Inorg. Chem. 2002, 41, 108–113

Bromite Ion Catalysis of the Disproportionation of Chlorine Dioxide with Nucleophile Assistance of Electron-Transfer Reactions between CIO_2 and BrO_2 in Basic Solution

Lu Wang, Jeffrey S. Nicoson, Kara E. Huff Hartz, Joseph S. Francisco, and Dale W. Margerum*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received August 6, 2001

The rate of ClO₂ conversion to ClO₂⁻ and ClO₃⁻ is accelerated by BrO₂⁻, repressed by ClO₂⁻, and greatly assisted by many nucleophiles (Br⁻ > PO₄³⁻ > HPO₄²⁻ > CO₃²⁻ > Cl⁻ ~ OH⁻ > CH₃COO⁻ ~ SO₄²⁻ ~ C₅H₅N \gg H₂O). The kinetics (at p[H⁺] = 9.3–12.9) show that the first step of the mechanism is an electron transfer between ClO₂ and BrO₂⁻ ($k_1 = 36$ M⁻¹ s⁻¹) to give ClO₂⁻ and BrO₂. This highly reversible reaction ($k_1/k_{-1} = 1 \times 10^{-6}$) accounts for the observed inhibition by ClO₂⁻. The second step is an electron transfer between ClO₂ and BrO₂⁻ and form ClO₃⁻. A novel aspect of the second step is the large kinetic contribution from nucleophiles (k^{Nu}) that assist the electron transfer between ClO₂ and BrO₂. The k^{Nu} (M⁻² s⁻¹) values at 25.0 °C vary from 2.89 × 10⁸ for Br⁻ to 2.0 × 10⁴ for H₂O.

Introduction

Bromine dioxide (BrO₂) is much more reactive than the corresponding chlorine species (ClO₂) and less is known about its redox chemistry. Pulsed radiolysis of BrO₃⁻ solutions has been used to generate trace levels of BrO₂ in neutral and basic solutions.^{1,2} This BrO₂ undergoes very rapid disproportionation with a rate proportional to [BrO₂]² and a complex dependence in [OH⁻].¹ Micromolar concentrations of BrO₂ have been generated in sulfuric acid solution by Ce(III) reduction³ of BrO₃⁻ and by the reaction between HBrO₂ and BrO₃^{-,4} For a brief period NaBrO₂ was available commercially, but this is no longer the case. We have prepared NaBrO₂ in a mixture of nonreactive salts on the basis of the method of Noszticzius et al.⁵ with additional steps to remove all NaOBr and most of the NaBr.

This work pertains to the mechanisms of the reaction between ClO_2 and BrO_2^- in basic solutions. We show that BrO_2^- catalyzes the overall disproportionation of ClO_2 via BrO_2 as a steady-state intermediate. Furthermore, electrontransfer reactions between BrO_2 and ClO_2 are catalyzed by many nucleophiles.

Experimental Section

Preparation of NaBrO₂. Ba(BrO₂)₂ was prepared from the disproportionation of Ba(OBr)2 as described by Noszticzius, Noszticzius, and Schelly⁵ but with several modifications. The reaction slurry was maintained at pH 10.0-10.5 (as opposed to pH 11) to increase the rate of formation of Ba(BrO₂)₂. This allowed for greater conversion of Ba(OBr)₂ to Ba(BrO₂)₂ in a 2 h reaction time. Also, the reaction slurry was kept at a lower temperature (-10)to -20 °C) in an ice-methanol bath. The lower temperature permitted increased precipitation and collection of Ba(BrO₂)₂. The collected barium salt, dissolved in a minimum amount of water, contained mostly Ba(BrO₂)₂, BaBr₂, and Ba(OH)₂ with small amounts of Ba(OBr)₂ and Ba(BrO₃)₂. Since OBr⁻ may compete with BrO₂⁻ in many redox reactions, it is important that its concentration be minimized. The removal of Ba(OBr)2 was achieved by stepwise addition of Na₂SO₃, which reduces OBr⁻ to Br⁻. Sulfite reacts much more rapidly with OBr^{-} ($k = 1 \times 10^{8} \text{ M}^{-1} \text{ s}^{-1}$)⁶ than with BrO_2^{-} ($k = 3.7 \text{ M}^{-1} \text{ s}^{-1}$)⁷ and permits preferential removal of OBr-. The solution was monitored spectrophotometrically and shown to be free of OBr⁻ (ϵ = 332 M⁻¹ cm⁻¹ at 329 nm).⁶ Bromide ion was removed by ion exchange with solid AgOH (prepared fresh by the addition of NaOH solution to either Ag₂SO₄ or AgNO₃). The Ba2+ ions were exchanged with Na+ ions by the addition of Na2SO4 to precipitate BaSO4. The resulting solution was lyophilized

10.1021/ic010849w CCC: \$22.00 © 2002 American Chemical Society Published on Web 12/08/2001

^{*} Author to whom correspondence should be addressed. E-mail: margerum@purdue.edu.

Buxton, G. V.; Dainton, F. S. Proc. R. Soc. A 1968, 304, 427–439.
 Field, R. J.; Raghavan, N. V.; Brummer, J. G. J. Phys. Chem. 1982, 86, 2443–2449.

⁽³⁾ Försterling, H. D.; Lamberz, H. J.; Schreiber, H. Z. Naturforsch. 1980, 35a, 329–331.

⁽⁴⁾ Försterling, H. D.; Lamberz, H. J.; Schreiber, H. Z. Naturforsch. 1980, 35a, 1354–1360.

⁽⁵⁾ Noszticzius, Z.; Noszticzius, E.; Shelly, Z. A. J. Phys. Chem. 1983, 87, 510–524.

⁽⁶⁾ Troy, R. C.; Margerum, D. W. Inorg. Chem. 1991, 30, 3538–3543.
(7) Lee, C. L.; Lister, M. W. Can. J. Chem. 1979, 57, 1524–1530.

Disproportionation of Chlorine Dioxide

and stored at -10 °C as a dried salt mixture. Ion chromatographic analysis determined that the solid product contained (by weight) 29.9% NaBrO₂, 3.2% NaBrO₃, 0.3% NaBr, 4.2% NaNO₃, and 41.6% Na₂SO₄. The remaining 20.7% is NaOH and waters of crystallization. For our experiments, it was critical to remove all OBr⁻. Each of the other salts was tested to determine its effect on the kinetic studies in basic solution.

Reagents. All solutions were made with distilled—deionized water. Chlorine dioxide stock solution was prepared as described previously^{8,9} and was protected from light and stored in a refrigerator. This solution was standardized spectrophotometrically based on the molar absorptivity of ClO₂, $\epsilon = 1230 \text{ M}^{-1} \text{ cm}^{-1}$ at 359 nm.⁸

Commercially available NaClO₂ was treated to remove sodium carbonate and was recrystallized.^{8,10} Stock solutions NaClO₂ were standardized spectrophotometrically at 260 nm ($\epsilon = 154 \text{ M}^{-1} \text{ cm}^{-1}$).⁸ Stock solutions of NaBrO₂ were prepared daily from the stored solid, and the concentration of BrO₂⁻ was determined spectrophotometrically at 295 nm ($\epsilon = 115 \text{ M}^{-1} \text{ cm}^{-1}$,¹¹ a value that was confirmed iodometrically).¹² Ionic strength (μ) was controlled with recrystallized NaClO₄. All kinetic studies were carried out at 25.0 ± 0.2 °C and $\mu = 1.0 \text{ M}$.

pH Measurement. An Orion model 720A digital pH meter equipped with a Corning combination electrode was used in all measurements. The electrode was calibrated through titrations of standard HClO₄ with standard NaOH to correct the measured pH values to p[H⁺] and p[OH⁻] (p $K_w = 13.60$)¹³ at 25.0 ± 0.1 °C and $\mu = 1.0$ M (NaClO₄).

Products. The reaction products were identified and quantitatively determined via an EPA recommended method¹⁴ by use of a Dionex DX-500 ion chromatograph. Samples were injected via an autosampler (AS40) through a 25 μ L injection loop into anion exchange guard (AG9HC) and separation (AS9HC) columns. The analytes were eluted with 9.0 mM Na₂CO₃ at a flow rate of 1.0 mL/min. Suppressed conductivity detection (ED40), with an ASRS-Ultra suppressor in the gas-assisted self-regeneration mode (SRS) and a current of 100 mA, was used to determine the analytes. The product distributions were obtained by mixing ClO₂ and BrO₂⁻ reactant solutions. The mixtures were capped, and the solutions were reacted for 5 min (essentially to completion) and were quenched by purging any remaining ClO₂ with Ar.

A Perkin-Elmer Lambda-9 UV–vis–NIR spectrophotometer was used to acquire reaction spectra for slower reactions after ClO_2 solutions were T-mixed with BrO_2^- solutions in carbonate buffer $p[H^+]$ 10.30. Spectral scans were taken from 250 to 450 nm at 100 s intervals and after the reaction was complete.

Kinetics. Kinetic studies were performed on an Applied Photo-Physics SX 18 MV stopped-flow spectrophotometer (APPSF, optical path length = 0.962 cm). The progress of the BrO₂⁻/ClO₂ reaction was followed by observing the disappearance of ClO₂ at 359 nm in the presence of excess BrO₂⁻ ($\epsilon_{359} = 45.3 \text{ M}^{-1} \text{ cm}^{-1}$) and excess ClO₂⁻ ($\epsilon_{359} = 1.3 \text{ M}^{-1} \text{ cm}^{-1}$). All rate constants were determined from the average of five pushes. SigmaPlot 4.0¹⁵ was used for the regression analysis.

- (10) Fabian, I.; Gordon, G. Inorg. Chem. 1992, 31, 3785-3787.
- (11) Lee, C. L.; Lister, M. W. Can. J. Chem. 1971, 49, 2822-2826.
- (12) Perrone, T. F. Ph.D. Thesis, Purdue University, 1999, pp 89-91.
- (13) Molina, M.; Melios, C.; Tognolli, J. O.; Luchiari, L. C.; Jafelicci, M., Jr. J. Electroanal. Chem. Interfacial Electrochem. 1979, 105, 237– 246
- (14) EPA Method 300.1; U.S. EPA: Cincinnati, OH, 1997.

Table 1. Ion Chromatographic Determination of Products for the Reaction between BrO_2^- and $\text{ClO}_2^{a,b}$

$p[H^+]$	$[BrO_2^{-}]_f / [BrO_2^{-}]_i^c$	$[ClO_2^-]_f / [ClO_3^-]_f^c$
10.17	1.00 ± 0.04	0.99 ± 0.04
10.43	1.04 ± 0.04	1.00 ± 0.04
11.35	1.04 ± 0.04	1.03 ± 0.04

 a Reactions and conditions: $[BrO_2^-]_i = 0.133$ mM; $[ClO_2]_i = 0.271$ mM; $[CO_3^{2-}]_T = 0.10$ M; 25.0 °C; 300 s reaction time. b IC determinations showed that the concentrations of small amounts of Br⁻ and BrO_3⁻ in the reactants (from the NaBrO_2 sample) were unchanged in the products. c $[BrO_2^-]_f$, $[ClO_2^-]_f$, and $[ClO_3^-]_f$ are the product concentrations.

Figure 1. Dependence of the reciprocal of the second-order rate constant (k_{obs}) for the disproportionation of chlorine dioxide on the chlorite concentration. Conditions: 0.280 mM [ClO₂]; 18.90 mM [BrO₂⁻]; 0.10 M [CO₃]_T; p[H⁺] 9.45. Slope = (1.88 ± 0.07) s, and intercept = (1.5 ± 3.0) × 10⁻⁴ M s.

Results and Discussion

Reaction Stoichiometry. Chlorine dioxide disproportionates slowly in basic solution to form chlorite and chlorate ions.16 The addition of NaBrO2 to ClO2 in base greatly accelerates the disproportionation and gives 1:1 stoichiometry that corresponds to eq 1. Ion chromatographic results (Table 1) show (within experimental error) that equal amounts of ClO_2^- and ClO_3^- are formed and no BrO_2^- is consumed. Since our added NaBrO₂ has small amounts of NaBrO₃ and NaBr present, we also analyzed for BrO₃⁻ and Br⁻ before and after the reaction and found no change in their concentrations. Separate tests show that BrO₃⁻, NO₃⁻, and ClO_4^- have no effect on the rate of ClO_2 disproportionation. Spectrophotometric results from 250 to 450 nm show that, after all the ClO₂ reacts, the remaining spectrum corresponds exactly to the initial spectrum of the added BrO₂⁻ plus the spectrum of ClO_2^- formed.

$$2\text{CIO}_2 + 2\text{OH}^- \xrightarrow{\text{BrO}_2^-} \text{CIO}_2^- + \text{CIO}_3^- + \text{H}_2\text{O}$$
 (1)

Kinetics. The rate of CIO_2 loss has a mixed order dependence in CIO_2 for which an integrated rate expression cannot be determined. Although the data can be analyzed by instantaneous rate methods, we found it more convenient

⁽⁸⁾ Furman, C. S.; Margerum, D. W. Inorg. Chem. 1998, 37, 4321-4327.

⁽⁹⁾ Masschelein, W. J. J. Am. Water Works Assoc. 1984, 76, 70-76.

⁽¹⁵⁾ SigmaPlot 4.0 for Windows; SPSS Inc.: Chicago, IL, 1997.

⁽¹⁶⁾ Gordon, G. Pure Appl. Chem. 1989, 61, 873-878.

Figure 2. Bromite dependence of k_{obs} for its reactions with ClO₂. Conditions: 0.322 mM [ClO₂]; 5.48 mM [ClO₂⁻]; 0.10 M [CO₃]_T; p[H⁺] 9.50. Regression fit: $k_{obs} = (2.7 \pm 0.4) \times 10^3$ [BrO₂⁻] + $(1.0 \pm 0.1) \times 10^5$ [BrO₂⁻]².

Figure 3. Dependence of k_{obs} on the concentration of nucleophiles where $k_{obs}[\text{CIO}_{2^-}]/2[\text{BrO}_{2^-}] = (k_1/k_{-1})(\sum k^{\text{Nu}}[\text{Nu}])$. For $[\text{OH}^-]$ the intercept is $(k_1/k_{-1})(k^{\text{H}_2\text{O}} + k^{\text{BrO}_2^-}[\text{BrO}_{2^-}] + k^{\text{CIO}_2^-}[\text{CIO}_{2^-}] + k^{\text{SO}_4^{2^-}}[\text{SO}_4^{2^-}])$. For other nucleophiles the intercept includes contributions $k^{\text{OH}^-}[\text{OH}^-]$ as well.

to add excess chlorite ion $([ClO_2^-]_i > 6[ClO_2]_i)$ to the BrO₂⁻ reactant solution to give excellent second-order fits where $-d[ClO_2]/dt$ equals $k_{obs}[ClO_2]^2$.

Chlorite ion suppresses the rate, and Figure 1 shows that reciprocal values of k_{obs} are directly proportional to $[ClO_2^-]$, when ClO_2^- is added in excess. Added BrO_2^- greatly accelerates the rate, and k_{obs} has both a first-order and a second-order contribution in $[BrO_2^-]$ as seen in Figure 2.

Effect of Nucleophiles on the Kinetics. Buffers were present in the kinetic studies to ensure that constant pH was maintained despite the consumption of base (eq 1). The large molar absorptivity of ClO₂ permitted use of low concentrations in the kinetic studies, typically 3×10^{-4} M or less. Hence, buffer concentrations of 0.05 M or less were sufficient for pH control during the reaction. However, buffer concentrations have a large effect on the k_{obs} values as shown in Figure 3. The effect of [OH⁻] in the absence of buffers is also shown in Figure 3, where the intercept permits a rate constant for H₂O to be evaluated. Although the sensitivity of k_{obs} to concentrations of OH⁻, PO₄³⁻, CO₃²⁻, and HPO₄²⁻ is large, there is almost no dependence on the Brønsted base strength of these species. However, this acceleration does not extend to every anion as shown by the lack of effect of ClO₄⁻, NO₃⁻, or BrO₃⁻. A fit of the rate dependence on p[H⁺] from 9.5 to 10.53 in carbonate buffer indicates the absence of a HCO₃⁻ path. Additional studies showed significant acceleration by pyridine and sulfate, as well as acetate, chloride, and bromide ions. This suggests that it is the nucleophilic properties of the species rather than their proton abstraction properties that govern their reactivity.

Mechanism. The mechanism in eqs 2-4 is proposed for the reaction between ClO₂ and BrO₂⁻, where BrO₂ is a steady-state intermediate:

$$\operatorname{ClO}_{2} + \operatorname{BrO}_{2}^{-} \underset{k_{-1}}{\overset{k_{1}}{\longleftrightarrow}} \operatorname{ClO}_{2}^{-} + \operatorname{BrO}_{2}$$
(2)

$$\operatorname{ClO}_2 + \operatorname{BrO}_2 + \operatorname{Nu} \xrightarrow{k_{\operatorname{Nu}}} [\operatorname{NuClO}_2^+] + \operatorname{BrO}_2^-$$
(3)

$$[NuClO_2^+] + 2OH^- \xrightarrow{fast} Nu + ClO_3^- + 2H_2O \quad (4)$$

The net result is that ClO₂ disproportionates in accord with eq 1 and the reaction rate is catalyzed by BrO₂⁻ and by nucleophiles (Nu). The first step (eq 2) is a thermodynamically uphill electron-transfer reaction to give ClO₂⁻ and BrO₂. Bromine dioxide is a highly reactive compound that is capable of disproportionating to form BrO₂⁻ and BrO₃⁻.¹⁻⁴ However, this does not take place because the concentration of BrO₂ is very low compared to ClO₂ so that the reactions in eqs 3 and 4 generate ClO_3^- and regenerate BrO_2^- . The reaction between BrO₂ and ClO₂ has been proposed as an intermediate step in the reduction of bromate ion by chlorous acid.^{17,18} The rate constant for the BrO₂/ClO₂ reaction at 1.0-2.0 M [H⁺] has been estimated to be 1.2×10^5 M⁻¹ s⁻¹. Thermodynamically, eqs 3 and 4 are very favorable and overcome the unfavorable step in eq 2. Nucleophiles (Nu) assist the electron transfer in eq 3 because the formation of ClO_2^+ is not favorable for this electron transfer. Equation 3 includes more than one step, but it is written to indicate a transition state that consists of (ClO₂BrO₂Nu)[‡]. The resulting rate expression given in eq 5 corresponds to the observed kinetics:

$$\frac{-d[ClO_2]}{dt} = \frac{2k_1(\Sigma k^{Nu}[Nu])[BrO_2^-][ClO_2]^2}{k_{-1}[ClO_2^-] + (\Sigma k^{Nu}[Nu])[ClO_2]}$$
(5)

Typical concentrations of ClO₂ are low and k_{-1} is very large,¹⁹ so that the addition of excess ClO₂⁻ leads to the inequality k_{-1} [ClO₂⁻] $\gg (\sum k^{Nu}$ [Nu])[ClO₂]. This gives therate expression in eq 6 that allows use of second-order integrated rate constants where k_{obs} is expressed by eq 7.

⁽¹⁷⁾ Thompson, R. Inorg. Chem. 1973, 12, 1905–1909.

⁽¹⁸⁾ Schmitz, G.; Rooze, H. Can. J. Chem. 1988, 66, 231-235.

⁽¹⁹⁾ Huie, R. E.; Neta, P. J. Phys. Chem. 1986, 90, 1193-1198.

Table 2. Summary of Rate Constants for the Reaction between ClO_2 and BrO_2^{-a}

nucleophiles	pK_a^{HNu}	n^b	$10^{-2}(k_1/k_{-1})k^{Nu}, M^{-2}s^{-1}$	$k^{ m Nu},{ m M}^{-2}{ m s}^{-1}{ m e}$
H ₂ O	-1.74	0	$0.00020(2)^d$	2.0×10^4
Py	5.19	3.6	0.350(1)	3.5×10^{7}
SO_4^{2-}	1.12	2.5	0.36(2)	3.6×10^{7}
OAc ⁻	4.61	2.72	0.41(1)	4.4×10^{7}
OH^{-}	15.39	4.2	1.25(4)	1.25×10^{8}
Cl ⁻		3.04	1.28(5)	1.28×10^{8}
CO_{3}^{2-}	9.46	С	1.49(6)	1.49×10^{8}
HPO_4^{2-}	8.21	3.8	1.64(7)	1.64×10^{8}
ClO_2^-	1.72	с	2.2(6)	2.2×10^{8}
PO_{4}^{3-}	11.08	с	2.3(3)	2.3×10^{8}
BrO_2^-	3.43	с	2.3(3)	2.3×10^{8}
Br^{-}		3.89	2.89(6)	2.89×10^{8}

^{*a*} Conditions: 25.0 °C; $\mu = 1.0$ M. ^{*b*} $n = \log(k^{\text{Nu}/k^{\text{H}_2\text{O}})}$ for CH₃X substitution; the values are obtained from ref 22. ^{*c*} The *n* values are not available. ^{*d*} $(k_1/k_{-1})(k^{\text{H}_2\text{O}}/55.5)$ to give M⁻² s⁻¹. ^{*e*} The k^{Nu} values were calculated from the k_1 value (36 M⁻¹ s⁻¹) obtained in this work, and the k_{-1} value (3.6 × 10⁷ M⁻¹ s⁻¹) is from ref 19.

$$\frac{-d[ClO_2]}{dt} = \frac{2k_1(\Sigma k^{Nu}[Nu])[BrO_2^-][ClO_2]^2}{k_{-1}[ClO_2^-]} = k_{obs}[ClO_2]^2$$
(6)

$$k_{\rm obs} = \frac{2k_1(\sum k^{\rm Nu}[\rm Nu])[\rm BrO_2^-]}{k_{-1}[\rm ClO_2^-]}$$
(7)

Determination of $k_1 k^{Nu}/k_{-1}$ Values. As the concentration of the nucleophiles increase, there is a directly proportional increase in k_{obs} in accord with eq 7. The effects are large; for example, there is a 4-fold increase in k_{obs} with $[CO_3^{2-}]$ (Figure 3). Variation of hydroxide ion concentration in the absence of buffers gives values for $k_{obs}[ClO_2^-]/2[BrO_2^-]$, where the slope equals $(k_1/k_{-1})k^{OH-}$ and the intercept is $(k_1/k_{-1})k^{OH-}$ $k_{-1}(k^{\mathrm{H}_{2}\mathrm{O}} + k^{\mathrm{ClO}_{2}^{-}}[\mathrm{ClO}_{2}^{-}] + k^{\mathrm{BrO}_{2}^{-}}[\mathrm{BrO}_{2}^{-}] + k^{\mathrm{SO}_{4}^{2-}}[\mathrm{SO}_{4}^{2-}]).$ (The last term is included because Na₂SO₄ is present in the $NaBrO_2$ preparation). The rate constant for the water path $(k_1 k^{\text{H}_2\text{O}}/k_{-1} = 1.1 \pm 0.1 \text{ M}^{-1} \text{ s}^{-1})$ is determined by subtracting the contributions by ClO₂⁻, BrO₂⁻, and SO₄²⁻ from the intercept value. Similarly, variation of [CO32-] at constant p[H⁺] in Figure 3 gives a slope equal to $(k_1/k_{-1})k^{CO_3^{2-}}$ and an intercept equal to $(k_1/k_{-1})(k_{-1}^{H_2O} + k_{-1}^{OH^-}[OH^-] +$ $k^{\text{ClO}_2^-}[\text{ClO}_2^-] + k^{\text{BrO}_2^-}[\text{BrO}_2^-] + k^{\text{SO}_4^{2-}}[\text{SO}_4^{2-}])$. In this manner, corresponding values of the $(k_1/k_{-1})k^{Nu}$ rate constants for PO43-, HPO42-, CH3COO-, SO42-, and pyridine are determined and given in Table 2. Initially, we expected a correlation between the base strength of OH^- , PO_4^{3-} , CO_3^{2-} , and HPO_4^{2-} and their k^{Nu} values, but these ions have similar rate constants despite large differences in their basicity. The $k^{\rm Nu}$ values decrease somewhat for pyridine and acetate ion, but these species are still effective as nucleophiles that assist the reaction between ClO_2 and BrO_2 .

Second Catalytic Role of BrO₂⁻. According to the proposed mechanism, the reaction is expected to be first-order in bromite. However, Figure 2 shows that the rate constant also has a squared dependence in [BrO₂⁻]. This indicates that BrO₂⁻ may also act as a nucleophile in eq 3. If this is the case, the observed second-order rate constant can be expressed by eq 8, where $a = 2k_1 \sum k^{Nu} [Nu]/k_{-1} [ClO_2^{-}]$ and $b = 2k_1 k^{BrO_2^-}/k_{-1} [ClO_2^{-}]$ and $\sum k^{Nu} [Nu]$ is the sum of the other nucleophilic paths. Equation 8 gives a quadratic

dependence on $[BrO_2^-]$ for k_{obs} , which is consistent with our results from the $[BrO_2^-]$ dependence study.

$$k_{\rm obs} = \frac{2k_1(\Sigma k^{\rm Nu}[\rm Nu] + k^{\rm BrO_2^-}[\rm BrO_2^-])[\rm BrO_2^-]}{k_{-1}[\rm CIO_2^-]} = a[\rm BrO_2^-] + b[\rm BrO_2^-]^2 (8)$$

Nucleophilic Catalysis by ClO₂⁻. The ClO₂⁻ concentrations used in most of our kinetic studies were at least 25fold smaller than $[buffer]_T$ and 5-fold smaller than $[BrO_2^-]$. Therefore, the effect of ClO₂⁻ as a nucleophilic catalyst could be overlooked. If ClO₂⁻ acts as a nucleophile, we would not be able to observe an acceleration of the rate by increasing $[ClO_2^-]$ because $k_{-1}[ClO_2^-]$ would simultaneously suppress the rate. However, catalytic enhancement by ClO₂⁻ in eq 3 can compensate for the inhibition. Thus, at high $[ClO_2^{-}]$, the reaction rate would no longer depend on $[ClO_2^-]$. When ClO_2^- has much higher concentrations than all other nucleophiles, the ClO_2^- path becomes dominant in the nucleophilic route and the following inequalities are valid: $k^{\text{ClO}_2^-}[\text{ClO}_2^-] \gg \sum (k^{\text{Nu}}[\text{Nu}]) \text{ and } k_{-1}[\text{ClO}_2^-] \gg (\sum k^{\text{Nu}}[\text{Nu}])$ $[ClO_2]^2$. Equation 9 gives the corresponding rate expression where the rate is independent of the concentration of ClO_2^{-} .

$$-\frac{d[CIO_{2}]}{dt} = \frac{2k_{1}(k^{CIO_{2}^{-}}[CIO_{2}^{-}])[BrO_{2}^{-}][CIO_{2}]^{2}}{k_{-1}[CIO_{2}^{-}]} = \frac{2k_{1}k^{CIO_{2}^{-}}[BrO_{2}^{-}][CIO_{2}]^{2}}{k_{-1}}$$
(9)

To test this proposal, the rates were measured using $[\text{CIO}_2^-] = 1.193 \text{ M}$ and $[\text{CIO}_2^-] = 1.550 \text{ M}$ on the UV spectrophotometer under the conditions $p[\text{H}^+] = 9.34$, $[\text{CO}_3]_\text{T} = 0.10 \text{ M}$, $[\text{BrO}_2^-] = 0.0259 \text{ M}$, and $[\text{CIO}_2]_i = 2.8 \times 10^{-4} \text{ M}$. Excellent second-order reactions in $[\text{CIO}_2]$ were observed with $k_{\text{obs}} = 11.7 \pm 0.1 \text{ M}^{-1} \text{ s}^{-1}$ for 1.193 M $[\text{CIO}_2^-]$ and $k_{\text{obs}} = 11.8 \pm 0.2 \text{ M}^{-1} \text{ s}^{-1}$ for 1.550 M $[\text{CIO}_2^-]$. These two k_{obs} values agree well, and the result supports a substantial nucleophilic role for the CIO_2^- . The $(k_1/k_{-1})k^{\text{CIO}_2^-}$ value is calculated to be $(2.2 \pm 0.6) \times 10^2 \text{ M}^{-2} \text{ s}^{-1}$.

Effect of Higher [ClO₂] on the Reaction Order. The general rate expression in eq 5 predicts that an increase in the initial ClO₂ concentration at lower levels of $[ClO_2^-]$ will reduce the reaction order in $[ClO_2]$. The resulting mixed-order dependence in $[ClO_2]$ is analyzed by an initial rate method with a five-point smoothing derivative program.^{20,21} The initial rate in terms of the absorbance (*A*) change can be expressed by eq 10, where $a = 2l\epsilon k_1[BrO_2^-]$, $b = k_{-1}$ - $[ClO_2^-]/(\Sigma k^{Nu}[Nu])$, *l* is the cell path length (0.962 cm), and ϵ is the molar absorptivity of ClO₂. Figure 4 shows the fit of eq 11 when $[BrO_2^-] = 16.68 \text{ mM}$, $[ClO_2^-] = 1.82 \text{ mM}$, $[CO_3^{2-}]_T = 0.10 \text{ M}$, and $p[H^+] = 9.44$. This slope gives $k_1 = 36 \pm 2 \text{ M}^{-1} \text{ s}^{-1}$ and $k_{-1}/(\Sigma k^{Nu}[Nu]) = 2.41$, where Σk^{Nu} - $[Nu] = (k^{CO_3^{2-}}[CO_3^{2-}] + k^{BrO_2^-}[BrO_2^-] + k^{ClO_2^-}[ClO_2^-])$.

⁽²⁰⁾ The program, provided by H. L. Pardue, Department of Chemistry, Purdue University, is based on ref 21.

⁽²¹⁾ Savitzky, A.; Golay, M. Anal. Chem. 1964, 36, 1627-1639.

Figure 4. Initial instantaneous rate date (dA/dt) at higher concentrations of ClO₂ used to resolve values for k_1 which equals $(slope)^{-1}(2l\epsilon[BrO_2^{-1}])^{-1} = 36 \pm 2 \text{ M}^{-1} \text{ s}^{-1}$.

Contributions from $k^{OH^-}[OH^-]$ and k^{H_2O} are negligible under the conditions used.

$$-\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{a[\mathrm{CIO}_2]^2}{b + [\mathrm{CIO}_2]} \tag{10}$$

$$-\frac{[\text{CIO}_2]^2}{dA/dt} = \frac{b}{a} + \frac{[\text{CIO}_2]}{a} \tag{11}$$

Resolution of Rate Constants. Huie and Neta¹⁹ generated BrO₂ by pulsed radiolysis and reported a rate constant of $3.6 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ (at pH 9.2 and an unspecified room temperature) for its reaction with ClO_2^- to give ClO_2 and BrO₂⁻. With this k_{-1} value, it is possible to assign k^{Nu} values for each of the nucleophiles (Table 2). These third-order rate constants (M⁻² s⁻¹) vary from 2.89×10^8 for Br⁻ to 2.0×10^4 for H₂O. The relative magnitude of k^{Nu} is the following: Br⁻ > BrO₂⁻ ~ PO₄³⁻ ~ CIO₂⁻ > HPO₄²⁻ > CO₃²⁻ > Cl⁻ ~ OH⁻ > OAc⁻ > SO₄²⁻ ~ py \gg H₂O. The values do not correlate with the base strength of these species. For example, hydroxide ion is a stronger Brønsted base than CIO₂⁻ by a factor of $10^{13.7}$, but CIO₂⁻ is more reactive as a nucleophile by a factor of 1.6 in assisting electron transfer from ClO₂ to BrO₂.

Nucleophilicity scales (*n*) have been established on the basis of the substitution with CH_3X (X = Br or I) that include some of the species in this study.²² Figure 5 shows the correlation between nucleophilicities of eight species and their catalysis of ClO₂ oxidation by BrO₂.

Nucleophile Assistance of Electron Transfer. The experimental rate laws indicate a transition state composition of $[ClO_2BrO_2Nu]^{\ddagger}$ for the electron-transfer reaction from ClO_2 to BrO_2 . Without the nucleophile the electron-transfer process would require a large reorganizational energy to form ClO_2^+ and BrO_2^- with very unfavorable initial products. It seems reasonable that the role of the nucleophile is to form

Figure 5. Nucleophilicity correlation.

a NuClO₂ species that is a more favorable electron donor. When Nu is OH⁻, even a weakly associated HOClO₂⁻ species could transfer an electron to BrO₂ to give HOClO₂ and BrO₂⁻. Chloric acid (HOClO₂) is a stable molecule and is a very strong acid that would react very rapidly with any of the bases present to give chlorate ion (ClO₃⁻) as a final product. With other nucleophiles, intermediate products such as $(O_3POClO_2)^{2^-}$, for example, may rapidly hydrolyze to PO₄³⁻ and ClO₃⁻. Since this occurs after the rate-determining electron-transfer reaction, these hydrolysis reactions do not appear in the rate expressions, nor do any of the stoichiometry studies show evidence of NuClO₂⁺ species as products. On the other hand there would be ample time for hydrolysis reactions (eq 4) to occur with any of the nucleophiles.

Another detailed mechanism to consider is the initial formation of an electron pair bond between ClO_2 and BrO_2 , which are both free radicals. The disproportionation reaction of BrO_2 is believed to proceed via Br_2O_4 .^{1,2} In our studies, the BrO_2 concentration is extremely low because its formation in eq 2 is thermodynamically unfavorable. However, the ClO_2 concentration is much greater and reactant intermediates such as $O_2ClOBrO$ or $OClOBrO_2$ may be possible. The role of the nucleophile would then be to associate with these intermediates via electron-pair donation that would permit heteronuclear bond cleavage to give $NuClO_2^+$ and BrO_2^- as initial products.

We have used ab initio calculations²³ to determine structures for proposed adducts between ClO₂ and OH⁻, Br⁻, and Cl⁻ to give intermediates HOClO₂⁻, BrClO₂⁻, and ClClO₂⁻ that could transfer an electron to BrO₂ to give BrO₂⁻. These structures along with the bond distances and atomic charges are shown in Figure 6. In each case there is a weak interaction between the nucleophile and ClO₂ with bond distances and ΔH_r values of 2.487 Å and -34.2 kcal mol⁻¹ for OH⁻, 2.988 Å and -16.4 kcal mol⁻¹ for Cl⁻, and 3.197 Å and -14.9 kcal mol⁻¹ for Br⁻. The HOClO₂⁻ adduct prefers an orientation for OH that suggests some H-bonding may contribute to its ΔH value. These anionic adducts should be suitable to transfer an electron to BrO₂.

⁽²³⁾ Frisch, M. J.; et al. *Gaussian 98, Revision A.7*; Gaussian, Inc.: Pittsburgh, PA, 1998.

Figure 6. Equilibrium geometries (bond distances in Å) and atomic charges (italics) for possible intermediate adducts of ClO₂ with OH⁻, Cl⁻, and Br⁻: (a) HOClO₂⁻; (b) ClClO₂⁻; (c) BrClO₂⁻.

Figure 7. Equilibrium geometries (Å) and atomic charges (italics) for (a) OBrOCl(O)O and (b) its OH⁻ adduct [OBrOCl(O)₂OH]⁻.

Figure 7a shows a structure for an alternative mechanism where the two free radicals (ClO₂ and BrO₂) first form a weak electron pair bond to give OBrOCl(O)O, where ΔH_r is -1.43 kcal mol⁻¹ and the connecting O–Cl bond is 2.275 Å. An alternate OClOBr(O)O structure has the same energy. Addition of OH⁻ to either OBrOCl(O)O or OClOBr(O)O can occur at the Cl or Br sites. Optimization of the structures for the OH⁻ adduct show a consistent preference (ca. 20 kcal mol⁻¹) for binding at the Cl site to give $[OBrOCl(O)_2OH]^-$ (Figure 7b). ΔH_r for its formation is -62.6 kcal mol⁻¹. The calculations indicate that a significant amount of negative charge from OH⁻ is transferred to the O–Br–O portion of the molecular ion. Heteronuclear cleavage of the elongated O–Cl bond (2.361 Å) in the $[OBrOCl(O)_2OH]^-$ adduct would give BrO₂⁻ and HOClO₂ as the initial products.

The kinetics show that Nu, CIO_2 , and BrO_2 must come together in the transition state. The ab initio calculations support NuClO₂, CIO_2BrO_2 , and NuClO₂BrO₂ as possible intermediates. Although solvation of these species is not included, the calculations are helpful in visualizing possible mechanisms. The electron-transfer step between BrO_2 and the adducts in Figure 6 could be "outer sphere", but if a bonding pathway occurs, then a structure such as Figure 7b is likely.

Electrode Potentials for Bromine Dioxide. Our experimental value for k_1 and the pulsed radiolysis¹⁹ value for k_{-1} give an equilibrium constant $K_1 = k_1/k_{-1} = 1.0 \times 10^{-6}$, which corresponds to an E° value of -0.355 V for eq 2. E° for the ClO₂/ClO₂⁻ couple is 0.934 V,^{24,25} so this gives $E^{\circ} = 1.289$ V for the BrO₂/BrO₂⁻ couple. This value falls between E° values of 1.21 V estimated by Stanbury²⁵ and 1.33 V given by Field et al.²⁶ for the BrO₂/BrO₂⁻ couple.

Conclusions

Electron-transfer reactions between ClO_2 and BrO_2 are catalyzed by many nucleophiles. The magnitude of the effect is large and does not depend on the Brønsted base strength of the nucleophiles but rather on the extent of their interaction with ClO_2 (or a ClO_2BrO_2 intermediate). The results suggest that this process might be an overlooked phenomenon in other electron-transfer reactions where one of the reactants needs to expand its coordination in order to permit favorable electron transfer. The kinetic consequence in the present system is that bromite ion and other nucleophiles cause a manyfold increase in the rate of disproportionation of chlorine dioxide.

Acknowledgment. This work was supported by National Science Foundation Grant CHE-98-18214 and by a research grant to L.W. from the Purdue Research Foundation.

Supporting Information Available: Tables and figures with supplemental data. This material is available free of charge via the Internet at http://pub.acs.org.

IC010849W

- (24) Klaning, U. K.; Sehested, K.; Holcman, J. J. Phys. Chem. 1985, 89, 760–763.
- (25) Stanbury, D. M. Adv. Inorg. Chem. 1989, 33, 69-138.
- (26) Field, R. J.; Körös, E.; Noyes, R. M. J. Am. Chem. Soc. 1972, 94, 8649–8664.