Synthesis and Structural Characterization of a New Series of Vanadoselenites, $[Se_xV_{4-x}O_{12-x}]^{(4-x)-}$ (x = 1, 2)

H. Nakano,^{1a} T. Ozeki,^{*,1b} and A. Yagasaki^{*,1a}

Department of Chemistry, Kwansei Gakuin University, Uegahara, Nishinomiya 662-8501, Japan, and Department of Chemistry and Materials Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

Received September 15, 2000

Two new vanadoselenites, $[SeV_3O_{11}]^{3-}$ and $[Se_2V_2O_{10}]^{2-}$, were synthesized by reacting SeO₂ with VO₃⁻. Singlecrystal X-ray structural analyses of $[(n-C_4H_9)_4N]_3[SeV_3O_{11}]\cdot 0.5H_2O$ [orthorhombic, space group $P2_12_12$, a = 22.328(5) Å, b = 44.099(9) Å, c = 12.287(3) Å, Z = 8] and $[\{(C_6H_5)_3P\}_2N]_2[Se_2V_2O_{10}]$ [monoclinic, space group $P2_1/n$, a = 12.2931(3) Å, b = 13.5101(3) Å, c = 20.9793(5) Å, $\beta = 106.307(1)^\circ$, Z = 2] revealed that both anions are composed of Se_xV_{4-x}O₄ rings. The ⁵¹V, ⁷⁷Se, and ¹⁷O NMR spectra established that both [SeV_3O_{11}]^{3-} and [Se₂V₂O₁₀]²⁻ anions maintain this ring structure in solution.

Introduction

The chemistry of polyvanadates has developed dramatically recently. Scores of new species have been reported during the past decade.^{2–4} Many of these newer polyvanadates are of mixed valence. The examples of fully oxidized polyvanadate, on the other hand, are still relatively limited. This is especially true for heteropolyvanadates. Structurally characterized heteropolyvanadates in which all vanadium atoms are in the V oxidation state remain a rarity. Only a handful of such examples have been reported to date.^{5–13} This apparent lack of information and interest does not necessarily mean that the chemistry of fully oxidized polyvanadates itself is limited and uninteresting. Recent results from our and other laboratories suggest just the opposite.^{14–20}

- (1) (a) Kwansei Gakuin University. (b) Tokyo Institute of Technology. (2) Müller, A.; Reuter, H.; Dillinger, S. Angew. Chem., Int. Ed. Engl.
- (a) Müller, A.; Peters, F.; Pope, M. T.; Gatteschi, D. Chem. Rev. 1998,
- 98, 239–271.
- (4) Zhang, Y.; Haushalter, R. C.; Zubieta, J. *Inorg. Chim. Acta* 1998, 277, 263–267 and the references cited therein.
- (5) Kobayashi, A.; Sasaki, Y. Chem. Lett. 1975, 1123–1124.
- (6) Durif, A.; Averbuch-Pouchot, M. T. Acta Crystallogr., Sect. B 1969, B35, 1441–1444.
- (7) Kato, R.; Kobayashi, A.; Sasaki, Y. J. Am. Chem. Soc. 1980, 102, 6571–6572.
- (8) Kato, R.; Kobayashi, A.; Sasaki, Y. Inorg. Chem. 1982, 21, 240– 246.
- (9) Michiue, Y.; Ichida, H.; Sasaki, Y. Acta Crystallogr., Sect. C 1987, C43, 175–177.
- (10) Ozeki, T.; Ichida, H.; Sasaki, Y. Acta Crystallogr., Sect. C 1987, C43, 1662–1665.
- (11) Ichida, H.; Nagai, K.; Sasaki, Y.; Pope, M. T. J. Am. Chem. Soc. 1989, 111, 586–591.
- (12) Huang, G.-Q.; Zhang, S.-W.; Wei, Y.-G.; Shao, M.-C. Polyhedron **1993**, *12*, 1483–1485.
- (13) Chen, Q.; Zubieta, J. Angew. Chem., Int. Ed. Engl. 1993, 32, 261–263.
- (14) Kawanami, N.; Ozeki, T.; Yagasaki, A. J. Am. Chem. Soc. 2000, 122, 1239–1240.
- (15) Abe, M.; Isobe, K.; Kida, K.; Yagasaki, A. Inorg. Chem. 1996, 35, 5114–5115.
- (16) Hou, D.; Hagen, K. S.; Hill, C. L. J. Chem. Soc., Chem. Commun. 1993, 426–428.
- (17) Hou, D.; Hagen, K. S.; Hill, C. L. J. Am. Chem. Soc. 1992, 114, 5864– 5866.

As a part of our ongoing research effort to synthesize fully oxidized polyoxometalates and elucidate their behavior in solution, we have recently isolated two new vanadoselenites, $[SeV_3O_{11}]^{3-}$ and $[Se_2V_2O_{10}]^{2-}$. Here we report the syntheses and crystal structure analyses of these new polyvanadates together with their characterization in solution. A vanadoselenite that has an Se_2V_2 stoichiometry was reported about a century ago,²¹ but that with a SeV_3 composition has never been reported before.

Experimental Section

Reagents, Solvents, and General Procedures. The following were purchased from commercial sources and used without further purification: acetone, V₂O₅, SeO₂, and P₂O₅ (Kishida), 10% aqueous solution of $[(n-C_4H_9)_4N]OH$ (Tokyo Kasei), $[\{(C_6H_5)_3P\}_2N]Cl$ (Aldrich), $[(C_6H_5)_4P]Br$ (Wako), D₂O (ISOTEC), and 10% ¹⁷O enriched water (Cambridge Isotope Laboratories). Deuterated dimethyl sulfoxide (DMSO-*d*₆, ISOTEC) was dried over 4 Å molecular sieves. Acetonitrile (Kishida) was routinely dried over 3 Å molecular sieves except that used for ¹⁷O enrichment, ¹⁷O NMR measurements, and preparation of single crystals of $[(n-C_4H_9)_4N]_3[SeV_3O_{11}]$ •0.5H₂O for the structure analysis. Acetonitrile used for these experiments was distilled from P₂O₅ under N₂ and stored over 3 Å molecular sieves. Diethyl ether and toluene (Kishida) were distilled from sodium benzophenone ketyl under N₂ and stored over 4 Å molecular sieves.

Analytical Procedures. Elemental analyses were performed by Toray Research Center, Shiga, Japan. Infrared spectra were recorded from mineral oil (Nujol) mulls between KBr plates on a Hitachi I-3000 spectrometer. Absorptions are described as follows: very strong (vs), strong (s), medium (m), weak (w), and shoulder (sh). NMR spectra were recorded on a Varian Unity-Plus spectrometer. ⁵¹V NMR spectra were recorded at 78.855 MHz and referenced externally against VOCl₃. ⁷⁷Se NMR spectra were recorded at 57.269 MHz and referenced externally against SeO₂ saturated in D₂O.²² ¹⁷O NMR spectra were recorded at 40.685 MHz and referenced externally to D₂O.

- (18) Hayashi, Y.; Ozawa, Y.; Isobe, K. Inorg. Chem. 1991, 30, 1025–1033.
- (19) Klemperer, W. G.; Marquart, T. A.; Yaghi, O. M. Mater. Chem. Phys. 1991, 29, 97–104.
- (20) Day, V. W.; Klemperer, W. G.; Yaghi, O. M. J. Am. Chem. Soc. 1989, 111, 4518-4519.
 (21) D. H. W. H. S. C. D. D. L. Chem. Co. 1997, 20, 1205, 1210.
- (21) Prandtl, W.; Lustig, F. Ber. Dtsch. Chem. Ges. 1905, 38, 1305-1310.

Preparation of $[(n-C_4H_9)_4N]VO_3$. A slightly modified literature procedure was employed to prepare this compound.²³ To a 10% aqueous solution of $[(n-C_4H_9)_4N]OH$ (56 mL, 22 mmol) was added 2.0 g of V₂O₅ (11 mmol), and the mixture was stirred overnight. The resulting colorless solution was evaporated to dryness under reduced pressure. The solid thus obtained was further dried under vacuum for 8 h before it was dissolved in 40 mL of acetone. The white powder that formed on adding 150 mL of diethyl ether to this solution was collected by filtration and dried under vacuum for 8 h to yield 4.4 g of the product (13 mmol, 59%). ⁵¹V NMR (78.755 MHz, CH₃CN): δ -570, -576. IR (Nujol, 400–1000 cm⁻¹): 576 (m), 656 (w), 672 (w), 736 (sh), 770 (s), 924 (s).

Preparation of [(n-C₄H₉)₄N]₃[SeV₃O₁₁]·0.5H₂O. To a solution of [(n-C₄H₉)₄N]VO₃ (2.0 g, 5.9 mmol) in 5 mL of acetonitrile was added SeO_2 (0.22 g, 2.0 mmol) with stirring to give a pale yellow solution. The solution was stirred for 2 h before it was evaporated to dryness under reduced pressure. The resulting solid was washed with 10 mL of diethyl ether and dried under vacuum to yield 2.0 g of crude product. Crystallization was accomplished by dissolving 0.30 g of the crude product in 3.0 mL of acetonitrile and adding diethyl ether to the point of saturation (ca. 9 mL) with stirring. Colorless rectangular crystals appeared after allowing the solution to stand at 10 °C for 1 day (0.070 g, 0.061 mmol, 23%). An ¹⁷O-enriched sample was prepared by dissolving the crystalline material (0.10 g, 0.087 mmol) in 2 mL of CH₃CN, adding 7.5 μ L (0.41 mmol) of ¹⁷O-enriched water, stirring the solution for 3 h, adding 60 mL of diethyl ether, collecting the precipitate then formed by filtration, and drying it under vacuum for 5 h (0.070 g, 0.061 mmol, 70%). Anal. Calcd for C₄₈H₁₀₉N₃SeV₃O_{11.5}: C, 50.39; H, 9.60; N, 3.67; Se, 6.90; V, 13.4. Found: C, 50.18; H, 9.56; N, 3.78; Se, 6.90; V, 13.3. IR (Nujol, 400-1000 cm⁻¹): 494 (w), 564 (w), 636 (w), 754 (vs), 826 (s), 894 (s), 920 (vs), 930 (vs). ⁵¹V NMR (78.755 MHz, CH₃CN): δ –556 (2V), –566 (1V). ⁷⁷Se NMR (57.269 MHz, DMSO-*d*₆): δ 71.9. ¹⁷O NMR (40.685 MHz, CH₃CN): δ 271 (30), 477 (20), 1004 (20), 1032 (40).

Preparation of $[(C_6H_5)_4P]_2[Se_2V_2O_{10}]$. To a solution of $[(n-C_4H_9)_4N]$ -VO₃ (0.50 g, 1.5 mmol) in 5 mL of acetonitrile was added SeO₂ (0.16 g, 1.5 mmol) with stirring to give a dark red solution. The solution was stirred for 2 h before it was added dropwise to a solution of [(C₆H₅)₄P]Br (0.61 g, 1.5 mmol) in 3 mL of acetonitrile. Pale yellow precipitate that formed on adding 40 mL of diethyl ether to the mixture was collected by filtration and dried under vacuum for 8 h to yield 0.65 g of the product (0.59 mmol, 79% based on V). Crystallization was accomplished by dissolving 0.20 g of the crude product in 10 mL of acetonitrile, adding 10 mL of diethyl ether gently to make a second layer, and allowing the mixture to stand at 10 °C. Colorless crystals appeared in 1 day, which weighed 0.060 g after drying under vacuum (0.055 mmol, 30%). Anal. Calcd for C48H40P2Se2V2O10: C, 52.48; H, 3.67; P, 5.65; Se, 14.37; V, 9.27. Found: C, 52.34; H, 3.78; P, 5.60; Se, 14.60; V, 9.20. IR (Nujol, 400-1000 cm⁻¹): 460 (w), 528 (s), 612 (s), 688 (s), 722 (vs), 760 (s), 924 (s), 954 (s), 996 (w). $^{51}\mathrm{V}$ NMR (78.755 MHz, CH₃CN): δ –547.

Preparation of [{(C_6H_5)₃**P**}₂**N**]₂[**Se**₂**V**₂**O**₁₀]. To a solution of [(n-C₄H₉)₄N]VO₃ (0.50 g, 1.5 mmol) in 5 mL of acetonitrile was added SeO₂ (0.16 g, 1.5 mmol) with stirring to give a dark red solution. The solution was stirred for 2 h before it was added dropwise to a solution of [{(C_6H_5)₃P}₂N]Cl (0.84 g, 1.5 mmol) in 10 mL of acetonitrile. Pale yellow microcrystals that formed on adding 80 mL of diethyl ether to the mixture were collected by filtration and dried under vacuum for 8 h to yield 0.88 g of the product (0.59 mmol, 79% based on V). An ¹⁷O-enriched sample was prepared by dissolving the crystalline material (0.10 g, 0.067 mmol) in 10 mL of CH₃CN, adding 5.2 μ L (0.29 mmol) of ¹⁷O-enriched water, stirring the solution for 2 h, adding 80 mL of diethyl ether, collecting the precipitate then formed by filtration, and drying it under vacuum for 5 h (0.076 g, 0.051 mmol, 76%). Anal. Calcd for C₇₂H₆₀P₄N₂Se₂V₂O₁₀: C, 57.77; H, 4.04; N, 1.87; P, 8.28. Found: C, 57.44; H, 3.97; N, 1.90; P, 8.32. IR (Nujol, 400–1000 cm⁻¹):

Table 1. Crystallographic Data for $[{(C_6H_5)_3P}_2N]_2[Se_2V_2O_{10}]$ and $[(n-C_4H_9)_4N]_3[SeV_3O_{11}]\cdot 0.5H_2O$

	$\begin{array}{c} [\{(C_6H_5)_3P\}_2N]_2\text{-}\\ [Se_2V_2O_{10}]\end{array}$	$[(n-C_4H_9)_4N]_3-$ [SeV ₃ O ₁₁]·0.5H ₂ O
empirical formula	$C_{72}H_{60}N_2O_{10}P_4Se_2V_2$	C48H109N3O11.5SeV3
fw	1496.97	1144.16
space group	$P2_1/n$ (No. 14)	P2 ₁ 2 ₁ 2 (No. 18)
a/Å	12.2931(3)	22.328(5)
b/Å	13.5101(3)	44.099(9)
c/Å	20.9793(5)	12.287(3)
β /deg	106.3070(10)	90
$V/Å^3$	3344.09(14)	12098(4)
Ζ	2	8
λ/Å	0.71073	0.71073
T/K	253 (2)	93 (2)
$ ho_{ m calcd}/ m Mg~m^{-3}$	1.49	1.26
μ/mm^{-1}	1.52	1.11
$R [F_o^2 > 2\sigma(F_c^2)]^a$	0.0367	0.1210
$R_{\rm w}$ (all reflns) ^b	0.0903^{c}	0.3239^{d}

^{*a*} $R = \sum ||F_o| - |F_c|| / \sum |F_o|$. ^{*b*} $R_w = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$ where $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, $P = (F_o^2 + 2F_c^2)/3$. ^{*c*} a = 0.0487, b = 0.4918. ^{*d*} a = 0.1899, b = 46.6033.

Table 2. Bond Distances (Å) for $[SeV_3O_{11}]^{3-}$

Se(1)-O(1)	1.62(2)	Se(2)-O(12)	1.64(4)
Se(1) - O(8)	1.74(2)	Se(2) - O(19)	1.71(3)
Se(1) - O(11)	1.73(2)	Se(2) - O(22)	1.71(2)
V(1) - O(2)	1.65(2)	V(4)-O(13)	1.63(3)
V(1)-O(3)	1.63(2)	V(4)-O(14)	1.62(3)
V(1)-O(8)	1.89(2)	V(4)-O(19)	1.87(2)
V(1)-O(9)	1.79(2)	V(4)-O(20)	1.78(2)
V(2) - O(4)	1.65(2)	V(5)-O(15)	1.61(2)
V(2)-O(5)	1.65(3)	V(5)-O(16)	1.63(2)
V(2)-O(9)	1.81(2)	V(5)-O(20)	1.81(2)
V(2)-O(10)	1.81(2)	V(5)-O(21)	1.78(2)
V(3)-O(6)	1.64(3)	V(6)-O(17)	1.59(3)
V(3)-O(7)	1.62(2)	V(6)-O(18)	1.66(3)
V(3)-O(10)	1.78(2)	V(6)-O(21)	1.82(2)
V(3)-O(11)	1.89(2)	V(6)-O(22)	1.88(3)

442 (w), 500 (w), 532 (s), 552 (s), 686 (s), 722 (vs), 756 (s), 770 (s), 802 (w), 926 (m), 954 (s), 996 (w). ⁵¹V NMR (78.755 MHz, CH₃CN): δ -547. ⁷⁷Se NMR (57.269 MHz, DMSO-*d*₆): δ 66.7. ¹⁷O NMR (40.685 MHz, CH₃CN): δ 290 (30), 1100 (20).

Crystal Structure Determination. Rectangular crystals of [(n-C₄H₉)₄N]₃[SeV₃O₁₁]·0.5H₂O used for structural analysis were prepared under a dry N₂ atmosphere by dissolving 0.10 g of the crude product in 0.25 mL of acetonitrile, adding toluene to the point of saturation (ca. 1.7 mL) with stirring, heating the mixture to make a clear solution, and then allowing it to stand at ambient temperature for 1 day. Blockshaped crystals of $[{(C_6H_5)_3P}_2N]_2[Se_2V_2O_{10}]$ used for the diffraction study were prepared by dissolving 0.014 g of the microcrystalline material in 0.5 mL of acetonitrile with heating and allowing the solution to stand at ambient temperature for 1 h. Diffraction data were collected on a Siemens Smart CCD diffractometer using Mo K α radiation. The structures were solved by the direct method and refined by the fullmatrix least-squares method on F² using the SHELX-97 program suite.²⁴ Atoms in the $[SeV_3O_{11}]^{3-}$ anions were refined anisotropically for $[(n-1)^{3-1}]^{3-1}$ C₄H₉)₄N]₃[SeV₃O₁₁]·0.5H₂O, and all non-hydrogen atoms were refined anisotropically for $[{(C_6H_5)_3P}_2N]_2[Se_2V_2O_{10}]$. Crystallographic parameters are summarized in Table 1. Selected bond distances for the $[SeV_3O_{11}]^{3-}$ and $[Se_2V_2O_{10}]^{2-}$ anions are listed in Tables 2 and 3.

Results

A dark red compound is obtained when $[(n-C_4H_9)_4N]VO_3$ is reacted with an equal amount of SeO₂ in acetonitrile at an ambient temperature. This very hygroscopic compound gives a single peak in the ⁵¹V NMR spectrum at -547 ppm. Although

⁽²²⁾ Burns, R. C.; Collins, M. J.; Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1986, 25, 4465–4469.

⁽²³⁾ Day, V. W.; Klemperer, W. G.; Yagasaki, A. Chem. Lett. 1989, 2041–2044.

⁽²⁴⁾ Sheldrick, G. M. SHELX-97, Program for the Analysis of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.

Table 3. Bond Distances^{*a*} (Å) for $[Se_2V_2O_{10}]^{2-}$

V-O(2)	1.612(3)	Se-O(1)	1.610(3)
V-O(3)	1.597(3)	Se-O(4)	1.736(3)
V - O(4)	1.847(3)	$Se-O(5)^i$	1.724(3)
V - O(5)	1.875(3)		

^{*a*} Symmetry code: (i) -x, -y, -z.

Figure 1. Perspective drawing of the $[Se_2V_2O_{10}]^{2-}$ anion. Displacement ellipsoids are scaled to enclose 50% probability levels. Atoms labeled with superscripted i are related to those without superscripts by the crystallographic inversion center at (0, 0, 0).

Figure 2. Perspective drawing of the $[SeV_3O_{11}]^{3-}$ anion. Displacement ellipsoids are scaled to enclose 50% probability levels.

this compound is too hygroscopic to be isolated in a form suitable for further characterization, it yields crystalline $[(C_6H_5)_4P]^+$ and $[\{(C_6H_5)_3P\}_2N]^+$ salts when reacted with $[(C_6H_5)_4P]Br$ and $[\{(C_6H_5)_3P\}_2N]Cl$. These salts also give a single peak at -547 ppm in their ⁵¹V NMR spectra and analyze as A₂[Se₂V₂O₁₀] (A = $[(C_6H_5)_4P]^+$ or $[\{(C_6H_5)_3P\}_2N]^+$). X-ray structural analysis of the $[\{(C_6H_5)_3P\}_2N]^+$ salt revealed that it is composed of the cations and discrete $[Se_2V_2O_{10}]^{2-}$ anions having the structure shown in Figure 1. The bond distances in the $[Se_2V_2O_{10}]^{2-}$ anion are listed in Table 3.

When $[(n-C_4H_9)_4N]VO_3$ is reacted with SeO₂ in a 3:1 molar ratio, on the other hand, a colorless compound is obtained. This compound gives two ⁵¹V NMR peaks at -556 and -566 ppm in a 2:1 intensity ratio and analyzes as $[(n-C_4H_9)_4N]_3[SeV_3O_{11}]$ • 0.5H₂O after crystallization from acetonitrile/diethyl ether. X-ray structural analysis revealed that an asymmetric unit of $[(n-C_4H_9)_4N]_3[SeV_3O_{11}]$ •0.5H₂O contains six $[(n-C_4H_9)_4N]^+$ cations, one water molecule, and two discrete $[SeV_3O_{11}]^{3-}$ anions having the structure shown in Figure 2. [Only one of the two crystallographically independent anions is shown. The structure of the other anion is depicted in Figure S1 (Supporting Information). There are no significant structural differences between these two anions.] The water molecule of crystallization is hydrogen-bonded to one of the anions $[O23\cdotsO1, 2.71(8)]$ Å; O23···O6, 2.86(8) Å]. The bond distances in the $[SeV_3O_{11}]^{3-1}$ anion are listed in Table 2.

All ⁵¹V, ⁷⁷Se, and ¹⁷O NMR data for the $[SeV_3O_{11}]^{3-}$ and $[Se_2V_2O_{10}]^{2-}$ anions are consistent with the structures shown in Figures 1 and 2 and strongly suggest that these solid state structures are maintained in solution.

Discussion

The chemical equations for the formation of the $[SeV_3O_{11}]^{3-}$ and $[Se_2V_2O_{10}]^{2-}$ anions suggest that those reactions would not produce any byproducts and would proceed cleanly.

$$2\text{VO}_3^- + 2\text{SeO}_2 \rightarrow [\text{Se}_2\text{V}_2\text{O}_{10}]^{2^-}$$
$$3\text{VO}_3^- + \text{SeO}_2 \rightarrow [\text{SeV}_3\text{O}_{11}]^{3^-}$$

Indeed, those vanadoselenites form almost quantitatively. When $[(n-C_4H_9)_4N]VO_3$ and SeO₂ are mixed in a 1:1 molar ratio, the peak for $[Se_2V_2O_{10}]^{2-}$ is the only peak observed in the ⁵¹V NMR spectrum of the reaction mixture. When [V]:[Se] = 3, only the $[SeV_3O_{11}]^{3-}$ peak is observed. Moreover, an equimolar mixture of VO_3^- and $[SeV_3O_{11}]^{3-}$ is obtained when [V]:[Se] = 4:1. Basically no peak other than those of VO_3^- , $[Se_2V_2O_{10}]^{2-}$, and $[SeV_3O_{11}]^{3-}$ is observed in the range $[V]:[Se] \ge 1$. Something different occurs, however, if the relative amount of Se is increased beyond [V]:[Se] = 1. At [V]:[Se] = 1:3 the dark red mixture gives a single broad ⁵¹V NMR peak at -528 ppm ($\Delta \nu_{1/2} = 2200$ Hz). The compound in this mixture has so far evaded our effort for further characterization.

Both [SeV₃O₁₁]³⁻ and [Se₂V₂O₁₀]²⁻ anions are composed of tetrahedral VO₄ and trigonal pyramidal SeO₃ units that share vertices to form ring structures (Figures 1 and 2). In $[Se_2V_2O_{10}]^{2-1}$ V tetrahedra and Se trigonal pyramids connect alternately in a centrosymmetric manner to complete a Se₂V₂O₄ ring. The conformation of this ring can be loosely classified as twistedchair (TC), although it lacks a 2-fold rotation symmetry and a mirror plane necessary for an ideal TC.²⁵⁻²⁷ The anion is located on a crystallographic inversion center and thus has a rigorous 1 symmetry. One of the SeO₃ trigonal pyramids in this ring is substituted with a VO₄ tetrahedron in the [SeV₃O₁₁]³⁻ structure. This substitution results in a loss of the center of symmetry, and [SeV₃O₁₁]³⁻ has a chiral structure. Both of the two crystallographically independent anions in $[(n-C_4H_9)_4N]_3$ - $[SeV_3O_{11}] \cdot 0.5H_2O$ are of the same enantiomorph. The other enantiomorph can easily be obtained with a slight conformational change of the eight-membered SeV₃O₄ ring. The irregular structure of the SeV₃O₄ ring in $[SeV_3O_{11}]^{3-}$ can be attributed to the cooperative conformational change associated with the accommodation of a larger VO₄ unit in place of the SeO₃ unit.

Tetrahedral VO₄ units are rare for polyvanadate structures, ^{15,16,20,23,28,29} and the current anions are the first examples of a heteropolyvanadate that is exclusively made up of such units to our knowledge. The Se₂V₂O₄ ring found in the [Se₂V₂O₁₀]²⁻ structure has been observed for VOSeO₃•H₂O³⁰ and (VO)₂(SeO₃)₃³¹ as a building unit of infinite structures.

- (25) Hendrikson, J. B. J. Am. Chem. Soc. 1967, 89, 7043-7046.
- (26) Elile, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; John Wiley & Sons: New York, 1994; p 765.
- (27) Akashi, H.; Isobe, K.; Ozawa, Y.; Yagasaki, A. J. Cluster Sci. 1991, 2, 291–296.
- (28) Fuchs, J.; Pickardt, J. Angew. Chem., Int. Ed. Engl. 1976, 15, 374–376.
- (29) Román, P.; José, A. S.; Luque, A.; Gutiérrez-Zorrilla, J. M. Inorg. Chem. 1993, 32, 775–776.
- (30) Huan, G.; Johnson, J. W.; Jacobson, A. J.; Goshorn, D. P.; Merola, J. S. Chem. Mater. 1991, 3, 539–541.

Figure 3. Schematic drawing of the $[SeV_3O_{11}]^{3-}$ anion (top) and its ¹⁷O NMR spectrum in acetonitrile (bottom).

However, the V atoms are in the IV oxidation state in these compounds. The compound CsVSeO₅ has the same composition as the salts of $[Se_2V_2O_{10}]^{2-}$,³² but this hydrothermally synthesized compound has an infinite layer structure that has little resemblance to that of $[Se_2V_2O_{10}]^{2-}$. The compound that is most closely related to $[Se_2V_2O_{10}]^{2-}$ from the structural point of view is $S_2V_2O_{10}(OH_2)_6$,³³ although here the V atoms are in the IV oxidation state and octahedral and the ring structure is completed by tetrahedral SO₄ units instead of trigonal pyramidal SeO₃ units. Still $S_2V_2O_{10}(OH_2)_6$ is molecular and has a discrete structure. It also has a $\overline{1}$ symmetry, and its $S_2V_2O_4$ ring has a conformation very similar to that of the Se₂V₂O₄ ring in $[Se_2V_2O_{10}]^{2-}$.

Both $[SeV_3O_{11}]^{3-}$ and $[Se_2V_2O_{10}]^{2-}$ anions give NMR spectra consistent with the ring structure mentioned above. The anion $[SeV_3O_{11}]^{3-}$ gives two ⁵¹V NMR peaks in a 2:1 intensity ratio that are assignable to the two V atoms that sandwich the SeO₃ unit (-556 ppm) and the unique V atom that is sandwiched between two VO₄ units (-566 ppm). This anion gives a single ⁷⁷Se NMR peak at 71.9 ppm. Its ¹⁷O NMR is given in Figure 3 together with the assignments. The assignments have been made according to the peak intensities and the known correlation between ¹⁷O NMR chemical shifts and metal-oxygen bond

- (31) Halasyamani, P. S.; O'Hare, D. *Inorg. Chem.* 1997, *36*, 6409–6412.
 (32) Kwon, Y.-U.; Lee, K.-S.; Kim, Y. H. *Inorg. Chem.* 1996, *35*, 1161–1167
- (33) Théobald, P. F.; Galy, J. Acta Crystallogr., Sect. B 1973, B29, 2732– 2736.

Figure 4. Schematic drawing of the $[Se_2V_2O_{10}]^{2-}$ anion (top) and its ¹⁷O NMR spectrum in acetonitrile (bottom).

lengths.³⁴ The oxygens A and B give a single peak. The chemical shift difference of the oxygens bound to Se seems to be small. This is in agreement with the general observation that the heavier main group elements yield only a limited range of ¹⁷O chemical shifts.^{35–37} The anion $[Se_2V_2O_{10}]^{2-}$ gives a single peak in both ⁵¹V (-547 ppm) and ⁷⁷Se (66.7 ppm) NMR spectra. Its ¹⁷O NMR spectrum is shown in Figure 4. Here again the oxygens bound to Se give an unresolved single peak.

The isolation of two anions with the general formula $[Se_xV_{4-x}O_{12-x}]^{(4-x)-}$ (x = 1, 2) implies the existence of yet another compound, $[Se_3VO_9]^-$. However, our search for such an anion is so far unsuccessful.

Supporting Information Available: X-ray crystallographic files in CIF format for the structures of $[(n-C_4H_9)_4N]_3[SeV_3O_{11}]\cdot 0.5H_2O$ and $[\{(C_6H_5)_3P\}_2N]_2[Se_2V_2O_{10}]$, structure of the $[SeV_3O_{11}]^{3-}$ anion that is crystallographically independent of that shown in Figure 2 (Figure 1S), and packing diagrams for $[(n-C_4H_9)_4N]_3[SeV_3O_{11}]\cdot 0.5H_2O$ and $[\{(C_6H_5)_3P\}_2N]_2[Se_2V_2O_{10}]$ (Figures 2S and 3S). This material is available free of charge via the Internet at http://pubs.acs.org.

IC0010508

- (34) Klemperer, W. G. Angew. Chem., Int. Ed. Engl. 1973, 17, 246-254.
- (35) Kintzinger, J.-P. NMR 1981, 17, 1-64.
- (36) Klemperer, W. G. In *The Multinuclear Approach to NMR Spectros-copy*; Lambert, J. B., Riddell, F. G., Eds.; D. Reidel Publishing Company: New York, 1983; Chapter 11, pp 245–260.
- (37) McFarlane, W.; McFarlane, H. C. E. In *Multinuclear NMR*; Mason, J., Ed.; Plenum: New York, 1987; Chapter 14, pp 403–416.