Reduction of (imine)Pt(IV) to (imine)Pt(II) Complexes with Carbonyl-Stabilized Phosphorus Ylides

Gabriele Wagner,[†] Tatyana B. Pakhomova,[‡] Nadezhda A. Bokach,[‡] João J. R. Fraústo da Silva,[†] Jose Vicente,^{*,§} Armando J. L. Pombeiro,^{*,†} and Vadim Yu. Kukushkin^{*,‡}

Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, Department of Chemistry, St. Petersburg State University, 198904 Stary Petergof, Russian Federation, and Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apartado 4021, 30071-Murcia, Spain

Received July 12, 2000

A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, $Ph_3P=$ CHCO₂R, in nonaqueous media. The reaction between *neutral* (imino)Pt(IV) compounds [PtCl₄{NH=C(Me)- $ON=CR^{1}R^{2}_{2}$ [$R^{1}R^{2} = Me_{2}$, (CH₂)₄, (CH₂)₅, (Me)C(Me)=NOH], [PtCl₄{NH=C(Me)ONR₂}₂] (R = Me, Et, CH₂Ph), [PtCl₄{N=C(Me)O-N(R³)-C(R¹)(R²)}₂] (R¹ = H; R² = Ph or C₆H₄Me; R³ = Me) as well as *anionic*type platinum(IV) complexes (Ph₃PCH₂Ph)[PtCl₅{NH=C(Me)ON=CR₂}] [R₂ = Me₂, (CH₂)₄, (CH₂)₅] and 1 equiv of $Ph_3P=CHCO_2R$ (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Δ^4 -1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and ¹H, ¹³C{¹H}, ³¹P{¹H} and ¹⁹⁵Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl₂{NH=C(Me)ON=CMe₂}₂] [crystal system tetragonal, space group $P4_2/n$ (No. 86), a = b = 10.5050(10) Å, c = 15.916(3) Å] and (Ph₃PCH₂CO₂-Me)[PtCl₃(NCMe)] [crystal system orthorhombic, space group $Pna2_1$ (No. 33), a = 19.661(7) Å, b = 12.486(4)Å, c = 10.149(3) Å]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides $Ph_3P=CHCO_2R$ are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.

Introduction

Alteration of reactivity of organic species upon their coordination to a metal center opens up a possibility for metalmediated reactions that are not feasible for the substrates in the noncoordinated state, and this area, i.e., ligand reactions, has been a subject of rapt attention in the last two decades.^{1–4} It is not unusual when the reactivity of substrates is different for a different oxidation state of a particular metal ion. Our recent comparative reactivity studies of (organonitrile)platinum(IV) compounds vs the corresponding platinum(II) complexes are illustrative in that respect. First, we have observed the reaction between the platinum(IV) complexes [PtCl₄(RCN)₂] (R = Me,

- [†] Instituto Superior Técnico.
- [‡] St. Petersburg State University.
- [§] Universidad de Murcia.
- (1) *Reactions of Coordinated Ligands*; Braterman, P. S., Eds.; Plenum Press: New York, 1989; Vols. 1 and 2.
- (2) Constable, E. C. Metals and Ligand Reactivity. An Introduction to the Organic Chemistry of Metal Complexes, VCH: Weinheim, 1995.
- (3) Kukushkin, Yu. N. *Reactivity of Coordination Compounds* [in Russian]; Khimiya: Leningrad, 1987.
- (4) Davies, J. A.; Hockensmith, C. M.; Kukushkin, V. Yu.; Kukushkin, Yu. N. Synthetic Coordination Chemistry: Principles and Practice; World Scientific: Singapore and New Jersey, 1996.

CH₂Ph, Ph) and oximes, R^1R^2C =NOH, or dioximes, HON= C{spacer}C=NOH, which led to the isolation of the imino compounds [PtCl₄{NH=C(R)ON=CR¹R²}₂]⁵ and [PtCl₄{NH= C(R)ON=C{spacer}C=NOH}₂],⁶ respectively. It was also found that the iminoacylation of oximes^{5.6} occurs *only at the Pt(IV) center* (or at other metal centers in a relatively high oxidation state⁷⁻⁹) and the reaction does not proceed at all– even under harsh conditions—at either (organonitrile)Pt(II) complexes or at free RCN. These observations were rationalized by a mechanistic theoretical study¹⁰ that suggested both lower activation energy and higher stability of products in the case of platinum(IV) systems compared with the platinum(II) ones.

- (5) Kukushkin, V. Yu.; Pakhomova, T. B.; Kukushkin, Yu. N.; Herrmann, R.; Wagner, G.; Pombeiro, A. J. L. *Inorg. Chem.* **1998**, *37*, 6511.
- (6) Kukushkin, V. Yu.; Pakhomova, T. B.; Bokach, N. A.; Wagner, G.; Kuznetsov, M. L.; Galanski M.; Pombeiro, A. J. L. *Inorg. Chem.* 2000, 39, 216.
- (7) Wagner, G.; Pombeiro, A. J. L.; Bokach, N. A.; Kukushkin, V. Yu. J. Chem. Soc., Dalton Trans. 1999, 4083.
- (8) Kukushkin, V. Yu.; Ilichev, I. V.; Wagner, G.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans. 1999, 3047.
- (9) Kukushkin, V. Yu.; Ilichev, I. V.; Zhdanova, M. A.; Wagner G.; Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans. 2000, 1567.
- (10) Kuznetsov, M. L.; Bokach, N. A.; Kukushkin, V. Yu.; Pakkanen, T.; Wagner G.; Pombeiro, A. J. L. J. Chem. Soc., Dalton Trans. 2000, 4683.

^{*}Authors to whom correspondence should be addressed. E-mail: jvs@um.es, pombeiro@ist.utl.pt, and kukushkin@VK2100.spb.edu.

Second, we discovered an unusual coupling between nitriles bound to the platinum(IV) center in [PtCl₄(RCN)₂] and nitrones $-ON^+(R^3) = CR^1R^{2 \ 11,12}$ (the latter can be viewed as the "frozen", by alkylation, form of the other oxime tautomer) to give, in the course of [2 + 3] cycloaddition, Δ^4 -1,2,4-oxadiazoline compounds [PtCl₄{N=C(Me)O-N(R³)-C(R¹)(R²)}₂].^{11,12} The role of the metal oxidation state on the control of the reactivity was verified when it was found that the highly reactive platinum-(IV) complexes [PtCl₄(RCN)₂] exhibit such a leveling effect on the cycloaddition that it might be performed under mild reaction conditions starting even from a very unreactive organonitrile bearing an electron-donor substituent, while for the much less reactive organonitriles in *platinum(II)* complexes [PtCl₂(RCN)₂] a differentiating effect is recognized in such a way that the cycloaddition occurs only in the case of organonitriles with an electron-acceptor substituent.12

These two reactions, which proceed at a quadruply charged platinum center and are limited or even totally unreachable by use of (organonitrile)Pt(II) precursors, allow the isolation of Pt-(IV)-bound imino species that cannot be prepared in so-called pure organic chemistry. Furthermore, imines NH=C(Me)ON= CR¹R² with two donor substituents at the carbon, prepared in the course of the reactions with oximes, 5^{-9} represent a distinctive subclass of unusually stable imines, and their preparation could be useful both for coordination chemistry in modeling elusive monodentate imine ligands¹³⁻¹⁵ and for organic chemistry as models of unstable intermediates in a nitrilium ion catalyzed Beckmann rearrangement.^{16,17}

As a continuation of our project on the reactivity of organonitrile platinum compounds⁵⁻¹² and preparation and biological investigation¹⁸ of metal-stabilized imino species, we focused our attention on (imine)Pt(II) compounds. Complexes of this type are rather scarce,¹⁹⁻³⁰ and their chemistry is very little explored despite intrinsic antitumor activity of some of them.^{31–33} Previously (imine)Pt(II) species were prepared either by base-catalyzed alcohol addition,¹⁹⁻²⁵ by hydrolysis²⁶ or

- (11) Wagner, G.; Pombeiro, A. J. L.; Kukushkin, V. Yu. J. Am. Chem. Soc. 2000, 122, 3106.
- (12) Wagner, G.; Haukka, M.; Fraústo da Silva, J. J. R.; Pombeiro, A. J. L.; Kukushkin, V. Yu. Inorg. Chem. 2001, 40, 264.
- (13) Prenzler, P. D.; Hockless, D. C. R.; Heath, G. A. Inorg. Chem. 1997, 36. 5845.
- (14) Diamond, S. E.; Tom G. M.; Taube, H. J. Am. Chem. Soc. 1975, 97, 2661.
- (15) Adcock, P. A.; Keene, F. R.; Smythe, R. S.; Snow, M. R. Inorg. Chem. 1984, 23, 2336.
- (16) Glocker, M. O.; Shrestha-Davadi, P. B.; Küchler-Krischun, J.; Hofmann, J.; Fischer, H.; Jochims, J. J. Chem. Ber. 1993, 136, 1859.
- (17) Meerwein, H. Angew. Chem. 1955, 67, 374.
- (18) Keppler, B. K.; Kukushkin, V. Yu.; Pombeiro, A. J. L. Unpublished results.
- (19) Casas, J. M.; Chisholm, M. H.; Sicilia, M. V.; Streib, W. E. Polyhedron 1991, 10, 1573.
- (20) Fanizzi, F. P.; Intini, F. P.; Natile, G. J. Chem. Soc., Dalton Trans. 1989, 947.
- (21) Cini, R.; Caputo, P. A.; Intini, F. P.; Natile, G. Inorg. Chem. 1995, 34, 1130.
- (22) Manzer, E. J. Chem. Soc., Dalton Trans. 1974, 1535 and references therein.
- (23) Ros, R.; Renaud, J.; Roulet, R. J. Organomet. Chem. 1976, 104, 271.
- (24) Ros, R.; Renaud, J.; Roulet, R. J. Organomet. Chem. 1975, 87, 379.
- (25) Ros, R.; Michelin, R. A.; Boschi T.; Roulet, R. Inorg. Chim. Acta 1979, 35, 43.
- (26) Cini, R.; Intini, F. P.; Maresca, L.; Pacifico, C.; Natile, G. Eur. J. Inorg. Chem. 1998, 1305 and references therein.
- (27) Stephenson, N. C. J. Inorg. Nucl. Chem. 1962, 24, 801.
- (28) Cross, R. J.; Davidson M. F.; Rocamora, M. J. Chem. Soc., Dalton Trans. 1988, 1147.
- (29) Jardine, I.; McQuillin, F. J. Tetrahedron Lett. 1972, 459.
- (30) Grøndahl, L.; Josephsen, J.; Bruun, R. M.; Larsen, S. Acta Chem. Scand. 1999, 53, 1069.

ammonia addition²⁷ to nitrile platinum(II) complexes, or by direct reaction of some stable organic imines and Pt(II) precursors.²⁸⁻³⁰ We report herein on a novel method for generation of (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph₃P=CHCO₂R, in nonaqueous media (Scheme 1). The easy-to-obtain³⁴ ylides Ph₃P= $CHCO_2R$ (R = Me, Et) and in particular the former one that is commercially available are now introduced as mild and selective reducing agents for conversion of Pt(IV) to Pt(II) species, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors. In this way we take advantage of the stronger activation power of a Pt(IV) center toward nucleophilic addition to organonitrile ligands to form, upon addition followed by reduction, final (imine)Pt(II) complexes which otherwise would not be accessible.

Results and Discussion

Reduction of (imine)Pt(IV) Compounds with Ph₃P= CHCO₂R and Characterization of Products. A systematic approach to investigations of chemical reactivity¹⁻⁴ and biological activity³⁵⁻⁴⁰ of platinum compounds often involves comparative studies for platinum(II) complexes vs the corresponding platinum(IV)-based compounds. The most common route for preparation of these couples is oxidation of platinum(II) complexes with Cl₂ (or its so-called "solid chlorine equivalents", e.g., PCl_5^{41-43} or $PhICl_2^{44-46}$) or other halogens in aqueous or

- (31) Coluccia, M.; Nassi, A.; Loseto, F.; Boccareli, A.; Mariggio, M. A.; Giordano, D.; Intini, P. Caputo, F. P.; Natile, G. J. Med. Chem. 1993, 36, 510.
- (32) Coluccia, M.; Boccarelli, A.; Mariggio, M. A.; Cardelliechio, N.; Caputo, P.; Intini, F. P.; Natile, G. Chem.-Biol. Interact. 1995, 98, 251
- (33) Coluccia, M.; Mariggio, M. A.; Boccarelli, A.; Loseto, F.; Cardelliechio, N.; Caputo, P.; Intini, F. P.; Pacifico, C.; Natile, G. In Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy; Howell, S. B., Ed.; Plenum Press: New York, 1991; p 27
- (34) Vicente, J.; Chicote, M. T.; Saura-Llamas, I. J. Chem. Educ. 1993, 70, 163.
- (35)Wong, E.; Giandomenico, C. M. Chem. Rev. 1999, 99, 2451 and references therein.
- (36) Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy 2; H. Pinedo, M., Schornagel, J. H., Eds.; Plenum Press: New York, 1996.
- (37) Bandoli, G.; Caputo, P. A.; Intini, F. P.; Sivo, M. F.; Natile, G. J. Am. Chem. Soc. 1997, 119, 10370.
- (38) Choi, S.; Filotto, C.; Bisanzo, M.; Delaney, S.; Lagasee, D.; Whitworth, J. L.; Jusko, A.; Li, C.; Wood, N. A.; Willingham, J.; Schwenker, A.; Spaulding, K. Inorg. Chem. 1998, 37, 2500.
- (39) Choi, S.; Mahalingaiah, S.; Neale, N. R.; Masood, S. Inorg. Chem. 1999, 38, 1800.
- (40) Ellis, L. T., Er, H. M.; Hambley, T. W. Aust. J. Chem. 1995, 48, 793. (41) Kratochwil, N. A.; Bednarski, P. J., Mrozek, H.; Vogler, A.; Nagle,
- J. K. Anti-Cancer Drug Des. 1996, 11, 155. (42)
- Vorobiov-Desiatovskii, N. V.; Kukushkin, V. Yu.; Lukin, Yu. N.; Patrabansh, K. M.; Morozov, N. L. Zh. Obshch. Khim. 1990, 60, 226 and references therein.
- (43) Beck, W.; Purucker, B. Chem. Ber. 1974, 107, 3476.
- Vicente, J.; Arcas, A.; Mora, M.; Solans, X.; Font-Altaba, M. J. (44)Organomet. Chem. 1986, 309, 369.

nonaqueous media to give [PtX₄LL'] complexes or reaction with hydrogen peroxide⁴⁷⁻⁵⁰ in water to generate [PtX₂(OH)₂LL'] species. The opposite way, i.e., reduction of platinum(IV) complexes, although known, is much less common, being applied mostly for syntheses performed in *aqueous media* due to better solubilities of the typical reducing agents,⁴ e.g., N₂H₄·H₂SO₄, NH₂OH·HCl, oxalate, or ascorbate, in water. To the best of our knowledge a reagent that effectively reduces in nonaqueous media a variety of platinum(IV) centers to platinum-(II) ones has not yet been devised although applications of SO₂, ethanol, olefins, or formaldehyde⁴ for the reduction of some narrow classes of platinum(IV) compounds were reported in the literature.

During attempts to extend to $[PtCl_4(MeCN)_2]$ the previous studies on the nucleophilic attack of carbonyl-stabilized phosphorus ylides to organonitriles coordinated to Pt(II),^{51–53} we observed a facile reduction of the platinum center that proceeded under mild conditions (see below). This result prompted us to explore further the potential of the phosphorus ylides for the reduction of platinum(IV) complexes other than the nitrile-based compounds. For this study we addressed (imine)Pt(IV) complexes^{5.6} including (Δ^4 -1,2,4-oxadiazoline)Pt(IV) compounds¹¹ due to (i) the general interest in this class of complexes justified in the Introduction and (ii) the necessity to develop a route to (imine)Pt(II) species especially those that cannot be prepared directly from Pt(II) precursors.

The reaction between [PtCl₄{NH=C(Me)ON=CR¹R²}₂] (R¹R² = Me₂, (CH₂)₄, (CH₂)₅, and (Me)C(Me)=NOH) and 1 equiv of Ph₃P=CHCO₂Me (Ph₃P=CHCO₂Et can be used instead) proceeds under mild conditions (ca. 4 h, room temperature) to give a mixture of one platinum-containing product along with phosphorus-containing species ($\mathbf{A} \rightarrow \mathbf{B}$ in Scheme 2). The latter can be easily separated from the platinum material by washing the mixture with ethanol and diethyl ether. Alternatively, column chromatography is useful for the separation (see Experimental Section). Independently of the method applied for the purification, the isolated yields of the platinum compounds range from good to excellent (80–95%). The same method of reduction was used for the conversion of other *neutral* (imine)Pt(IV) compounds, i.e., [PtCl₄{NH=C(Me)ONR₂}₂] (R = Me, Et, CH₂Ph)⁵⁴ ($\mathbf{C} \rightarrow \mathbf{D}$ in Scheme 2) and [PtCl₄-

{ $\dot{N}=C(Me)O-N(R^3)-\dot{C}(R^1)(R^2)$ }₂] ($R^1 = H$; $R^2 = Ph$ or C_6H_4 -Me; $R^3 = Me^{11,12}$) ($E \rightarrow F$ in Scheme 2). In addition, the ylides reduce readily the *anionic-type* compounds (Ph₃PCH₂Ph)[PtCl₅-{ $NH=C(Me)ON=CR_2$ }] [$R_2 = Me_2$, (CH₂)₄, (CH₂)₅] to give the appropriate platinum(II) complexes (Ph₃PCH₂Ph)[PtCl₃-{ $NH=C(Me)ON=CR_2$ }], which were isolated in individual form in 60–70% yields after chromatography on silica gel. In the latter case, some other platinum-containing species were

- (45) Cotton, F. A.; Price, A. C.; Vidyasagar, K. Inorg. Chem. 1990, 29, 5143.
- (46) Wang, S.; Fackler, J. P., Jr. Organometallics 1990, 9, 111.
- (47) Giandomenico, C. M.; Abrams, M. J.; Murrer, B. A.; Vollano, J. F.; Rheinheimer, M. I.; Wyer, S. B.; Bossard, G. E.; Higgins, J. D., III. *Inorg. Chem.* **1995**, *34*, 1015.
- (48) Galanski, M.; Keppler, B. K. Met.-Based Drugs 1995, 2, 57.
- (49) Galanski, M.; Keppler, B. K. Inorg. Chem. 1996, 35, 1709.
- (50) Galanski, M.; Keppler, B. K. Inorg. Chim. Acta 1997, 265, 271.
- (51) Vicente, J.; Chicote, M. T.; Beswick, M. A.; Ramirez de Arellano, M. C. *Inorg. Chem.* **1996**, *35*, 6592.
- (52) Vicente, J.; Chicote, M. T.; Lagunas, M. C.; Jones, P. G. Inorg. Chem. 1995, 34, 5441.
- (53) Vicente, J.; Chicote, M. T.; Fernández-Baeza, J.; Lahoz, F. Inorg. Chem. 1991, 30, 3617.
- (54) Wagner, G.; Pombeiro, A. J. L.; Kukushkin, Yu. N.; Pakhomova, T. B.; Ryabov, A. D Kukushkin, V. Yu. *Inorg. Chim. Acta* **1999**, 292, 272.

Scheme 2

also detected in the reaction mixtures but only as minor components and were not isolated and identified.

All thus prepared compounds (excluding previously described Δ^4 -1,2,4-oxadiazoline complexes¹²) were characterized by elemental analyses, FAB mass spectrometry and IR and ¹H, ¹³C{¹H}, and ¹⁹⁵Pt NMR spectroscopies. The X-ray structure determination of [PtCl₂{NH=C(Me)ON=CMe₂}₂] (1) (Figure 1) revealed its trans configuration, and, similarly to the corresponding platinum(IV) complex,⁵ the imine ligands exhibit the one-end rather than the *N*,*N*-bidentate coordination mode. The iminoacyl species are in the *E* conformation which is held by a N-H···N hydrogen bond [N(1)···N(2), N(1)-H, N(1)H···N(2) are 2.66, 0.9641, and 2.2640 Å; N(1)-H···N(2) 103.788°] between the imine =NH atom and the oxime nitrogen. No evidence for the *Z* conformation in solution was obtained by NMR spectroscopy.

General features of the IR and ¹H and ¹³C{¹H} NMR spectra of $[PtCl_2{NH=C(Me)ON=CR^1R^2}_2]$, $[PtCl_2{NH=C(Me)-$

ONR₂]₂], and [PtCl₂{N=C(Me)O-N(R³)-C(R¹)(R²)}₂] are similar to those observed for the appropriate platinum(IV) complexes.^{5,6,11,54} The most significant difference between the two types of complexes is their ¹⁹⁵Pt NMR spectra which show the disappearance of the Pt(IV) signal in the range from -156 to -194 ppm [from 0.8 to 2.6 for anionic Pt(IV) complexes], while a new resonance emerges in the range from -2033 to -2210 ppm [from -1807 to -1811 for the anionic-type Pt(II) complexes].

Plausible Mechanism of Reducing Action of the Ylides. In coordination chemistry, the carbonyl-stabilized phosphorus ylides display two principal reactivity modes, i.e., they act as *C*-donor ligands displacing poorer ligands^{55–64} and as nucleophiles in the addition to metal-activated organonitriles^{51–53} and

- (55) Vicente, J.; Chicote, M. T.; Cayuelas, J. A.; Fernández-Baeza, J.; Jones, P. G.; Sheldrick, G. M.; Espinet, P. J. Chem. Soc., Dalton Trans. 1985, 1163.
- (56) Vicente, J.; Chicote, M. T.; Saura-Llamas, I.; Turpin, J.; Fernández-Baeza, J. J. Organomet. Chem. 1987, 333, 129.
- (57) Vicente, J.; Chicote, M. T., Fernández-Baeza, J. J. Organomet. Chem. 1989, 364, 407.
- (58) Vicente, J.; Chicote, M. T.; Lagunas, M. C.; Jones, P. G. J. Chem. Soc., Dalton Trans. **1991**, 2579.
- (59) Navarro, R.; Urriolabeitia, E. P. J. Chem. Soc., Dalton Trans. 1999, 4111.
- (60) Albanese, J. A.; Staley, D. L.; Rheingold, A. L.; Burmeister, J. L. J. Organomet. Chem. 1989, 375, 265.

Figure 1. PLATON drawing of *trans*-[PtCl₂{NH=C(Me)ON=CMe₂}] with atomic numbering scheme. Selected bond distances (Å): Pt-Cl 2.296(8), Pt-N(1) 1.98(2), N(1)-C(1) 1.27(4), O-C(1) 1.34(3), O-N(2) 1.43(3), N(2)-C(3) 1.25(3).

alkenes.⁶⁵ Reducing properties of the ylides are totally unexplored in coordination chemistry although they are known from organic chemistry.66-69 It was shown that chlorination of Ph₃P=CHCO₂Me gives (Ph₃PCHClCO₂Me)Cl, which immediately reacts, by transylidation, with yet unreacted Ph₃P=CHCO₂-Me to give (Ph₃PCH₂CO₂Me)Cl and Ph₃P=CClCO₂Me.⁶⁶ Further chlorination of Ph₃P=CClCO₂Me gives (Ph₃PCCl₂CO₂-Me)Cl and Ph₃P=O. The latter presumably forms via hydrolytic cleavage of (Ph₃PCCl₂CO₂Me)Cl and/or Ph₃P=CClCO₂Me.^{67,68} In our systems, in accord with these findings, we observed the formation of (Ph₃PCH₂CO₂Me)Cl which was isolated from the synthesis of $[PtCl_2{NH=C(Me)ON=CMe_2}_2]$ and characterized. Triphenylphosphine oxide was also isolated after chromatography on silica gel, and its appearance agrees with the previous report indicating that Ph₃P=CClCO₂Et decomposes during chromatography on Al₂O₃ to give Ph₃P= $O.^{68}$

The reaction between $[PtCl_4(MeCN)_2]$ and $Ph_3P=CHCO_2$ -Me in acetonitrile is remarkable from the viewpoint of understanding the reducing action of the ylides. Treatment of the complex with 1 equiv of $Ph_3P=CHCO_2Me$ results in precipitation of the platinum(II) complex $[PtCl_2(MeCN)_2]$. The filtrate, after removal of the insoluble material, was shown by TLC and ${}^{31}P{}^{1}H{}$ NMR monitoring to contain $Ph_3P=O$. Subsequent removal of the solvent and recrystallization of the residue from EtOH allowed the isolation of pure $(Ph_3PCH_2CO_2Me)[PtCl_3-(MeCN)]$, where the phosphonium cation, formed in the course of the process, was unambiguously identified by X-ray crystallography (Figure 2, Table 1).

Although the addition of ylides to coordinated nitrile species should be easier in the case of [PtCl₄(MeCN)₂], as compared to [PtCl₂(MeCN)₂],⁵¹⁻⁵³ the reduction is conceivably faster and becomes the dominant reaction path. It is reasonable to assume that the reduction of [PtCl₄(MeCN)₂] leads to [PtCl₂(MeCN)₂] and (Ph₃PCH₂CO₂Me)Cl followed by replacement of the weakly bonded acetonitrile ligand in nonaqueous media by the halide to generate the anionic complex, a process that is known from the chemistry of platinum(II)-based nitrile compounds.⁷⁰

- (61) Albanese, J. A.; Staley, D. L.; Rheingold, A. L.; Burmeister, J. L. Inorg. Chem. 1990, 29, 2209.
- (62) Uson, R.; Fornies, J.; Navarro, R.; Ortega, A. M. J. Organomet. Chem. 1987, 334, 389.
- (63) Facchin, G.; Bertani, R.; Calligaris, M.; Nardin, G.; Mari, M. J. Chem. Soc., Dalton Trans. 1987, 1381.
- (64) Soulivong, D.; Wieser, C.; Marcellin, M.; Matt, D.; Harriman, A.; Toupet, L. J. Chem. Soc., Dalton Trans. 1997, 2257.
 (65) Vicente, J.; Chicote, M. T.; MacBeath, C.; Fernández-Baeza, J.;
- (65) Vicente, J.; Chicote, M. T.; MacBeath, C.; Fernández-Baeza, J.; Bautista, D. Organometallics 1999, 18, 2677.
- (66) Märkl, G. Chem. Ber. 1961, 94, 2996.
- (67) Denney, D. B.; Ross, S. T. J. Org. Chem. 1962, 27, 998.
- (68) Speziale, A. J.; Ratts, K. W. J. Org. Chem. 1963, 28, 465.
- (69) Yamagata, K.; Takaki, M.; Yamazaki, M. Liebigs Ann. Chem. 1992, 1109.

Figure 2. PLATON drawing of $(Ph_3PCH_2CO_2Me)[PtCl_3(NCMe)]$ with atomic numbering scheme. Bond distances in the anion (Å): Pt-Cl(1) 2.329(5), Pt-Cl(2) 2.296(5), Pt-Cl(3) 2.260(6), Pt-N 1.951(18), C(1)-N1.14(3), C(1)-C(2) 1.46(3).

Table 1. Crystal Data and Structure Refinement for *trans*-[PtCl₂{NH=C(Me)ON=CMe₂}₂] and (Ph₃PCH₂CO₂Me)[PtCl₃(NCMe)]

empirical formula	$C_{10}H_{20}N_4Cl_2O_2Pt$	C23H23NCl3O2PPt
fw	494.29	677.82
<i>T</i> , °C	20(2)	20(2)
space group	<i>P</i> 4 ₂ / <i>n</i> (No. 86)	<i>Pna</i> 2 ₁ (No. 33)
a/Å	10.5050(10)	19.661(7)
b/Å	10.5050(10)	12.486(4)
c/Å	15.916(3)	10.149(3)
α/deg	90	90
β/deg	90	90
γ/deg	90	90
$V/Å^3$	1756.4(4)	2491.4(14)
Ζ	4	4
$D_{\rm c}$, Mg/m ³	1.869	1.807
μ (Mo K α), mm ⁻¹	8.296	6.33
R^a	0.0394	0.0379
$R_{ m w}{}^b$	0.0982	0.0410

 ${}^{a} \mathrm{R1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b} \mathrm{w} \mathrm{R2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}.$

Reduction of Other Platinum(IV) Complexes. Facile reduction of (imine)Pt(IV) compounds with the ylides $Ph_3P=CHCO_2R$ in nonaqueous media opens up a route to such (imine)-Pt(II) complexes which are unaccessible by direct synthesis from platinum(II) precursors. Moreover, despite the fact that this study

⁽⁷⁰⁾ Kukushkin, V. Yu.; Krol, I. A.; Starikova, Z. A.; Tkachuk, V. M. Koord. Khim. 1990, 16, 1406; Sov. Coord. Chem. (Engl. Transl.) 1990, 16, 746.

was mostly focused around the reduction of (imine)Pt(IV) species, the method is more general and it was also successfully applied in this work to some other systems (see Experimental Section) involving [PtCl₄L₂] ($L = Me_2S$, Me₂SO, pyridine, 2-propanone oxime), [PtCl₄(py)(Me₂S)], [PtCl₄(Me₂SO)(NHEt₂)], and the anionic complex (Ph₃PCH₂Ph)[PtCl₅(Me₂SO)]. It is worthwhile to mention that (i) dimethyl sulfoxide ligands remain intact upon the reduction in spite of the fact that deoxygention of the sulfinyl group with other phosphorus ylides,⁷¹ although more reactive than Ph₃P=CHCO₂Me, is known; (ii) despite the fact that coordinated 2-propanone oxime exhibits a significant OH acidity,⁷² the reaction between $[PtCl_4(Me_2C=NOH)_2]$ and Ph₃P=CHCO₂Me, which is a base, led to the reduction products rather than to those derived from neutralization; and (iii) chlorides which liberated upon the reduction in nonaqueous media can displace the weakly bound ligands⁷³⁻⁷⁸ (such as, for example, MeCN or Me₂SO) in $[PtCl_2L_2]$ to form the anionic complexes [PtCl₃L]⁻. The substitution of either acetonitrile or dimethyl sulfoxide in [PtCl₂L₂] by Cl⁻ in organic solvents has previously been described.70,80

Concluding Remarks. It is anticipated that reduction with ylides represents a very convenient method for generation of imine and other platinum(II) compounds in a nonaqueous phase. Indeed, the readily available ylides are highly soluble in the most common organic solvents, and this allows the performance of the syntheses in a homogeneous liquid phase. The reduction proceeds rapidly and under mild conditions with 1 equiv of the ylide to form selectively the platinum(II) products without further reduction of the platinum center which-in the case of reduction to the platinum black-would result in decomposition. Moreover, the products of oxidation of the ylides can be easily separated from the platinum products, and after workup the platinum(II) compounds were isolated in good yields. The only disadvantage we see so far is the case of anionic complexes, since the generated phosphonium cation can compete with other cations giving mixtures where the anionic platinum complex is linked to two different counterions.

The recommended procedure was proved to be efficient for the reduction of different platinum(IV) complexes containing N-donor ligands with sp³, sp², and sp configurations of the N atoms, and this implies that the method can be useful for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies which most often involve complexes with ligated N donors. Thus, the reduction gives the platinum(II) members in Pt(II)/Pt(IV) couples, and reoxidation of the Pt(II) complexes with, for instance, H₂O₂ should give the corresponding dihydroxo species, thus forming the homologous sets of complexes.

Experimental Section

Materials and Instrumentation. Solvents were obtained from commercial sources and used as received. Ph₃P=CHCO₂Me was purchased from Lancaster while other ylides were prepared in accord

- (73) Davies, J. A.; Hartley, F. R. Chem. Rev. 1981, 81, 79.
- (74) Hartley, F. R.; Davies, J. A. Rev. Inorg. Chem. 1982, 4, 27.
- (75) Davies, J. A. Adv. Inorg. Chem. Radiochem. 1981, 24, 115.
- (76) Dunbar, K. R. Comments Inorg. Chem. 1992, 13, 313.
- (77) Berezin, B. D. Sov. J. Coord. Chem. (Engl. Transl.) 1991, 17, 597.
- (78) Berezin, B. D. Russ. Chem. Rev. (Engl. Transl.) 1990, 60, 996.
- (79) Vicente, J.; Chicote, M. T.; Saura-Llamas, I. J. Chem. Educ. 1993, 70, 163.
- (80) Kukushkin, V. Yu.; Pankova, E. Yu., Simanova, S. A.; Sotman, S. S.; Fundamensky, V. S.; Zenkevich, I. G.; Poliakova, I. A. Zh. Obshch. Khim. 1990, 60, 587; J. Gen. Chem. (Engl. Transl.) 1990, 60, 513 and references therein.

with the published method.⁷⁹ Imino compounds^{5,6,11,54} (except [PtCl₄-{NH=C(Me)ON=CMeEt}₂], whose synthesis is given below) and other complexes *trans*-[PtCl₄L₂] (L = Me₂SO,^{80,81} Me₂S,⁸⁰ py,⁸² 2-propanone oxime,⁸³ MeCN⁸¹), [PtCl₄(py)(Me₂S)],^{84,85} [PtCl₄(Me₂SO)(NHEt₂)],^{80,81} and (Ph₃PCH₂Ph)[PtCl₅(Me₂SO)]^{80,81} were prepared in accord with the published methods. C, H, and N elemental analyses were carried out by the Microanalytical Service of the Instituto Superior Técnico. Melting points were determined on a Kofler table. For TLC, Merck UV 254 SiO₂ plates have been used. Positive-ion FAB mass spectra were obtained on a Trio 2000 instrument by bombarding 3-nitrobenzyl alcohol (NBA) matrixes of the samples with 8 keV (ca. 1.28×10^{15} J) Xe atoms. Mass calibration for data system acquisition was achieved using CsI. Infrared spectra (4000-400 cm⁻¹) were recorded on a BIO-RAD FTS 3000MX instrument in KBr pellets. ¹H, ¹³C{¹H}, ³¹P{¹H}, and ¹⁹⁵Pt NMR spectra were measured on a Varian UNITY 300 spectrometer at ambient temperature. ¹⁹⁵Pt chemical shifts are given relative to Na₂[PtCl₆] (by using aqueous K_2 [PtCl₄] = -1630 ppm as a standard), and half-height line widths are shown in parentheses.

[PtCl4{NH=C(Me)ON=CMeEt}2]. This platinum(IV) compound for the reduction experiments was prepared accordingly to the published method⁵ and used as the starting material for the reduction experiments (see below). Anal. Calcd for C₁₂H₂₄N₄Cl₄O₂Pt: C, 24.30; H, 4.08; N, 9.44. Found: C, 23.95; H, 4.28; N, 9.56. FAB+-MS, m/z: 615 [M + $Na]^+$, 593 $[M + H]^+$, 557 $[M - HCl]^+$, 522 $[M - 2Cl]^+$. IR spectrum (selected bands), cm⁻¹: 3273 m ν (N–H), 1655 sh and 1634 s ν (C= N), 1183 m ν(C-O). ¹H NMR in CDCl₃, δ: 1.12 (t, 7.8 Hz, major signal), 1.10 (t, 7.8 Hz, minor signal), 2.37 (quart., 7.8 Hz, major signal) and 2.49 (quart., 7.8 Hz, minor signal) (Et), 2.06 (s, major signal) and 2.03 (s, minor signal) (Me), 2.62 (s, major signal) and 2.61 (minor signal) (HN=C(Me)), 8.45 (br, NH). ¹³C{¹H} NMR in CDCl₃, δ: 18.0 (major signal) and 18.2 (minor signal) (HN=CMe), 10.2 (major signal), 10.1 (minor signal), 29.2 (major signal) and 24.3 (minor signal) (Et), 16.0 (major signal) and 19.3 (minor signal) (Me), 170.4 (major signal) and 170.2 (minor signal) (N=C), 174.4 (major signal) and 174.2 (minor signal) (HN=C). ¹⁹⁵Pt NMR in CDCl₃, δ: -160 (825 Hz). EtMeC= NOH exists as an equilibrium mixture of ca. 75% E and 25% Z isomer; therefore two sets of signals for the ligand in an approximate ratio of 4:1 were expected and observed.

Reduction of Pt(IV) Complexes to the Corresponding Pt(II) Complexes with Ph₃P=CHCO₂Me. The solid phosphorus ylide Ph₃P=CHCO₂Me (17 mg, 0.050 mmol) was added to a solution of the corresponding Pt(IV) complex (0.050 mmol) in CH₂Cl₂ (3 mL) whereupon the color of the solution changed from deep yellow to pale yellow within ca. 1 h. The reaction mixture was kept at room temperature for 3 h, then the solvent was evaporated and the residue subjected to chromatography on silica gel. Elution with CH2Cl2/Et2O (9:1, v/v) afforded the pure Pt(II) complex with yields ranges from 85% to 90% for neutral compounds and from 60% to 70% for anionic complexes; subsequent elution with CH2Cl2/MeOH gave an approximate 1:1 mixture of two phosphorus-containing compounds, from which the (Ph₃PCH₂CO₂Me)Cl was crystallized as a colorless solid using CH₂-Cl₂/Et₂O as solvent of crystallization and Ph₃PO was obtained from the mother liquor. Identification of (Ph₃PCH₂CO₂Me)Cl and Ph₃PO was done by comparison of their ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR and IR spectra with those of commercial samples. Reduction of the anionic complexes followed the same procedure and occurred without color change. Completeness of the reaction was checked by TLC, and the product was isolated by chromatography on silica gel, eluent CH2Cl2/ acetone (3:1, v/v).

 $\label{eq:loss} \begin{array}{l} \mbox{[PtCl}_2 \{ \mbox{NH=C(Me)ON=CMe}_2 \}_2 \mbox{].} \mbox{ Anal. Calcd for $C_{10}H_{20}N_4Cl}_2O_2- \mbox{Pt: C, 24.30; H, 4.08; N, 11.34. Found: C, 24.35; H, 4.00; N, 11.19. \end{array}$

- (81) Kukushkin, V. Yu.; Kiseleva, N. P. Koord. Khim. 1988, 14, 693.
- (82) Jørgensen, S. M. J. Prakt. Chem. 1886, 33, 489.
- (83) Kukushkin, V. Yu.; Belsky, V. K.; Aleksandrova, E. A.; Konovalov,
- V. E.; Kirakosyan, G. A. *Inorg. Chem.* **1992**, *31*, 3836.
- (84) Kukushkin, V. Yu.; Belsky, V. K.; Aleksandrova, E. A.; Pankova, E. Yu.; Konovalov, V. E.; Yakovlev, V. N.; Moiseev, A. I. Zh. Obshch. *Khim.* **1991**, *61*, 318; *J. Gen. Chem. (Engl. Transl.)* **1991**, *61*, 284.
- (85) Kukushkin, V. Yu.; Pankova, E. Yu.; Aleksandrova, E. A.; Poliakova, I. A. Zh. Neorg. Khim. **1990**, 35, 1778; Russ. J. Inorg. Chem. (Engl. Transl.) **1990**, 35, 1013.

⁽⁷¹⁾ Amos, R. A. J. Org. Chem. 1985, 50, 1311.

⁽⁷²⁾ Kukushkin, V. Yu.; Tudela, D.; Pombeiro, A. J. L. Coord. Chem. Rev. 1996, 156, 333.

FAB⁺-MS, m/z: 517 [M + Na]⁺, 494 [M]⁺, 458 [M - HCl]⁺, 421 [M - HON=CMe₂]⁺, 385 [M - HON=CMe₂ - HCl]⁺, 348 [M - 2HON=CMe₂ - HCl]⁺. IR spectrum (selected bands), cm⁻¹: 3222 m ν (N-H), 1666 and 1646 s ν (C=N), 1173 m ν (C-O). ¹H NMR in CDCl₃, δ : 2.02 and 2.03 (two s, 3H each, (=CMe₂), 2.64 (s, 3H, N= CMe), 7.92 (br, 1H, NH). ¹³C{¹H} NMR in CDCl₃, δ : 17.1 and 21.8 (=CMe₂), 19.4 (N=CMe), 164.1 (N=CMe₂), 170.5 (HN=C). ¹⁹⁵Pt NMR in CDCl₃, δ : -2040 (770 Hz).

[PtCl₂{NH=C(Me)ON=CMeEt}₂]. Anal. Calcd for C₁₂H₂₄N₄Cl₂O₂-Pt: C, 27.59; H, 4.63; N, 10.73. Found: C, 28.01; H, 4.69; N, 10.70. FAB⁺-MS, *m*/*z*: 522 [M]⁺, 486 [M - HCl]⁺, 450 [M - HCl - Cl]⁺. IR spectrum (selected bands), cm⁻¹: 3210 m ν (N-H), 1659 and 1643 s ν (C=N), 1177 m ν (C-O). ¹H NMR in CDCl₃, δ : 1.13 (t, 7.5 Hz, major signal), 1.09 (t, 7.5 Hz, minor signal), 2.34 (quart., 7.8 Hz, major signal) and 2.42 (quart., 7.8 Hz, minor signal) (Et), 1.99 (s, major signal) and 2.00 (s, minor signal) (Me), 2.57 (s, major signal) and 2.56 (minor signal) (HN=C(Me)), 7.91 (br, NH). ${}^{13}C{}^{1}H$ NMR in CDCl₃, δ : 19.3 (major signal) and 19.5 (minor signal) (HN=CMe), 10.3 (major signal), 9.9 (minor signal), 29.2 (major signal) and 24.0 (minor signal) (Et), 15.6 (major signal) and 19.4 (minor signal) (Me), 168.7 (major signal) and 169.5 (minor signal) (N=C), 170.9 (HN=C). ¹⁹⁵Pt NMR in CDCl₃, δ : -2088 (800 Hz). EtMeC=NOH exists as an equilibrium mixture of ca. 75% E and 25% Z isomer; therefore two sets of signals for the ligand in an approximate ratio of 4:1 were expected and observed.

[PtCl₂{NH=C(Me)ON=C(CH₂)₄}₂]. Anal. Calcd for C₁₄H₂₄N₄-Cl₂O₂Pt: C, 30.78; H, 4.43; N, 10.25. Found: C, 30.96; H, 4.82; N, 10.05. FAB⁺-MS, *m/z*: 546 [M]⁺, 510 [M - Cl]⁺. IR spectrum (selected bands), cm⁻¹: 3220 m ν (N-H), 1651 s ν (C=N), 1170 m ν (C-O). ¹H NMR in CDCl₃, δ : 1.82 (m, 4H) and 2.47 (m, 4H) (=C(CH₂)₄), 2.54 (s, 3H, N=CMe), 7.83 (br, 1H, NH). ¹³C{¹H} NMR in CDCl₃, δ : 19.4 (N=CMe), 24.4, 24.9, 29.6 and 31.4 ((CH₂)₄), 176.6 (N=*C*(CH₂)₄), 171.0 (HN=C). ¹⁹⁵Pt NMR in CDCl₃, δ : -2088 (840 Hz).

[PtCl₂{NH=C(Me)ON=C(CH₂)₅}₂]. Anal. Calcd for C₁₆H₂₈N₄-Cl₂O₂Pt: C, 33.46; H, 4.91; N, 9.75. Found: C, 33.42; H, 5.05; N, 9.79. FAB⁺-MS, *m/z*: 597 [M + Na]⁺, 575 [M + H]⁺, 539 [M − Cl]⁺, 539 [M − Cl − HCl]⁺. IR spectrum (selected bands), cm⁻¹: 3209 m ν (N−H), 1663 and 1643 s ν (C=N), 1180 m ν (C−O). ¹H NMR in CDCl₃, δ : 1.67 (m, 4H), 1.77 (m, 2H), 2.34 (t, 6.6 Hz, 2H) and 2.54 (t, 6.6 Hz, 2H) (=C(CH₂)₅), 2.59 (s, 3H, N=C*Me*), 7.92 (br, 1H, NH). ¹³C{¹H} NMR in CDCl₃, δ : 19.6 (N=*CMe*), 25.1, 25.7, 26.7, 27.1 and 31.9 ((CH₂)₅), 169.8 (N=*C*(CH₂)₅ and HN=C). ¹⁹⁵Pt NMR in CDCl₃, δ : −2091 (680 Hz).

[PtCl₂{NH=C(Me)ON=C(Me)C(Me)=NOH}₂]. Anal. Calcd for C₁₂H₂₂N₆Cl₂O₄Pt: C, 24.84; H, 3.82; N, 12.22. Found: C, 25.12; H, 4.10; N, 12.13. FAB⁺-MS, m/z: 603 [M + Na]⁺, 580 [M]⁺, 545 [M − Cl]⁺. IR spectrum (selected bands), cm⁻¹: 3241 m ν (N−H), 1670 s ν (C=N), 1189 m ν (C−O). ¹H NMR in acetone- d_6 , δ : 2.09 and 2.18 (two s, 3H each, (=C(Me)C(Me)), 2.67 (s, 3H, N=CMe), 8.50 (br, 1H, NH). ¹³C{¹H} NMR in acetone- d_6 , δ : 9.7 and 11.6 (=C(Me)C-(Me)), 19.6 (N=CMe), 153.0 and 163.7 (two ON=C), 170.7 (HN=C). ¹⁹⁵Pt NMR in acetone- d_6 , δ : −2055 (400 Hz).

[PtCl₂{NH=C(Me)ONMe₂}₂]. Anal. Calcd for C₈H₂₀N₄Cl₂O₂Pt: C, 20.43; H, 4.29; N, 11.91. Found: C, 20.58; H, 4.18; N, 11.77. FAB⁺-MS, m/z: 469 [M]⁺, 433 [M - Cl]⁺, 398 [M - 2Cl]⁺. IR spectrum in KBr, selected bands, cm ⁻¹: 3247 m ν (N-H), 1665 s ν (C=N). ¹H NMR in CDCl₃, δ : 2.48 (s, 3H, =CMe), 2.73 (s, 6H, NMe₂) 8.05 (s, br, 1H, NH). ¹³C{¹H} NMR in CDCl₃, δ : 18.8 (Me), 47.5 (NMe₂), 170.7 (C=N). ¹⁹⁵Pt NMR in CDCl₃, δ : -2047 (800 Hz).

[PtCl₂{NH=C(Me)ONEt₂}]. Anal. Calcd for C₁₂H₂₈N₄Cl₂O₂Pt: C, 27.38; H, 5.35; N, 10.64. Found: C, 27.57; H, 5.28; N, 10.55. FAB⁺-MS, *m*/*z*: 526 [M]⁺, 454 [M – 2HCl]⁺. IR spectrum in KBr, selected bands, cm ⁻¹: 3256 m–w ν (N–H), 1665 s ν (C=N). ¹H NMR in CDCl₃, δ : 2.51 (s, 3H, =CMe), 1.09 (t, 7.2 Hz, 6H), 2.90 (quart., 6.6 Hz, 2H) and 2.91 (quart., 7.2 Hz, 2H) (NEt₂) 8.15 (s, br, 1H, NH). ¹³C{¹H} NMR in CDCl₃, δ : 18.4 (Me), 11.6 and 52.7 (NEt₂), 172.3 (C=N). ¹⁹⁵Pt NMR in CDCl₃, δ : –2028 (700 Hz).

[PtCl₂{NH=C(Me)ON(CH₂Ph)₂}₂]. Anal. Calcd for $C_{32}H_{36}N_4Cl_2O_2$ -Pt: C, 49.62; H, 4.68; N, 7.23. Found: C, 49.80; H, 4.57; N, 7.14. FAB⁺-MS, *m*/*z*: 797 [M + Na]⁺, 774 [M]⁺, 738 [M - HCl]⁺. IR spectrum (selected bands), cm⁻¹: 3271 m ν (N-H), 1655 s ν (C=N), 1157 m ν (C–O). ¹H NMR in CDCl₃, δ : 2.30 (s, 3H, N=CMe), 3.98 and 4.05 (two d, 13.2 Hz, 2H each, (CH₂Ph), 7.29 (m, 4H) and 7.36 (m, 6H) (CH₂Ph), 8.14 (br, 1H, NH). ¹³C{¹H} NMR in CDCl₃, δ : 18.4 (N=CMe), 61.5 (CH₂Ph), 128.3, 128.8, 129.6 and 133.9 (CH₂Ph), 171.1 (HN=C). ¹⁹⁵Pt NMR in CDCl₃, δ : –2033 (580 Hz).

[**Ph₃PCH₂Ph][PtCl₃{NH=C(Et)ON=CMe₂}].** Anal. Calcd for C₃₁H₃₄N₂Cl₃OPPt: C, 47.55; H, 4.38; N, 3.58. Found: C, 46.38; H, 4.12; N, 3.41. FAB⁻-MS, *m/z*: 429 [M_{anion}]⁺. IR spectrum in KBr, selected bands, cm⁻¹: 3308 m–w ν (N–H), 3056 m–w and 2927 m ν (C–H), 1643 s ν (C=N), 1110 s–m ν (P–C). ¹H NMR in CDCl₃, δ : 7.7 (m, 15H, Ph), 7.1 (m, 5H, CH₂*Ph*), 5.17 (d, *J*_{PH} 14.0 Hz, 2H, *CH*₂-Ph), 3.11 (quart, *J*_{HH} 7.6 Hz, 2H, Et), 1.24 (t, *J*_{HH} 7.6 Hz, 3H, Et), 1.94 (s, 6H, =CMe₂). ¹³C{¹H} NMR in CDCl₃, δ : 30.7 (¹*J*_{PC} 51.1 Hz, *CH*₂-Ph), 117.5 (¹*J*_{PC} 84.6 Hz, C_{ipso} from Ph), 127.1 (²*J*_{PC} 8.4 Hz, C_{ipso} from CH₂Ph), 130.2 (*J*_{PC} 10.7 Hz, CH from Ph), 131.5 (*J*_{PC} 2.9 Hz, CH_m from Ph), 130.2 (*J*_{PC} 10.1 Hz, CH from Ph), 134.9 (*J*_{PC} 2.7 Hz, CH_p from Ph), 163.4 (C=N from ON=CMe₂), 172.6 (C=N from HN= C(Et)), 26.7 (CH₂ from Et), 10.1 (CH₃ from Et), 16.9 and 21.8 (=CMe₂). ³¹P{¹H} in CDCl₃, δ : 23.6. ¹⁹⁵Pt NMR in CDCl₃, δ : –1811 (660 Hz).

[Ph₃PCH₂Ph][PtCl₃{NH=C(Et)ON=C(C₄H₈)}]. Anal. Calcd for C₃₃H₃₆N₂Cl₃OPPt: C, 48.99; H, 4.48; N, 3.46. Found: C, 48,43; H, 4.51; N, 3.36. FAB⁻-MS, *m/z*: 454 [M_{anion} – H]⁺. IR spectrum in KBr, selected bands, cm⁻¹: 3311 m-w ν (N-H), 3057 m-w and 2927 m ν (C-H), 1646 s ν (C=N), 1110 s-m ν (P-C). ¹H NMR in CDCl₃, δ : 7.7 (m, 15H, Ph), 7.1 (m, 5H, CH₂Ph), 5.21 (d, J_{PH} 14.0 Hz, 2H, CH₂-Ph), 3.11 (quart, J_{HH} 7.6 Hz, 2H, Et), 1.25 (t, J_{HH} 7.6 Hz, 3H, Et), 2.42 (m, 4H, α -CH₂ from =C(C₄H₈)), 1.78 (m, 4H, β -CH₂ from =C(C₄H₈)). $^{13}C{^{1}H}$ NMR in CDCl₃, δ : 30.7 ($^{1}J_{PC}$ 45.0 Hz, CH_2Ph), 117.5 ($^{1}J_{PC}$ 84.6 Hz, C_{ipso} from Ph), 127.1 (²J_{PC} 8.4 Hz, C_{ipso} from CH₂Ph), 128.3 (J_{PC} 3.7 Hz, CH_p from Ph), 128.7 (J_{PC} 2.9 Hz, CH_m from Ph), 130.2 (J_{PC} 12.7 Hz, CH from Ph), 131.5 (J_{PC} 5.3 Hz, CH_o from CH₂Ph), 134.3 (J_{PC} 10.1 Hz, CH from Ph), 134.9 (J_{PC} 2.7 Hz, CH_p from Ph), 174.9 (C=N from ON=C(C₄H₈)₂), 172.8 (C=N from HN=C(Et)), 26.6 (CH₂ from Et), 10.2 (CH₃ from Et), 31.2 and 29.2 (α-CH₂ from =C(C₄H₈)), 24.9 and 24.4 (β -CH₂ from =C(C₄H₈)). ³¹P{¹H} in CDCl₃, δ : 23.6. ^{195}Pt NMR in CDCl₃, δ : –1808 (625 Hz).

 $\label{eq:charge} \ensuremath{\left[Ph_3PCH_2Ph \right]} \ensuremath{\left[PtCl_3 \{ NH = C(Et)ON = C(C_5H_{10}) \}]. \ensuremath{} \ensuremath{\mathsf{Anal. Calcd}} \ensuremath{\mathsf{for}} \ensuremath{\mathsf{fo$ C₃₄H₃₈N₂Cl₃OPPt: C, 49.61; H, 4.65; N, 3.40. Found: C, 49.06; H, 4.64; N, 3.30. FAB⁺-MS, *m/z*: 468 [M_{anion} – H]⁺. IR spectrum in KBr, selected bands, cm⁻¹: 3307 m-w v(N-H), 3057 m-w, 2932 and 2859 m-w v(C-H), 1639 s v(C=N), 1109 s-m v(P-C). ¹H NMR in CDCl₃, δ: 7.7 (m, 15H, Ph), 7.1 (m, 5H, CH₂Ph), 5.15 (d, J_{PH} 14.3 Hz, 2H, CH₂Ph), 3.10 (quart, J_{HH} 8.3 Hz, 2H, Et), 1.24 (t, J_{HH} 8.3 Hz, 3H, Et), 2.46 (t, J_{HH} 5 Hz, 2H, CH₂ from =C(C₅H₁₀)), 2.23 (t, J_{HH} 5.6 Hz, 2H, CH₂ from =C(C₅H₁₀)) 1.64 (m, 6H, CH₂ from =C(C₅H₁₀)). ${}^{13}C{}^{1}H{}$ NMR in CDCl₃, δ : 30.7 (¹*J*_{PC} 53 Hz, *CH*₂Ph), 117.5 (¹*J*_{PC} 86.7 Hz, C_{ipso} from Ph), 127.0 (²J_{PC} 8.4 Hz, C_{ipso} from CH₂Ph), 128.3 (J_{PC} 3.7 Hz, CH_p from Ph), 128.7 (J_{PC} 2.8 Hz, CH_m from Ph), 130.2 (J_{PC} 12.8 Hz, CH from Ph), 131.5 (J_{PC} 5.4 Hz, CH_o from CH₂Ph), 134.3 (J_{PC} 9.2 Hz, CH from Ph), 134.9 (J_{PC} 2.8 Hz, CH_p from Ph), 168.0 (C=N from ON=CMe₂), 172.8 (C=N from HN=CEt), 10.1 (CH₃ from Et), 26.8 (CH₂ from Et), 31.9 and 26.7 (α -CH₂ from =C(C₅H₁₀)), 26.6, 25.6 and 25.2 (β - and γ -CH₂ from =C(C₅H₁₀)). ³¹P{¹H} NMR in CDCl₃, δ: 23.6. ¹⁹⁵Pt NMR in CDCl₃, δ: -1807 (700 Hz).

[PtCl₂{NH=C(Me)ON(Me)CHR}₂] (R = Ph, C₆H₄Me). Isolated yield is 99% (R = Ph) and 87% ($R = C_6H_4Me$). ¹H, ¹³C{¹H}, and ¹⁹⁵Pt NMR are identical to those already described.¹²

Reduction of Other Platinum(IV) Complexes. The reduction proceeds similarly to the reduction of imine complexes, and NMR yields are almost quantitative. All platinum(II) products from the reaction are known, and their formation was confirmed by NMR spectroscopy (data obtained are given below) and when possible by comparison of other characteristics with those of known compounds.

trans-[PtCl₂(HON=CMe₂)₂]:⁸³ from the reduction of *trans*-[PtCl₄-(HON=CMe₂)₂]. ¹H NMR in CDCl₃, δ : 2.15 and 2.61 (two s, 3H each, J_{PtH} not observed, N=CMe₂), 9.80 (1H, OH). ¹³C{¹H} NMR in CDCl₃, δ : 19.2 and 26.8 (N=CMe₂), 164.0 (N=C). ¹⁹⁵Pt NMR in CDCl₃, δ : -1998 (480 Hz).

trans-[PtCl₂py₂]:⁸⁶ from the reduction of *trans*-[PtCl₄py₂]. ¹H NMR in CDCl₃, δ : 7.13 (t, 7.5 Hz, 2H), 7.61 ("t", 7.8 Hz, 1H), 8.62 (m, J_{PtH} 31 Hz, 2H). ¹⁹⁵Pt in CDCl₃, δ : -1944 (600 Hz). The solubility of the complex in CDCl₃ is insufficient to measure the ¹³C{¹H} NMR spectrum even at high acquisition time.

trans-[PtCl₂(py)(Me₂S)]:⁸⁷ from the reduction of *trans*-[PtCl₄(py)-(Me₂S)]. ¹H NMR in CDCl₃, δ : 2.44 (*J*_{PtH} 40.5 Hz, Me₂S), 7.38 (m, 2H), 7.87 (m, 1H), 8.83 (m, 2H) (Py). ¹³C{¹H} NMR in CDCl₃, δ : 22.9 (*J*_{PtC} 11.5 Hz), 125.4 (*J*_{PtC} 34.7 Hz), 138.8, 152.2 (Py). ¹⁹⁵Pt NMR in CDCl₃, δ : -2821 (500 Hz).

trans-[PtCl₂(Me₂S)₂]:⁸⁸ from the reduction of *trans*-[PtCl₄(Me₂S)₂]. ¹H NMR in CDCl₃, δ : 2.48 (J_{PtH} 41.4 Hz). ¹³C{¹H} NMR in CDCl₃, δ : 22.3 (J_{PtC} 11.9 Hz). ¹⁹⁵Pt NMR in CDCl₃, δ : -3409.

trans-[PtCl₂(Me₂SO)(NHEt₂)]:^{80,81} from the reduction of *trans*-[PtCl₄(Me₂SO)(NHEt₂)]. ¹H NMR in CDCl₃, δ : 1.48 (t, 7.2 Hz, 6H), 2.68 (m, 2H) and 3.18 (m, 2H) (Et), 3.37 (s + d, J_{PtH} 19 Hz, 6H, DMSO), 3.88 (br, 1H, NH). ¹³C{¹H} NMR in CDCl₃, δ : 14.7 and 48.8 (Et), 44.0 (J_{PtC} 55 Hz, DMSO). ¹⁹⁵Pt NMR in CDCl₃, δ : -3139 (480 Hz).

[PtCl₃(Me₂SO)]^{−,80} The complex is formed upon reduction of either (Ph₃PCH₂Ph)[PtCl₅(Me₂SO)] or [PtCl₄(Me₂SO)₂]. In the latter case liberation of a dimethyl sulfoxide molecule is observed along with the formation of (Ph₃PCH₂CO₂Me)[PtCl₃(Me₂S=O)]. For anion: ¹H NMR in CDCl₃, δ : 3.39 (s + d, *J*_{PtH} 20.7 Hz); ¹³C{¹H} NMR in CDCl₃, δ : 44.1 (*J*_{PtC} 62.6 Hz); ¹⁹⁵Pt NMR in CDCl₃, δ : −3000. For free DMSO: ¹H NMR in CDCl₃, δ : 2.64 (s); ¹³C{¹H} NMR in CDCl₃, δ : 40.9.

The reduction of [PtCl₄(MeCN)₂] with 1 equiv of Ph₃P=CHCO₂-Me in MeCN results in release of the solid [PtCl₂(MeCN)₂] (8%). Subsequent removal of the solvent from the filtrate and recrystallization of a precipitate formed from hot EtOH gives analytically pure [Ph3-PCH2CO2Me][PtCl3(MeCN)] (37%). [Ph3PCH2CO2Me][PtCl3(MeCN)]. Anal. Calcd for C₂₃H₂₃NCl₃O₂PPt: C, 40.75; H, 3.42; N, 2.07. Found: C, 40.98; H, 3.52; N, 1.81. FAB--MS, m/z: 342 [Manion]-, 299 [Manion - MeCN]⁻, 266 [Manion - MeCN - Cl]⁻; FAB⁺-MS, *m/z*: 335 $[M_{cation}]^+$. IR spectrum (selected bands), cm⁻¹: 2909 and 2874 m ν (C-H), 1728 vs ν (C=O), 1437 vs ν (C=C), 1107 s ν (P-C); the band due to ν (C=N) was not observed. ¹H NMR in CDCl₃, δ : 2.18 (s, 3H, MeCN), 3.42 (s, 3H, OMe), 4.92 (d, J_{PH} 13.8 Hz, 2H, PCH₂), 7.50-7.64 (m, 15H, Ph). ¹³C{¹H} NMR in CDCl₃, δ: 4.0 (MeCN), 31.6 (J_{PC} 58 Hz, PCH₂), 53.4 (OMe), 112.4 (MeCN), 117.4 (J_{PC} 89 Hz, C_{ipso}), 130.1 (JPC 12.8 Hz, CH), 133.6 (JPC 10.9 Hz, CH), 135.1 (JPC 3.6 Hz, CH_{para}) (Ph), 164.7 (C=O). ³¹P{¹H} NMR in CDCl₃, δ: 20.8. ¹⁹⁵Pt NMR in CDCl₃, δ: -2022 (355 Hz).

X-ray Structure Determination of [PtCl₂{NH=C(Me)ON= CMe₂}₂]. Colorless plates of the complex were grown from dichloromethane solution upon addition of diethyl ether. Diffraction data were collected on an Enraf-Nonius CAD-4 diffractometer. Cell parameters were obtained from 24 centered reflections with \Theta between 11° and 13°. Range of *hkl***: h = 0-12, k = 0-11, l = 0-19. Standard reflections were measured every 100 min and showed practically no change with time (±1%). Diffractometer data were processed by the program PROFIT⁸⁹ with profile analysis of reflections. The structures were solved by means of Fourier synthesis based upon the Pt-atom**

(88) Cox, E. G.; Saenger, H.; Wardlaw, W. J. Chem. Soc. 1934, 182.

coordinates obtained from the Patterson synthesis using the SHELXTL package.⁹⁰ After that, all reflections with $I < 2\sigma(I)$ were excluded from calculations. Refinement was done by full-matrix least squares based on F^2 using the SHELX-97 package.⁹¹ All non-H atoms were treated anisotropically. H atoms were located in a difference Fourier map and refined isotropically. An extinction correction has been applied. Lorentz, polarization, and absorption corrections were made.⁹² Scattering factors are from *International Tables for X-ray Crystallography*.⁹³ Crystal data are given in Table 1.

X-ray Structure Determination of (Ph₃PCH₂CO₂Me)[PtCl₃-(MeCN)]. Yellow plates were obtained on slow evaporation of ethanol solution. The cell dimensions and symmetry of crystals were defined in the Weissenberg camera. Diffraction data were collected on a Syntex P21 diffractometer using graphite-monochromated Mo Ka radiation $(\lambda = 0.71069 \text{ Å}), \omega$ -scan method with variable scan rate $(2-29.3^{\circ})$ min). Weak reflections were neglected. The intensity of one standard reflection was measured every 50 reflections and showed practically no change with time ($\pm 1\%$). After Lorentz and polarization correction, the structure was solved by means of the Patterson technique (heavy atom method) and following Fourier synthesis and was refined by a full-matrix (anisotropic for all non-hydrogen atoms and isotropic for hydrogen atoms) least-squares method based on F. No extinction correction was made. Before anisotropic refinement an absorption correction was made using the DIFABS94 program. The contribution of hydrogen atoms was included at fixed calculated positions, based on geometrical requirement. All experimental data processing, solving and refinement were performed using CSD⁹² program.

Acknowledgment. G.W. is grateful to the PRAXIS XXI program for a fellowship (BPD11779/97). V.Yu.K. is very much obliged to the PRAXIS XXI program (Grant BCC16428/98) for financial support of this study. J.V. and V.Yu.K. are indebted to INTAS for Grant 97-0166. N.A.B. thanks the Soros Foundation for a fellowship. A.J.L.P. thanks the FCT (Foundation for Science and Tecnology) and the PRAXIS XXI program for financial support. We thank Dr. M. Galanski for valuable comments on the manuscript, Profs. V. K. Belsky and V. S. Fundamensky for the X-ray analyses, and Dr. Z. A. Khromenkova for providing us some platinum(IV) complexes for the reduction studies.

Supporting Information Available: X-ray crystallographic files in CIF format for the complexes *trans*-[PtCl₂{NH=C(Me)ON=CMe₂}] and (Ph₃PCH₂CO₂Me)[PtCl₃(NCMe)]. This material is available free of charge via the Internet at http://pubs.acs.org.

IC000769C

- (89) Strel'tsov, V. A.; Zavodnik, V. E. Kristallografia 1989, 34, 1369.
- (90) Sheldrick, G. M. SHELXTL User Manual, rev. 3; Nicolet XRD
- Corp.: 1981.(91) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
- (92) Axelrud, L. G.; Grin, Yu. N.; Zavalii, P. Yu.; Pecharsky, V. K.; Fundamensky, V. S. CSD-universal program package for single crystal and/or powder structure data treatment. Collected Abstracts, XII-th European Crystallographic Meeting, Moscow, August 1989; USSR Academy of Sciences, Moscow, 1989; p 155.
- (93) International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol. IV.
- (94) Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.

⁽⁸⁶⁾ Chernyaev, I. I., Ed. Synthesis of Complex Compounds of Platinum Group Metals [in Russian]; Nauka Publishers: Moscow, 1964.

⁽⁸⁷⁾ Kukushkin, V. Yu.; Pankova, E. Yu.; Afanas'ev, E. A. Zh. Neorg. Khim. 1989, 34, 1342; Russ. J. Inorg. Chem. (Engl. Transl.) 1989, 34, 757.