Mechanistic Aspects of the Reversible Binding of SO₂ on Arylplatinum Complexes: Experimental and ab Initio Studies

Martin Albrecht,† Robert A. Gossage,†,‡ Urban Frey,§ Andreas W. Ehlers,† Evert J. Baerends,*,† André E. Merbach,*,§ and Gerard van Koten*,†

Debye Institute, Department of Metal-Mediated Synthesis, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Institut de Chimie Minérale et Analytique, Université de Lausanne, Bâtiment de Chimie (BCH), CH-1015 Lausanne, Switzerland, and Scheikundig Laboratorium der Vrije Universiteit van Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Received August 8, 2000

The detailed mechanism of the reversible binding and fast exchange of SO₂ on the organoplatinum(II) complex [PtI(NCN)], 1, has been studied experimentally in solution (C₂F₄Br₂) using low-temperature NMR spectroscopy and theoretically by ab initio calculations. Direct bonding of SO₂ and formation of the thermodynamically most stable product [PtI(NCN)(SO₂)], 2, was predicted by DFT calculations. Theoretical considerations further indicated the possibility of an alternative and competitive process involving an intermediate [Pt(I-SO₂)(NCN)], 3, containing an I-S bond, prior to a 1,2-sigmatropic migration of the SO₂ molecule to form ultimately adduct 2. Temperaturedependent (223–287 K) analysis of the equilibrium constant between complex 1 and the adduct 2 indicated ΔH° = $-36.6 (\pm 0.8) \text{ kJ mol}^{-1}$, $\Delta S^{\circ} = -104 (\pm 3) \text{ J K}^{-1} \text{ mol}^{-1}$, and $K_{298} = 9 (\pm 4) \text{ M}^{-1}$. The exchange of SO₂ on 2 is fast at room temperature, but when the solution was cooled to low temperatures (167-188 K), rate constants were obtained by line-shape analyses of the ¹H NMR spectra. The temperature dependence of the exchange rate constants afforded the activation parameters ($\Delta H^{\dagger} = +36.2 \ (\pm 1.0) \ \text{kJ mol}^{-1}, \ \Delta S^{\dagger} = +33 \ (\pm 6) \ \text{J K}^{-1} \ \text{mol}^{-1}, \ k_{298}$ = 1.5 (± 0.5) \times 10⁸ s⁻¹, and k_{174} = 2.34 (± 0.08) \times 10³ s⁻¹). From these and concentration-dependent measurements, a dissociative mechanism, D, for the SO₂ exchange on 2 has been deduced involving 1 as an intermediate. This is in line with a direct binding of SO₂ on the platinum center and suggests that the nature of the metal-bound halide has only limited influence on the SO₂ binding. This conclusion is particularly important when fabricating sensor materials for the detection of SO₂ gas that are based on this type of organoplatinum(II) complexes as active sites.

Introduction

Arylplatinum(II) complexes such as [PtI(NCN)], 1 (Scheme 1), 1 containing monoanionic, bis(ortho-)chelating "pincer" ligands of the type $[C_6H_3(CH_2NMe_2)_2-2,6]^-$ (abbreviated as NCN)² have been shown to be particularly suitable as sensoractive sites for the detection of SO_2 gas.³ The mode of action of these novel sensors has been studied on a molecular level and consists of reversible η^1 -Pt—S bond formation, which is a consequence of the nucleophilicity of the platinum(II) center and the Lewis acidity of the sulfur atom in SO_2 .⁴ The formed pentacoordinated platinum(II) adduct (e.g., [PtI(NCN)(SO_2)],

[∥] Vrije Universiteit van Amsterdam.

Scheme 1. Potential Equilibria between the Arylplatinum(II) Complex **1** and SO₂

2⁵) gradually loses SO₂ when stored in an atmosphere devoid of SO₂.⁶ Here, we report on the detailed mechanism of SO₂ binding onto this class of platinum complexes in solution⁷

^{*} To whom correspondence should be addressed: Phone: +3130-253-3120. Fax: +3130-252-3615. E-mail: g.vankoten@chem.uu.nl.

[†] Utrecht University.

[‡] Present address: Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B0P 1X0, Canada.

[§] Université de Lausanne.

 ⁽a) Grove, D. M.; van Koten, G.; Louwen, J. N.; Noltes, J. G.; Spek, A. L.; Ubbels, H. J. C. *J. Am. Chem. Soc.* **1982**, *104*, 6609. (b) Smeets, W. J. J.; Spek, A. L.; Duisenberg, A. J. M.; van Beek, J. A. M.; van Koten, G. *Acta Crystallogr.* **1987**, *C43*, 463.

⁽²⁾ van Koten, G. Pure Appl. Chem. **1989**, 61, 1681.

⁽³⁾ Albrecht, M.; Gossage, R. A.; Lutz, M.; Spek, A. L.; van Koten, G. Chem. Eur. J. 2000, 6, 1431.

^{(4) (}a) Mingos, D. M. P. Transition Met. Chem. 1978, 3, 1. (b) Ryan, R. R.; Kubas, G. J.; Moody, D. C.; Eller, P. G. Struct. Bonding 1981, 46, 47. (c) Kubas, G. J. Acc. Chem. Res. 1994, 27, 183.

⁽⁵⁾ Albrecht, M.; Lutz, M.; Schreurs, A. M. M.; Lutz, E. T. H.; Spek, A. L.; van Koten, G. J. Chem. Soc., Dalton Trans. 2000, 3797.

⁽⁶⁾ Terheijden, J.; Mul, P. W.; van Koten, G.; Muller, F.; Stam, H. C. Organometallics 1986, 5, 519.

because this knowledge is obviously important for improving the sensor activity (e.g., signal amplification, decrease of threshold limits).8

Two different reaction routes can be distinguished for the formation of adduct 2 from 1. In route A, direct binding of SO₂ onto the platinum center occurs (i.e., direct transformation of 1 to 2; Scheme 1). In the second route B, initial binding of SO₂ onto a ligand site can take place (the iodide is shown), followed by a subsequent intramolecular shift of the SO₂ molecule from the ligand to the metal center. Various groups in 1 can be considered as potential sites for (initial) binding of SO₂. Whereas no evidence has been provided thus far for the (transient) formation of arene-SO₂ adducts, amines and halides are known to form stable complexes with SO₂. ¹⁰ A mechanism involving initial amine coordination would require prior decoordination of the ortho NMe₂ ligand from the platinum center. This possibility can be discarded because of the high stability of the Pt-N bond in complex 1, which is best demonstrated by the inertness of these complexes toward excess of aqueous HCl (no quaternization of the amino groups is observed¹¹).

The role of the metal-bound halide in complex 1 is more complicated because the iodide ion is comparable to the platinum center in terms of size and nucleophilicity. Moreover, Pt-I bond dissociation has been observed in polar solvents to give the ion pair complex [Pt(NCN)(S)](I) (S = MeCN, for example), 12 where the dissolved iodide ion may act as the initial SO₂ binding site and subsequently transport the SO₂ molecule to the platinum center. The square-planar complex $[Pt(I-SO_2)-$ (NCN)], 3 (Scheme 1), would then be an important intermediate in such a mechanism (Scheme 1). Interestingly, such an analogue has indeed been isolated from a related square-planar platinum-(II) iodide complex: [Pt(Me)(I)(PPh₃)₂]. Addition of SO₂ did not lead to the pentacoordinate adduct but promoted the formation of [Pt(Me)(I-SO₂)(PPh₃)₂] containing an iodidebound SO₂ molecule. This species may, in fact, represent a "frozen intermediate" in the binding process. 13 Furthermore, spectroscopic evidence has been obtained recently that the formation of related pentacoordinate square-pyramidal arylplatinum(II) complexes containing I₂ instead of SO₂ in the apical position includes initial binding of the iodine molecule on the metal-bound halide, thus forming the intermediate [Pt(I₃)-(NCN)]. ¹² Since the bonding principles of the platinum complexes to I2 are very similar to those established for SO2, an analoguous reaction pathway must be carefully evaluated for SO₂ bonding on arylplatinum(II) complexes. On the basis of ab initio calculations and NMR experiments at low temperature,

(11) Albrecht, M.; van Koten, G. Manuscript in preparation.

Scheme 2. Newman Projection of 2 along the Pt-C Axis, Emphasizing the Diastereotopic Nature of the Two Benzylic Protons and the NMe₂ Methyl Groups

we present herein evidence for an SO₂ binding mechanism that involves direct binding of the SO₂ molecule onto the platinum center rather than an indirect process via precoordination to the metal-bound halide.

Results and Discussion

Solution Measurements Using UV-Vis Spectroscopy. Initial attempts to follow the adduct formation of the arylplatinum(II) complex [PtI(NCN)], 1, with SO₂ have concentrated on UV-vis measurements using stopped-flow techniques. Mixing of toluene solutions containing 1 (4.76 \times 10⁻⁴ M) and SO_2 (2.9 ×10⁻³ M) at 188 K (toluene) revealed that the reaction was completed in less than 0.020 s and only the final pentacoordinate product 2 was observed. This reaction time corresponds to the mixing time at this temperature because of the increased viscosity of the solvent and thus indicates a fast binding process.

NMR Spectroscopy in Toluene- d_8 . Similar results have been obtained by NMR spectroscopy in toluene. At room temperature, no species have been detected whose symmetry elements appear to reflect complexes of lower than idealized $C_{2\nu}$ symmetry in nature. Lower symmetry would be expected, however, from the structures of several [PtX(NCN)(SO₂)] complexes in the solid state, which all clearly reveal the inequivalence in the fivecoordinate structure of axial and equatorial methyl groups and benzylic protons (Scheme 2).⁶ In solution, however, one species is observed that presumably has time-averaged C_{2v} symmetry, suggesting that 2 is involved in a fast equilibrium that renders the diastereotopic NMe₂ methyl groups and the diastereotopic CH₂ protons enantiotopic. Various possible explanations for this observation exist. The most likely processes include a fast intermolecular exchange of SO₂, either associative or dissociative, which may even be catalytic in SO₂, or an *intra*molecular shift of the SO₂ molecule, perhaps along the Pt-I bond (1,2sigmatropic migration).^{3,6} Either route must be fast on the NMR time scale at room temperature, since even at -85 °C (toluene solution), a C_{2v} -symmetrical complex is observed.

Temperature- and Concentration-Dependent ¹H NMR **Spectroscopy.** Consequently, further measurements toward the elucidation of the SO₂ coordination and decoordination process were performed in 1,2-dibromotetrafluoroethane (C₂F₄Br₂) using variable temperature ¹H NMR spectroscopy. When a solution of 1 (1.1 \times 10⁻² M) and SO₂ (2.4 \times 10⁻² M) is (stepwise) cooled from 293 to 185 K, a gradual change of the chemical shift values is observed. The resonances due to the benzylic

⁽⁷⁾ For a solid-state investigation, see the following. Albrecht, M.; Lutz, M.; Spek, A. L.; van Koten, G. Nature 2000, 406, 970.

⁽a) Albrecht, M.; van Koten, G. Adv. Mater. 1999, 11, 171. (b) Albrecht, M.; Gossage, R. A.; Spek, A. L.; van Koten, G. Chem. Commun. 1998, 1003.

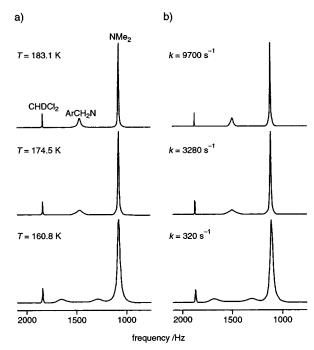
⁽⁹⁾ However, SO2-diene adducts have been reported. (a) Oh, J. J.; LaBarge, M. S.; Matos, J.; Kampf, J. W.; Hillig, K. W., II.; Kuczowski, R. L. J. Am. Chem. Soc. 1991, 113, 4732. (b) Fernandez, T.; Sordo, J. A.; Monnat, F.; Deguin, B.; Vogel, P. J. Am. Chem. Soc. 1998, 120, 13276. (c) Solari, E.; Floriani, C.; Schenk, K. J. Chem. Soc., Chem. Commun. 1990, 963.

^{(10) (}a) Burow, D. F. Inorg. Chem. 1972, 11, 1573. (b) Childs, J. D.; van der Helm, D.; Christian, S. D. Inorg. Chem. 1975, 14, 1387. (c) Pradeep, T.; Sreekanth, C. S.; Hegde, M. S.; Rao, C. N. R. J. Am. Chem. Soc. 1989, 111, 5058. (d) LaBarge, M. S.; Matos, J. Hillig, K. W., II; Kuczkowski, R. L. J. Am. Chem. Soc. 1987, 109, 7222.

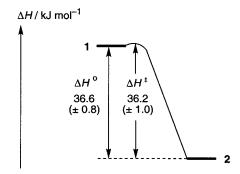
⁽¹²⁾ Gossage, R. A.; Ryabov, A. D.; Spek, A. L.; Stufkens, D. J.; van Beek, J. A. M.; van Eldik, R.; van Koten, G. J. Am. Chem. Soc. 1999, 121,

^{(13) (}a) Snow, M. R.; Ibers, J. A. Inorg. Chem. 1973, 12, 224. (b) Snow, M. R.; McDonald, J.; Basolo, F.; Ibers, J. A. J. Am. Chem. Soc. 1972, 94, 2526.

 $ArCH_2N$ protons are diagnostic; at high temperatures, they are located at a frequency identical to the one observed for the corresponding protons in 1 ($\delta_{\rm H} = 4.07$ at 287 K) and shift continuously to lower field upon cooling. At 193 K, the observed chemical shift value ($\delta_{\rm H} = 4.36$) corresponds to that of adduct 2 obtained in the presence of a large excess of SO₂.³ At this low temperature, only one coalesced signal for HA and HB (Scheme 2) is observed because of the very fast exchange between dissolved and platinum-bound SO₂ (viz., 2). This correlation of the observed chemical shift values with temperature allows for the determination of the concentrations of 1 and adduct 2, knowing the total complex concentration, [Pt]tot = [1] + [2], and the total SO_2 concentration, $[SO_2]_{tot}$ = $[SO_2]$ + [2], and using the relation $\delta_{\rm obs} = \delta_1[1]/([1]+[2]) + \delta_2[2]/([1]+[2])$ ([1]+[2]). A slight temperature dependence of the chemical shift values of the individual complexes was taken into account, which was quantified by measuring the arylplatinum complex either in a pure C₂F₄Br₂ solution (solely complex 1) or in a solution that was previously saturated with SO₂ (only complex 2 present). ¹⁴ Hence, the corresponding equilibrium constant Kwas determined as a function of temperature:


$$1 + SO_2 \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} 2 \tag{1}$$

A plot of $\ln(K)$ against the reciprocal temperature is linear and hence gives directly the standard entropy and enthalpy with $\Delta H^\circ = -36.6~(\pm 0.8)~\text{kJ}~\text{mol}^{-1}~\text{and}~\Delta S^\circ = -104~(\pm 3)~\text{J}~\text{K}^{-1}~\text{mol}^{-1}.^{15}$ Importantly, the Gibbs free energy difference at 298 K between the adduct and the SO₂-free platinum complex is $\Delta G^\circ_{298} = -5.5~(\pm 1.2)~\text{kJ}~\text{mol}^{-1}~(K_{298} = 9~(\pm 4)~\text{M}^{-1})$ and is relatively small. The previously determined value of $K_{292} = 9.8~(\pm 1.4)~\text{M}^{-1}$, obtained from UV—vis spectroscopy by titration experiments at 292 K in C_6H_6 solution, is in good agreement with these results.³


Hence, at 224 K and at the given concentration of SO_2 , the arylplatinum complex exists predominantly as the pentacoordinate adduct and the equilibrium constant K is large ($K \gg 1$). Raising the temperature gradually favors the existence of the four-coordinate species. At 287 K, the equilibrium is shifted markedly to the square-planar platinum complex 1 and solvated SO_2 .

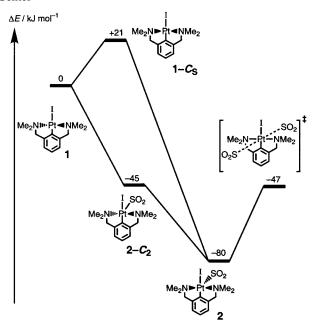
When the temperature is further decreased (i.e., T < 200 K, where only complex **2** is present according to ^1H NMR spectroscopy), a broadening of the characteristic NMR resonances is noted. This suggests that a dynamic process is operating in solution. Indeed, at 150 K decoalescence of both the resonances assigned to the ArCH₂N and the NMe₂ groups was unambiguously established. This behavior is attributed to the SO₂ exchange process (Scheme 2), which has become slow at these temperatures. At the slow exchange limit, the signal due to the NMe₂ groups is split into two singlets at $\delta_{\text{H}} = 3.36$ and 3.25 and the benzylic protons appear as two doublets centered at $\delta_{\text{H}} = 4.80$ and 3.84 (400 MHz). The coupling constant ($^2J_{\text{HH}} = 14.4$ Hz) is indicative of geminal H–H coupling in a complex of lower than $C_{2\nu}$ symmetry as displayed by the pentacoordinate platinum complex **2**.

Line shape analysis of the benzylic signals was performed in order to obtain the observed rate constant k for this SO_2 exchange reaction (Figure 1). Variable SO_2 concentration

Figure 1. Measured (a) and simulated (b) temperature-dependent ¹H NMR spectra of **2** (400 MHz, C₂F₄Br₂ solution).

Figure 2. Energy diagram of the postulated binding process and the fast SO_2 exchange on the platinum center. ΔH^{\ddagger} denotes the activation energy determined for the release of SO_2 from adduct **2** and formation of the SO_2 -free complex **1**.

measurements, using solutions of complex 2 (1.1×10^{-2} M) and SO_2 (0.6×10^{-2} to 7.2×10^{-1} M) in $C_2F_4Br_2$ at 174 K showed that the rate constant is barely influenced by the changes in concentration of free SO_2 , hence following a rate law that is first order in arylplatinum complex and zero order in SO_2 , which strongly points to a dissociative process.

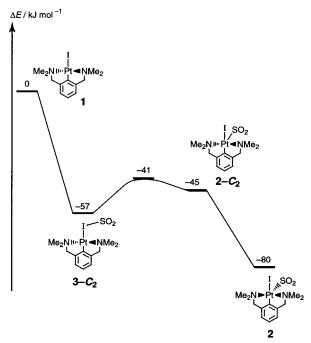

The variable temperature rate constants were fitted to the Eyring equation, which resulted in a rate constant $k_{174} = 2.34$ (± 0.08) \times 10^3 s⁻¹, an activation enthalpy $\Delta H^{\ddagger} = +36.2$ (± 1.0) kJ mol⁻¹, and entropy $\Delta S^{\ddagger} = +33$ (± 6) J K⁻¹ mol⁻¹. Extrapolation of the observed rate constant to room temperature gave $k_{298} = 1.5$ (± 0.5) \times 10^8 s⁻¹.

From the positive entropy of activation, a dissociative mechanism, D, is assumed. Furthermore, the values of ΔH° for the reversible adduct dissociation and ΔH^\ddagger for the SO₂ exchange process (+36.6 and +36.2 kJ mol⁻¹, respectively) are very similar, indicating that the two processes, i.e., the transformation of 2 to 1 and vice versa and the fast SO₂ exchange, are related with each other. This strongly suggests 1 as an intermediate in the exchange process. This is in accordance with a dissociative mechanism and implies a negligible activation energy for the binding of SO₂ on 1 to form adduct 2 (Figure 2).

⁽¹⁴⁾ For further details, see Supporting Information.

⁽¹⁵⁾ Günther, H. NMR Spektroskopie; Georg Thieme: Stuttgart, Germany, 1973; pp 239.

Scheme 3. Energy Diagram of a Binding Process Covering Direct Coordination of the SO₂ Molecule on the Platinum Center


Such a mechanism is also supported by the solvent dependence of the coalescence temperature. Polar and (weakly) coordinating solvents such as THF are often considered to increase the rate of substrate coordination to the metal center and therefore lower the activation energy. Indeed, when the solvent was changed to THF-d₈, measurements at temperatures as low as 160 K uniformly resulted in spectra that show broadened signals only. Further cooling to identify any decoalescence behavior of the relevant resonances is prevented by solvent freezing. Importantly, no signals other than those of complex 2 have been detected at any temperature in either solvent that could originate from an adduct 3 containing an iodide-bound SO₂ molecule. This provides further support for a mechanism comprising direct SO₂ coordination to the metal center.

An important conclusion emanating from these kinetic results is that the exchange rate of SO₂ on these arylplatinum(II) complexes at ambient temperature is extremely rapid (extrapolation to room temperature gives $k_{298} = 1.5 \times 10^8 \text{ s}^{-1}$) and comparable to the fastest enzymatic reactions.16 This demonstrates that the signal response of sensor devices, which are based on the metal units as diagnostic sites, is very fast,8 and therefore, such materials are suitable for true on-line monitoring for the presence of SO_2 .

Ab Initio Calculations. Theoretical studies concentrated on both mechanistic pathways, viz. involving (i) direct coordination of SO₂ to the metal center and (ii) prior binding of SO₂ to the metal-bound iodide and subsequent migration to the metal center (Scheme 1). Energies (ΔE) were calculated for structures in the gas phase and focused predominantly on the identification of potential intermediates and therefore correspond to ΔH° . In a few cases, reaction pathways were further detailed, and transition states and hence activation energies ΔE_a (corresponding to ΔH^{\ddagger}) were also taken into account.

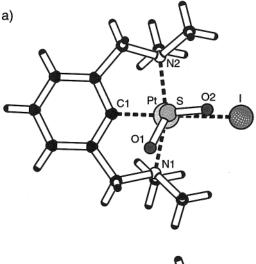
1. Direct Coordination of SO₂ to the Platinum Center. Direct coordination of SO₂ on platinum may occur either on

Scheme 4. Energy Diagram of an SO₂ Binding Process Involving an Intermediate Containing an Iodide-Bound SO₂ Molecule and a Subsequent 1,2-Sigmatropic Shift of SO₂ to the Platinum Center^a

^a Only the route involving C_2 type nitrogen coordination of the pincer ligand is shown.

complex 1 (identical with $1-C_2$) comprising a C_2 -symmetric pincer ligand or on complex $1-C_S$ with both metallacycles puckered in the same direction. Such a conformation was calculated to be considerably less stable (by 20.9 kJ mol⁻¹) than the crystallographically characterized complex 1.1b Complex $1-C_S$ displays a preorganized conformation for direct SO₂ bonding and formation of the adduct 2 (identical with $2-C_{\rm S}$), whereas bonding of SO_2 on 1 would lead to $2-C_2$. An intramolecular rearrangement of 1 to $1-C_S$ is accompanied by a rehybridization on the platinum center (between 5d and 6p orbitals), which gives the occupied donor orbitals a higher amplitude on the side the Pt-S bond is formed. This effect is reflected in a large energy difference for SO₂ bonding on platinum in $1-C_S$ to give 2 ($\Delta E = -100.5 \text{ kJ mol}^{-1}$), which is more than twice as large as $\Delta E = -45.2 \text{ kJ mol}^{-1}$ for the corresponding process starting from 1 to form $2-C_2$ (Scheme 4). Notably, formation of $2-C_2$ circumvents the initial activation barrier of 21 kJ mol⁻¹ required for the formation of $1-C_S$. The theoretical calculations further predict that the most favorable conformation of adduct 2 is characterized by a C_s -symmetric pincer ligand, since inversion of the puckering of the metallacycles in the adduct 2 is a significantly slower process than in the SO₂-free complex 1 ($\Delta E = 34.3 \text{ kJ mol}^{-1} \text{ in } 2 \text{ vs } 20.9 \text{ kJ}$ mol⁻¹ in 1). However, the most likely binding process involves presumably SO₂ binding, which is in concert with the transformation of the binding mode of the pincer ligand from C_2 type to C_s -symmetric and hence does not involve a well-defined intermediate ($\Delta E_a = -79.6 \text{ kJ mol}^{-1}$).

For the exchange of SO₂ on 2 (Scheme 2), a dissociative mechanism, D, would account for the exact microscopic reverse of the process described above for the coordination of SO₂. Consequently, the SO₂-free complex 1 represents a classical intermediate of such a mechanism ($\Delta E_a \ge -79.6 \text{ kJ mol}^{-1}$). The apparent discrepancy between the measured energy values


⁽¹⁶⁾ Fersht, A. Enzyme Structure and Mechanism, 2nd ed.; W. H. Freeman and Company: New York, 1985.

 $(\Delta H^{\circ} = -36.6 \text{ kJ mol}^{-1})$ and the calculated ones has been attributed predominantly to solvent effects (vide infra).

Alternatively, an associative mode of activation must be considered that involves a transition state characterized by a platinum(II) center of octahedral geometry containing two SO_2 molecules in a mutual trans disposition (associative interchange mechanism, I_a ; Scheme 3). Such a transition state, with a competitive interaction of both molecules of SO_2 with the d_z^2 orbital of platinum, is less stable than the corresponding SO_2 adduct 2 ($\Delta E = +32.7$ kJ mol⁻¹) but seems kinetically preferred to the SO_2 -free complex 1 (i.e., the intermediate of a dissociative mechanism) by -46.9 kJ mol⁻¹. This process may become important in the presence of excess SO_2 , i.e., in a situation where solvent effects have a less pronounced effect.

2. Binding of SO₂ on Iodide and Subsequent Shift to **Platinum.** As pointed out above, structure 3 is an interesting representative of a potential intermediate for the binding of SO₂ and also for the fast exchange of SO₂. This is confirmed by the low calculated barrier for the migration of the iodide-bound SO₂ molecule from one face of the metal coordination plane to the other, which does not exceed 12 kJ mol⁻¹. Binding of SO₂ on iodide that is bound to a platinum complex containing the pincer ligand in a C_2 type conformation¹⁷ (viz., formation of $3-C_2$; Scheme 4) lowers the relative energy of the adduct by $\Delta E =$ -56.5 kJ mol⁻¹, which is 11.3 kJ mol⁻¹ more than for coordination at platinum to form $2-C_2$. A subsequent 1,2sigmatropic shift of SO₂ along the I-Pt bond is predicted to require an activation energy $\Delta E_a = +15.5 \text{ kJ mol}^{-1}$ for the forward reaction (iodide-to-platinum shift starting from complex $3-C_2$) and a $\Delta E_a = +4.2 \text{ kJ mol}^{-1}$ for the reverse process (Ptto-I migration of the SO₂ molecule beginning with structure $2-C_2$). The final transformation of the coordinated amine groups from C_2 to C_s corresponds to the formation of the product 2 and is identical to the one calculated for the SO₂ binding directly on the metal center (Scheme 4). Again, this is probably not a stepwise process but involves a shift of the SO₂ molecule that occurs in concert with the C_2-C_s isomerization of the pincer

Combination of Theory and Experiment. Notably, the calculated bonding energies refer to structures that were optimized in the gas phase, and solvent effects were consequently ignored. This may explain the uniformly larger energy values obtained from calculations compared to the experimentally determined ones, since solvation is assumed to increase the stability of certain intermediates. For example, interestingly all the optimized structures show a distinct interaction of both oxygen atoms of SO₂ with protons of the NMe₂ groups (Figure 3b). This interaction may be less important in solvated systems and accounts for at least 16 kJ mol⁻¹, as was derived from the calculated energy differences upon rotation of the SO₂ molecule in 3 along the I-S bond axis. Furthermore, coordinating or halogenated solvents are anticipated to stabilize SO2 by similar donor-acceptor interactions as calculated for the I-S bond in 3, thus making the thermodynamics of the Pt-S bond dissociation much more balanced. Moreover, the presence of solvents certainly has a direct influence on the thermodynamic energy values of various configurations at the platinum center, in particular when comparing metal complexes with different coordination numbers (e.g., octahedral vs square-planar geometry).

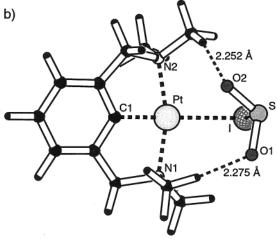


Figure 3. (a) Solid-state structure of the SO_2 adduct 2 (from X-ray); (b) geometry-optimized structure of complex 3.

Nevertheless, a good qualitative estimate of the SO_2 binding and exchange has been obtained that corresponds well with the experimental results.

- 1. Spectroscopic and DFT investigations are both in agreement with a dissociative mechanism (D; Scheme 3) involving rapid decoordination and coordination of an SO_2 molecule on a platinum(II) metal center. A tentatively proposed associative interchange, I_a , including a transition state with an octahedrally coordinated metal center containing two platinum-bound SO_2 molecules, 6 may be discarded, particularly because of the decisive NMR experiments (cf., zero-order dependence of k on the concentration of SO_2 and positive activation entropy ΔS^{\ddagger}). 14
- 2. No experimental evidence has been obtained for an intermediate structure similar to $\bf 3$ containing the SO_2 molecule bound to iodide. Such an intermediate does not seem very likely, although its existence, particularly as a thermodynamically unstable but kinetically crucial intermediate, cannot be fully ruled out based on the data presented here.
- 3. According to the DFT calculations, an exclusively intramolecular exchange of the binding site of the SO_2 molecule (via $3-C_2$, i.e., a reversible SO_2 migration along the Pt-I bond following a C_2 type pathway; Scheme 4) seems kinetically competitive compared with a dissociative exchange mechanism, but no experimental evidence for its occurrence was obtained.

⁽¹⁷⁾ Intuitively, a binding route involving prior amine rearrangement in a C_s conformation and subsequent SO₂ bonding on iodide can be discarded because such a conformation creates a favorable coordination site for direct SO₂ coordination on the platinum center (see Supporting Information for further details).

Conclusions

The mechanistic studies presented here show that the platinum-bound iodide in 1 is not directly involved in the SO₂ binding process and that the nature of the metal-bound halide in organoplatinum(II) complexes of the general type [PtX-(NCN-R)] does not influence the mechanism of SO₂ bonding. Formation of the corresponding adduct $[PtX(NCN-R)(SO_2)]$ invokes direct bonding of the SO₂ molecule on the platinum center. This is in agreement with the fact that variation of the platinum-bound halide does not have a significant influence on the equilibrium constant K. However, previous investigations revealed that the metal-halide bond is essential for tuning the nucleophilic character of the metal center and for ensuring full reversibility of the SO₂ bonding. The dissociative SO₂ exchange on the adduct is very fast at ambient temperature, with an extrapolated rate constant $k_{298} = 1.5 \ (\pm 0.5) \times 10^8 \ \mathrm{s}^{-1}$. This signal transmission is suitably fast for most common sensor applications based on such organoplatinum(II) complexes. Hence, this nearly ideal sensor response in the presence of SO₂ demonstrates the potential of these platinum materials for the instantaneous detection and the quantitative on-line monitoring of this gas.

Experimental and Methods

General. All solvents, including SO₂ (99.9%, Aldrich), were commercially available and were used without further purification. The platinum complexes 1 and 2 were prepared according to published procedures. 1,3 Stopped-flow UV-vis spectroscopic studies were performed in toluene on a Hi-Tech Scientific (Salisbury, U.K.) SF-40 apparatus that was modified in house for low-temperature stoichiometric measurements.18

 $\pmb{\mathsf{NMR}}$ $\pmb{\mathsf{Spectroscopy}}.$ All $^1\mathsf{H}$ NMR spectra were recorded on a Bruker ARX400 spectrometer operating at 400 MHz. Chemical shift values (δ in ppm) were referenced to SiMe₄ and measured with respect to residual protons of added CD₂Cl₂ (5%; $\delta_{\rm H} = 5.29$). The temperature was determined by substituting the sample with a Pt-100 resistor.¹⁹ Samples containing an excess of SO₂ (relative to the arylplatinum compound) were prepared by dissolving complex 1 in a mixture of C₂F₄Br₂ (95%) and CD₂Cl₂ (5% v/v), which was previously saturated with SO₂. Solutions for the thermodynamic and kinetic studies were obtained by dissolving complex 1 in a mixture of C₂F₄Br₂ (95%) and CD₂Cl₂ (5% v/v) and adding the appropriate amount of SO₂ (0.83 M stock solution in C₂F₄Br₂). The observed rate constants were obtained by ¹H NMR line-shape analysis using the program ECHANGE.²⁰ The analyses of the equilibrium and rate constants using the required

equations were accomplished with a nonlinear least-squares fitting program. The reported errors correspond to 1 standard deviation.

Density Functional Calculations. The calculations were carried out using the Amsterdam-Density-Functional (ADF) program developed by Baerends et al.21 The MOs were expanded in an uncontracted set of Slater type orbitals (STOs). The used basis sets were of triple- ζ with one set of polarization functions on each element.^{22,23} The 1s core shell of carbon, nitrogen, and oxygen, the 1s2s2p core shell of S, and the 1s2s2p3s3p4s4p core shell of platinum were treated by the frozencore (FC) approximation.24 An auxiliary set of s, p, d, f, and g STOs, centered on all nuclei, was used to fit the molecular density and to represent the Coulomb and exchange potentials accurately in each selfconsistent-field (SCF) cycle.²⁵ The numerical integration was done using the scheme developed by te Velde et al.26 All calculations were performed at the NL-SCF level using the local density approximation (LDA) in the Vosko-Wilk-Nusair parametrization²⁷ with nonlocal corrections for exchange (Becke88)28 and correlation (Perdew86)29 including relativistic effects by the Pauli approximation.³⁰ Geometries were optimized by using the analytical gradient method implemented by Versluis and Ziegler.31

Acknowledgment. R. van Eldik (Universität Erlangen) is gratefully acknowledged for providing preliminary UV spectroscopic results, and F. A. Dunand and F. L. Monlien (Université de Lausanne) are gratefully acknowledged for technical assistance. A.W.E. thanks the European Union for a Marie Curie postdoctoral fellowship.

Supporting Information Available: Listing of the measured data in C₂F₄Br₂ solution and details on calculations of an indirect SO₂ binding via a C_s type pincer conformation. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0009019

- (20) ECHANGE derived from EXCNG: Delpuech, J. J.; Ducom, J.; Michon, V. Bull. Soc. Chim. Fr., 1971, 1848.
- (21) Fonseca Guerra, C.; Visser, O.; Snijders, J. G.; te Velde, G.; Baerends, E. J. In METECC-95; Clementi, E., Corongiu, C., Eds.; STEF: Cagliari, Italy, 1995; p 307.
- (22) Snijders, J. G.; Vernooijs, P.; Baerends, E. J. Internal Report; Vrije Universiteit: Amsterdam, The Netherlands, 1981.
- (23) Snijders, J. G.; Baerends, E. J.; Vernooijs, P. At. Data Nucl. Data Tables 1982, 99, 84.
- (24) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41.
- (25) Krijn, K.; Baerends, E. J. Internal Report; Vrije Universiteit: Amsterdam, The Netherlands, 1984.
- (26) Baerends, E. J.; te Velde, G. J. Comput. Phys. 1992, 84.
- (27) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
- (28) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- (29) Perdew, J. P. Phys. Rev. B 1986, 33, 8822
- (30) (a) Snijders, J. G.; Baerends, E. J.; Ros, P. Mol. Phys. 1979, 38, 1909. (b) Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989, 93, 3050.
- (31) (a) Versluis, L.; Ziegler, T. J. Chem. Phys. 1988, 322, 88. (b) Fan, L.; Versluis, L.; Ziegler, T.; Baerends, E. J.; Raveneck, W. Int. J. Quantum Chem., Symp. 1988, S22, 173.

⁽¹⁸⁾ Bugnon, P.; Laurency, G.; Ducommun, Y.; Sauvageat, P.-Y.; Merbach, A. E.; Ith, R.; Tschanz, R.; Doludda, M.; Bergbauer, R.; Grell, E. Anal. Chem. 1996, 68, 3045.

⁽¹⁹⁾ Amann, C.; Meyer, P.; Merbach, A. E. J. Magn. Reson. 1982, 46,