coronado, E.; Galán-Mascarós, J., J. R.; Gómez-García, C. J. Inorg. Chem. 1999, 38, 55–63.
- (7) Gómez-García, C. J.; Coronado, E.; Borrasalmenar, J. J. Inorg. Chem. 1992, 31, 1667–1673.
- (8) Zhang, X.; Chen, Q.; Duncan, D. C.; Campana, C.; Hill, C. L. Inorg. Chem. 1997, 36, 4208–4215.
- (9) Gómez-García, C. J.; Borrás-Almenar, J. J.; Coronado, E.; Ouahab, L. Inorg. Chem. 1994, 33, 4016–4022.
- (10) Weakley, T. J. R.; Finke, R. G. Inorg. Chem. 1990, 29, 1235-1241.
- (11) Finke, R. G.; Weakley, T. J. R. J. Chem. Crystallogr. 1994, 24, 123– 128.
- (12) Finke, R. G.; Droege, M. W. Inorg. Chem. 1983, 22, 1006-1008.
- (13) Finke, R. G.; Droege, M. W.; Domaille, P. J. Inorg. Chem. 1987, 26, 3886–3896.
- (14) Zhang, X.; Chen, Q.; Duncan, D. C.; Lachicotte, R. J.; Hill, C. L. Inorg. Chem. 1997, 36, 4381–4386.
- (15) Tourné, C.; Tourné, G. Bull. Soc. Chim. Fr. 1969, 4, 1124-36.

are occupied by two weakly bound seven-coordinate Na⁺ ions.¹⁸ Each sodium ion is ligated by three of the oxygens from each of the trivacant α -[P₂W₁₅O₅₆]¹²⁻ units and by a weakly bound terminal water molecule. In contrast, four d-block metals (and/or Zn) reside in the central tetrameric unit in all published Wells–Dawson and B-Keggin-derived sandwich POMs.^{1.8–14,19–27}

Equally noteworthy, the linkage between each α - $[P_2W_{15}O_{56}]^{12-}$ unit and the central Fe₂Na₂ unit in **1** is rotated 60° relative to that in all known sandwich POMs.^{1,8–14,19–27} In all reported sandwich POMs, each of the four edge-sharing MO₆ octahedra of the central tetrameric unit shares corners with a pair of edgeshared WO₆ octahedra at the belt position of the defect

- (16) Synthesis of Na1: Solid $\alpha\text{-}[P_2W_{15}O_{56}]^{12-}$ (5 g, 1.25 mmol) was added slowly with vigorous stirring to FeCl2·4H2O (0.49 g, 2.46 mmol) in 30 mL of 1 M NaCl. The solution was heated to 60 °C for 5-10 min, filtered hot, and allowed to cool overnight to form green crystals. The crystals, redissolved in 20 mL of H2O, were allowed to oxidize in air for 2 days, and then 1.5 g of NaCl was added. A brown precipitate was removed on a medium frit, and the yellow filtrate deposited large yellow plates after 2 days (yield = 0.4 g; ~10%). The compound was re-crystallized from 0.5 M NaCl. IR (2% in KBr pellet, 1300-400 cm⁻¹): 1088 (s), 1053 (m), 1014 (w), 939 (s), 910 (s, sh), 887 (s), 838 (s), 785 (s, sh), 752 (s), 718 (s), and 523 (m). $^{31}\mathrm{P}$ NMR (9 mM solution in H2O; D_2O in a capillary insert): -12.9 ppm, $\Delta \nu = 200$ Hz (equivalent P atoms distal to Fe₂). Anal. Calcd for H₁₃₂Fe₂Na₁₆O₁₇₇P₄W₃₀: Na, 4.05; Fe, 1.23; P, 1.36; W, 60.72. Found: Na, 4.85; Fe, 1.24; P, 1.24; W, 60.97. TBA1 was prepared by treating 1.2 g of Na1 in 30 mL of H_2O with 2.0 g of TBACl followed by extraction with 150 mL of CH₂Cl₂. Addition of Et₂O to the green lower layer produced 1.0 g (~80% yield). IR (2% in KBr pellet, 1300-400 cm⁻¹): 1152 (w), 1089 (s), 1062 (m), 1015 (w), 977 (w, sh), 945 (s), 911 (s), 888 (s), 840 (s), 781 (s), 764 (s, sh), 713 (s), 600 (w), and 525 (m).
- (17) Crystal data for H₂Na₁₄[Fe^{III}₂(NaOH₂)₂(P₂W₁₅O₅₆)₂]·78H₂O (Na1): Light yellow efflorescent crystal (0.2 × 0.2 × 0.3 mm), triclinic space group PI (No. 2), with a = 12.8027(3) Å, b = 13.9668(3) Å, c = 23.5073(3) Å, $a = 79.296(1)^{\circ}$, $\beta = 78.488(1)^{\circ}$, $\gamma = 80.365(1)^{\circ}$, V = 4009.9(2) Å³, and Z = 1. The data were collected on a Bruker SMART system using Mo K α radiation ($\lambda = 0.71073$ Å) and corrected for absorption. The structure was solved by direct methods and refined by full-matrix least-squares on F² techniques using SHELXTL v5.03 with anisotropic temperature factors for the remaining atoms. At final convergence, $R_1 = 7.98\%$ and GOF = 1.036 based on 7792 reflections with $F_o \ge 4\sigma(F_o)$.
- (18) Such nonoctahedral coordinating geometries for Na⁺ ions in hydrated solids are not uncommon. One example in a POM: Alizadeh, M. H.; Harmalker, S. P.; Jeannin, Y.; Martin-Frère, J.; Pope, M. T. J. Am. Chem. Soc. 1985, 107, 2662–2669.
- (19) Weakley, T. J. R.; Evans, H. T., Jr.; Showell, J. S.; Tourné, G. F.; Tourné, C. M. J. Chem. Soc., Chem. Commun. 1973, 139–140.
- (20) Finke, R. G.; Droege, M.; Hutchinson, J. R.; Gansow, O. J. Am. Chem. Soc. 1981, 103, 1587–1589.
- (21) Gómez-García, C. J.; Coronado, E.; Gómez-Romero, P.; Casañ-Pastor, N. Inorg. Chem. 1993, 32, 3378–3381.
- (22) Zhang, X.-Y.; Jameson, G. B.; O'Connor, C. J.; Pope, M. T. Polyhedron 1996, 15, 917–922.
- (23) Evans, H. T.; Tourné, C. M.; Tourné, G. F.; Weakley, T. J. R. J. Chem. Soc., Dalton Trans. 1986, 2699–2705.
- (24) Wasfi, S. H.; Rheingold, A. L.; Kokoszka, G. F.; Goldstein, A. S. Inorg. Chem. 1987, 26, 2934–2939.
- (25) Casañ-Pastor, N.; Bas-Serra, J.; Coronado, E.; Pourroy, G.; Baker, L. C. W. J. Am. Chem. Soc. 1992, 114, 10380–10383.
- (26) Tourné, C. M.; Tourné, G. F.; Zonnevijlle, F. J. Chem. Soc., Dalton Trans. 1991, 143–155.
- (27) Kortz, U.; Isber, S.; Dickman, M. H.; Ravot, D. Inorg. Chem. 2000, 39, 2915–2922.

10.1021/ic000964r CCC: \$20.00 © 2001 American Chemical Society Published on Web 01/03/2001

Figure 1. Atom (A) and polyhedral (B) illustrations of $[Fe^{III}_2(NaOH_2)_2 (P_2W_{15}O_{56})_2]^{16-}$ (1) and polyhedral illustration (C) of the conventional trivacant sandwich POM, $[Fe^{III}_2(FeOH_2)_2(P_2W_{15}O_{56})_2]^{12-}$ (2). The WO₆, NaO₇, PO₄, and FeO₆ coordination polyhedra in B are designated by clear (unshaded), lined, broken-lined, and crosshatched (small crosses) shading, respectively. Shading in C is the same except the two types of central Fe atoms are distinguished (the end FeO₅OH₂ units have lines; the central FeO₆ units have crosses). The Na–O bond lengths in 1 range from 2.17(3) to 2.89(3) Å. The Na1–OH₂ bond length is 2.41(6) Å, within the range of Na–OH₂ distances in the H₂O-coordinated Na counterions in Na1 (2.29–2.50(3) Å). The maximum Fe[•]··Fe distance in the Fe₄ unit in **2** (C) is 5.43(1) Å; the Na[•]··Na distance in **1** is 6.48(3) Å.

 α -[P₂W₁₅O₅₆]¹²⁻. In **1**, by contrast, each of the four edge-sharing polyhedra in the central unit (two FeO₆ octahedra and two distorted NaO₇ heptahedra) shares corners with a pair of cornershared WO₆ octahedra at the belt position of the defect POM. Figure 1 illustrates **1** (in two notations) and **2**. All Wells–Dawson sandwich POMs have the configuration (junction connectivity) $\alpha\beta\beta\alpha$ for the first cap–belt junction, the first belt–M₄ junction, the second belt–M₄ junction, and the second belt–cap junction, respectively; Na**1** has the configuration $\alpha\alpha\alpha\alpha$. The +3 oxidation state for the two iron atoms in **1** is unambiguous based on bond-valence sum calculations²⁸ (calcd valence: 2.9(2) per Fe), charge balance, and elemental analysis (ratio of Fe/P/W is 1/2/15).

The spectroscopic and chemical properties indicate that the structure of **1** in aqueous solution is very similar to that in the solid state (Figure 1).²⁹ First, the ³¹P NMR shows one singlet for the symmetry-equivalent P atoms distal to the Fe₂ center, while the paramagnetism of the Fe₂ unit renders the signal for the P atoms proximal to the Fe₂ center too broad to observe. Second, treatment of **1** with 2 equiv of Fe³⁺(aq) rapidly forms the conventional sandwich POM [Fe₄(H₂O)₂(P₂W₁₅O₅₆)]^{12-.8,31}

TBA1¹⁶ is an effective catalyst precursor for H₂O₂-based epoxidation in homogeneous organic media. The selectivities and rates of epoxidation (facile at ambient temperature) approach those in the extremely effective Neumann/Khenkin systems.^{2–5} Representative product distributions and reaction conditions are given in Table 1. The selectivities for epoxide in all cases are very high. Within experimental error, the terminal alkene, admittedly at low

Table 1. Product Distributions for Ambient Temperature Oxidationof Alkenes by H_2O_2 Catalyzed by $TBA1^a$

^{*a*} Conditions: 25 μ L of 30% H₂O₂(aq) was injected into 1 mL of CH₃CN 4 mM in TBA1¹⁶ and 0.9 M in alkene under Ar to initiate the reaction. Organic products as a function of time were quantified by GC and GC/MS. ^{*b*} Selectivity = moles of indicated product/moles of all organic products derived from the substrate × 100 (yields based on epoxide = moles of epoxide/moles of H₂O₂ consumed × 100) [turnovers = moles of indicated product/moles of catalyst after 30 h reaction time]. ^{*c*} No products within the detection limit (<0.2%).

turnovers, produces no detectable allylic products. These selectivities rule out homolytic mechanisms including Fe-assisted radical-chain breakdown of H_2O_2 and Fenton-type chemistry. Also, in contrast to other Fe-containing POMs except γ -[Si-(FeOH₂)₂W₁₀O₃₈]^{6-,32,33} the organic product yields based on H_2O_2 are high as indicated in Table 1. Analysis of a representative reaction, cyclooctene oxidation, shows an induction period, which is shortened by prereaction incubation with H_2O_2 . Finally, like the Neumann sandwich POM catalysts for H_2O_2 oxidation, **1** appears to be stable to H_2O_2 under the reaction conditions: **1** can be reisolated intact after 48 h of incubation with ca. 0.25 M aqueous H_2O_2 based on analysis of the product POM by both IR and ³¹P NMR.

Acknowledgment. We thank the ARO (Grant DAAG55-98-1-0251) and NSF (Grant CHE-9975453) for support. We thank Dr. Don VanDerveer of the Georgia Institute of Technology for collecting the X-ray data set and Huadong Zeng for Figure 1.

Supporting Information Available: Complete listing of structure determination summary, crystal and structure refinement data, atomic coordinates and isotropic displacement coefficients, bond lengths and angles, and anisotropic displacement parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

IC000964R

⁽²⁸⁾ O'Keeffe, M.; Navrotsky, A. *Structure and Bonding in Crystals*; Academic Press: New York, 1981.

⁽²⁹⁾ The infrared spectrum of **1** shows the W–O stretching bands characteristic of polytungstophosphates. The v_3 vibrational mode of the central PO₄ unit is split, indicating a local symmetry lower than T_{ch}^{30} a feature seen in all sandwich POMs including **2**. The UV–visible spectrum of **1** in solution is not structurally informative (the intense oxygen-to-metal charge-transfer bands exhibited by all POMs obscure Fe-centered d–d and possibly intervalence-charge-transfer bands).

⁽³⁰⁾ Rocchiccioli-Deltcheff, C.; Thouvenot, R. J. Chem. Res., Synop. 1977, 2, 46–47.

⁽³¹⁾ While the ³¹P NMR spectrum (one peak of similar chemical shift and line width) and elemental composition of this "reconstituted" sandwich POM are virtually identical to those of 2, the interunit linkage isomerism is not unequivocal because diffraction quality crystals could not be grown.

⁽³²⁾ Nozaki, C.; Kiyoto, I.; Minai, Y.; Misono, M.; Mizuno, N. Inorg. Chem. 1999, 38, 5724–5729.

⁽³³⁾ Mizuno, N.; Nozaki, C.; Kiyoto, I.; Misono, M. J. Catal. 1999, 182, 285–288.