

Study of the Structural, Electronic, and Magnetic Properties of the Barium-Rich Iron(IV) Oxides, Ba₂FeO₄ and Ba₃FeO₅

James L. Delattre,† Angelica M. Stacy,*,† Victor G. Young, Jr.,‡ Gary J. Long,§ Raphae1**l Hermann,**[|] **and Fernande Grandjean*,**[|]

*Department of Chemistry, Uni*V*ersity of California*s*Berkeley, Berkeley, California 94720, Department of Chemistry, Uni*V*ersity of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65409-0010, and Institut de Physique, B5, Uni*V*ersite*´ *de Lie*`*ge, B-4000 Sart-Tilman, Belgium*

Received December 28, 2001

Crystals of Ba₂FeO₄ and Ba₃FeO₅, grown from a "self-sealing" KOH–Ba(OH)₂ flux, have been characterized by single-crystal X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. Ba₂FeO₄ forms nonmerohedral twinned crystals with the monoclinic space group $P2_1/n$, $a = 6.034(2)$ Å, $b = 7.647(2)$ Å, $c = 10.162(3)$ Å, $\beta =$ 92.931(6)°, and $Z = 4$. Ba₃FeO₅ crystallizes in the orthorhombic space group *Pnma*, with $a = 10.301(1)$ Å, $b =$ 8.151(1) \AA , $c = 7.611(1)$ \AA , and $Z = 4$. While both compounds feature discrete FeO₄⁴⁻ tetrahedra, the anion
found in Ba-EoO, has shorter Eo. O honds and is significantly distorted relative to the Ba-EoO- anion. found in Ba₂FeO₄ has shorter Fe–O bonds and is significantly distorted relative to the Ba₃FeO₅ anion. An iron valence of 4+ was confirmed by magnet susceptibility measurements and by the low-temperature isomer shifts of -0.152 and -0.142 mm/s relative to α-iron for Ba₂FeO₄ and Ba₃FeO₅, respectively.

Introduction

Alkali and alkaline-earth ferrates that contain iron in oxidation states higher than iron(III) have garnered much attention in recent years because they can possess both unusual electronic properties¹ and solid-state structures.² Furthermore, these ferrates can be used as oxidizing agents³ and battery cathodes.4 To date, studies of the structures and physical properties of high oxidation state barium iron oxides, a subset of the aforementioned ferrates, have focused⁵ on BaFeO₄ and the oxygen-deficient perovskites,⁶ BaFeO_{3-x}.

- (2) (a) Weller, M. T.; Hector, A. L. *Angew. Chem.* **²⁰⁰⁰**, *¹¹²*, 4330- 4331. (b) Weller, M. T.; Hector, A. L. *Angew. Chem., Int. Ed.* **2000**, *³⁹*, 4162-4163.
- (3) (a) Audette, R. J.; Quail, J. W.; Smith, P. J. *Tetrahedron Lett.* **1971**, 279. (b) Schiopescu, A.; Albu, A.; Sandulescu, D. *Re*V*. Roum. Chim.* **¹⁹⁹¹**, *³⁶*, 65-69. (c) Delaude, L.; Laszlo, P. *J. Org. Chem.* **¹⁹⁹⁶**, *⁶¹*, 6360–6370.
Licht S : W
- (4) Licht, S.; Wang, B. H.; Ghosh, S. *Science* **¹⁹⁹⁹**, *²⁸⁵*, 1039-1042.

However, little is known about the barium-rich iron(IV) oxides, Ba_2FeO_4 and Ba_3FeO_5 . Scholder et al. reported⁷ that $Ba₂FeO₄$ and $Ba₃FeO₅$ powders can be synthesized by dehydrating the barium iron(III) hydroxides with the appropriate Ba/Fe ratios at 700 °C under a dynamic atmosphere of O_2 . The powder patterns of Ba_2FeO_4 and Ba_3FeO_5 were reported⁸ to resemble those of β -Ca₂SiO₄ and Cs₃CoCl₅, but no detailed structural data were given. Furthermore, no information on the electronic or magnetic properties of Ba₂-FeO₄ and Ba₃FeO₅ has been reported. In this article, we report a new molten $KOH-Ba(OH)_2$ flux synthesis that yields large crystals of $Ba₂FeO₄$ and $Ba₃FeO₅$. The compounds have been characterized by single-crystal X-ray diffraction, SQUID magnetometry, and Mössbauer spectroscopy.

- *⁶³*-*5*, 714-718. (7) Scholder, R.; Vonbunsen, H.; Zeiss, W. *Z. Anorg. Allg. Chem.* **1956**, *²⁸³*, 330-337.
- (8) Mansmann, M. *Z. Anorg. Allg. Chem.* **¹⁹⁶⁵**, *³³⁹*, 52-56.

2834 Inorganic Chemistry, Vol. 41, No. 11, 2002 10.1021/ic0113247 CCC: \$22.00 [©] 2002 American Chemical Society Published on Web 05/10/2002

^{*} Corresponding authors. E-mail: astacy@socrates.berkeley.edu (A.M.S.); fgrandjean@ulg.ac.be (F.G.).

University of California-Berkeley.

[‡] University of Minnesota.

[§] University of Missouri-Rolla. \parallel Université de Liège.

^{(1) (}a) Adler, P.; Goncharov, A. F.; Syassen, K. *Hyperfine Interact.* **1995**, *⁹⁵*, 71-84. (b) Dann, S. E.; Weller, M. T.; Currie, D. B.; Thomas, M. F.; Alrawwas, A. D. *J. Mater. Chem.* **¹⁹⁹³**, *³*, 1231-1237. (c) Takano, M.; Nakanishi, N.; Takeda, Y.; Naka, S.; Takada, T. *MRS Bull.* **¹⁹⁷⁷**, *¹²*, 923-928.

^{(5) (}a) Gump, J. R.; Wagner, W. F.; Schreyer, J. M. *Anal. Chem.* **1954**, *²⁶*, 1957-1957. (b) Jellinek, F. *J. Inorg. Nucl. Chem.* **¹⁹⁶⁰**, *¹³*, 329- 331. (c) Shinjo, T.; Ichida, T.; Takada, T. *J. Phys. Soc. Jpn.* **1970**, *29*, 111.

^{(6) (}a) Vanhook, H. J. *J. Phys. Chem.* **1964**, *68*, 3786. (b) Mori, S. *J. Am. Ceram. Soc.* **1965**, *48*, 165. (c) Takeda, Y.; Shimada, M.; Kanamaru, F.; Koizumi, M.; Yamamoto, N. *MRS Bull.* **¹⁹⁷⁴**, *⁹*, 537- 543. (d) Gonzalez-Calbet, J. M.; Parras, M.; Valletregi, M.; Grenier, J. C. *J. Solid State Chem.* **¹⁹⁹⁰**, *⁸⁶*, 149-159. (e) Parras, M.; Gonzalez-Calbet, J. M.; Valletregi, M.; Grenier, J. C. *Solid State Ionics* **1993**,

Table 1. Crystallographic Data for Ba₂FeO₄

Ba ₂ FeO ₄	$fw = 394.53$
$a = 6.034(2)$ Å	$P2_1/n$ (No. 14)
$b = 7.647(2)$ Å	$T = 138$ K
$c = 10.162(3)$ Å	$\lambda = 0.71069 \text{ Å}$
$\beta = 92.931(6)^{\circ}$	$D_{\text{caled}} = 5.596$ g/cm ³
$V = 468.3(3)$ Å ³	μ (Mo K) = 19.578 cm ⁻¹
$Z=4$	$R1^a = 0.0478$
	$wR2^b = 0.1143$
$v(F_{-}2)$ ² 1 $1/2$	$R1 = \sum F_0 $ - $ F_c /\sum F_0 $, $b \le 2$ = $\sum [w(F_0^2 - F_c^2)^2]/2$

 a R1 = $\sum ||F_{\text{o}}|$ - $|F_{\text{c}}|/\sum |F_{\text{o}}|$. *b* wR2 = $\{\sum [w(F_{\text{o}})]^{1/2}$.

Experimental Section

Crystal Growth. Anhydrous Ba(OH)₂ was prepared by dehydrating Ba(OH)₂·8H₂O (Strem, 98+%) at 280 °C for 1 h. Ba₂FeO₄ was prepared by heating a mixture of 1.9 g Ba(OH)₂, 2.5 g of KOH (Johnson Mathey, Ultrapure), and 0.4 g of Fe₂O₃ (Alfa Aesar, 99.945%) in a 20 mL alumina crucible which had an alumina lid. $Ba₃FeO₅$ was prepared from 2.8 g $Ba(OH)₂$, 2.5 g of KOH, and 0.4 g of Fe₂O₃ in a similar crucible. In each case, the reaction mixture was heated from room temperature to 750 °C over 5 h, maintained at 750 °C for 5 h, and then slowly cooled to 600 °C over a period of 32 h. The furnace was then shut off, and the crucible and its contents were allowed to cool to room temperature. In the process of heating, the molten flux crept up the sides of the crucible and sealed the lid. Removal of the lid revealed a bed of loose crystals on the bottom of the crucible. The crystals were isolated by hand in an inert atmosphere box as both $Ba₂FeO₄$ and Ba₃FeO₅ are moisture sensitive.

Structure Determination for Ba₂FeO₄. A nonmerohedrally twinned dataset was collected with a SMART CCD area detector. Using GEMINI,⁹ the reflections were indexed, and the second twin component was found to be related by a 180° rotation about the [100] axis. The masses of the two twins were found to have a ratio of approximately 2:1. Data from the greater twin were integrated using SAINT¹⁰ to a maximum 2θ value of 50.27°. An empirical absorption correction was applied using SADABS.11 The data were converted to HKLF 5 format using ROTWIN (V. G. Young, Jr.). About $\frac{2}{5}$ of the data had partially overlapped reflections from both twin components. The structure was solved by direct methods and expanded using Fourier techniques.12 The final cycle of full-matrix least-squares refinement against $F²$ was based on 767 unique reflections and 47 variable parameters. The barium and iron atoms were refined anisotropically while the oxygens were refined isotropically. Crystal data are given in Table 1.

Structure Determination for Ba3FeO5. Data were collected with a SMART CCD area detector and integrated by the program SAINT. A face indexed absorption correction was applied using XPREP,¹³ and an empirical correction was applied using SADABS. The structure was solved by direct methods. The final cycle of fullmatrix least-squares refinement against *F*² was based on 1377 unique reflections and 50 variable parameters. All atoms were refined anisotropically. Crystal data are given in Table 2.

Mössbauer Spectroscopy. Mössbauer spectra were measured between 78 and 295 K on a constant-acceleration spectrometer

Table 2. Crystallographic data for Ba₃FeO₅

Ba_3FeO_5 $a = 10.301(1)$ Å $b = 8.151(1)$ Å $c = 7.611(1)$ Å $V = 639.05(11)$ Å ³ $Z = 4$	$fw = 547.87$ $Pnma$ (No. 62) $T = 157$ K $\lambda = 0.71069$ Å $D_{\text{caled}} = 5.694 \text{ g/cm}^3$ $\mu(Mo\ K) = 20.41\ cm^{-1}$ $R1^a = 0.0471$ $wR2^b = 0.0925$
$\sum [w(F_0^2)^2]^{1/2}$.	a R1 = Σ F _o - F _c / Σ F _o b wR2 = { Σ [w(F _o ² - F _c ²) ²]/

which utilized a room-temperature rhodium matrix cobalt-57 source and was calibrated at room temperature with α -iron foil. The estimated absolute errors are ± 0.005 mm/s for the isomer shifts and ± 0.01 mm/s for the quadrupole splittings and line widths.

Magnetic Measurements. Magnetic susceptibility measurements were obtained as a function of temperature on a Quantum Design SPMS SQUID. Data were collected on samples contained in gelatin capsules and corrected for the associated diamagnetism.

Results and Discussion

The structure determination of $Ba₂FeO₄$ from a twinned crystal revealed it to be isostructural with β -Ca₂SiO₄; thus, it is composed of isolated $FeO₄⁴⁻$ tetrahedra that are coordinated in an irregular manner by nine barium(II) ions. A schematic diagram of the structure is shown in Figure 1a. The related $Ba₂MO₄$ compounds, where M is Ti, V, Cr, or Co, also consist of discrete MO_4^{4-} tetrahedra.^{14,15} This adherence to a single structural motif is in contrast to the 2:1:4 strontium metalates. Sr_2CrO_4 has isolated CrO_4^{4-} tetrahedra,¹⁶ and Sr₂VO₄ has $V_2O_8^{8-}$ dimers,¹⁷ whereas Sr₂-TiO₄ and Sr₂FeO₄ have the K₂NiF₄ structure.¹⁸ Apparently, the large ionic radius of barium(II), which effectively isolates the MO_4^{4-} tetrahedra and prevents oxo-bridging, is the primary reason for the isostructural nature of the $Ba₂MO₄$ compounds.

 Ba_3FeO_5 was reported⁸ to be isostructural with Cs_3CoCl_5 which is tetragonal with space group *I*4/*mcm*. We have found that Ba_3FeO_5 precipitated from the molten $KOH-Ba(OH)_2$ eutectic is orthorhombic with space group *Pnma* and is isostructural¹⁹ with Ba₃FeS₅. A schematic diagram of the structure is shown in Figure 1b. As in $Ba₂FeO₄$, $Ba₃FeO₅$ consists of isolated $FeO₄⁴⁻$ tetrahedra, but there is an additional BaO per formula unit. This additional BaO results in a fifth oxygen ion that does not bond to iron(IV) but is coordinated by six barium(II) nearest neighbor ions, which yield a distorted octahedral coordination environment.

The prominent structural features of $Ba₂FeO₄$ and $Ba₃$ - $FeO₅$ are the isolated $FeO₄⁴⁻$ tetrahedral anions. The structure

- (17) Liu, G.; Greedan, J. E. *J. Solid State Chem.* **¹⁹⁹³**, *¹⁰³*, 228-239.
- (18) (a) Ruddlesden, S. N.; Popper, P. *Acta Crystallogr.* **¹⁹⁵⁷**, *¹⁰*, 538- 540. (b) Dann, S. E.; Weller, M. T.; Currie, D. B. *J. Solid State Chem.* **¹⁹⁹¹**, *⁹²*, 237-240.
- (19) Lemley, J. T.; Jenks, J. M.; Hoggins, J. T.; Eliezer, Z.; Steinfink, H. *J. Solid State Chem.* **¹⁹⁷⁶**, *¹⁶*, 117-128.

⁽⁹⁾ *GEMINI V.1.02*; Bruker Analytical X-ray Systems Inc.: Madison, WI, 2000.

⁽¹⁰⁾ *SAINT: Siemens Area Dectector Integration Program*, V5.04; Siemens Industrial Automation, Inc.: Madison, WI, 1995.

⁽¹¹⁾ Sheldrick, G. M. *SADABS: Siemens/Bruker Area Detector Absorption* Correction Program, V2.03; University of Göttingen: Germany, 2000.

⁽¹²⁾ Sheldrick, G. M. *SHELXS and SHELXL: Part of the SHELXTL Crystal Structure Determination Package*; Bruker Analytical X-ray Systems Inc.: Madison, WI, 1995-1999.

⁽¹³⁾ *XPREP, V.5.03: Part of the SHELXTL Crystal Structure Determination Package*; Siemens Industrial Automation, Inc.: Madison, WI, 1995.

⁽¹⁴⁾ Bland, J. A. *Acta Crystallogr.* **1961**, *14*, 875.

^{(15) (}a) Mattausch, Hj.; Muller-Buschbaum, Hk. *Z. Anorg. Allg. Chem.* **¹⁹⁷¹**, *³⁸⁶*, 1-14. (b) Mattausch, Hj.; Muller-Buschbaum, Hk. *Z. Anorg. Allg. Chem.* **¹⁹⁷⁴**, *⁴⁰⁷*, 129-134. (c) Chamberland, B. L.; Herrerofernandez, M. P.; Hewston, T. A. *J. Solid State Chem.* **1985**, *⁵⁹*, 111-115.

⁽¹⁶⁾ Liu, G.; Greedan, J. E.; Gong, W. H. *J. Solid State Chem.* **1993**, *105*, 78–91.
Liu. G.

Figure 1. (a) X-ray crystal structure of Ba_2FeO_4 projected along the [100] direction. Barium atoms are shown as black circles; $FeO₄⁴⁻$ anions are shown as polyhedra. (b) X-ray crystal structure of $Ba₃FeO₅$ projected along the [001]. Barium atoms are shown as black circles, oxygen atoms are shown as white circles, and $FeO₄⁴⁻$ anions are shown as polyhedra.

of this anion was recently characterized² for the first time in $Na₄FeO₄$ and was found to be compressed along a $C₂$ axis. The compression was attributed to the $d⁴$ electron configuration of iron(IV); that is, the lowered symmetry lifts the degeneracy of the t_2 orbital resulting in a net energetic stabilization, the well-known Jahn-Teller effect.

The Fe O_4^4 tetrahedra found in Ba₂Fe O_4 , see Figure 2a, are distorted in a manner similar to the distortion found² in

Figure 2. (a) ORTEP plot of the $FeO₄⁴⁻$ anion in Ba₂FeO₄ (50% thermal ellipsoids). Max and min angles are labeled. (b) ORTEP plot of the $FeO₄⁴$ anion in Ba₃FeO₅ (50% thermal ellipsoids). The ion has crystallographically imposed *m* symmetry. Max and min angles are labeled.

Na₄FeO₄. The anion has approximate D_{2d} symmetry with ^O-Fe-O angles ranging from 99.6° to 124.7°. This is a distortion of \pm 13.9% from the angle of 109.5° for perfect tetrahedral symmetry. In contrast, the $FeO₄⁴⁻$ tetrahedra found in Ba_3FeO_5 , see Figure 2b, are much closer to ideal, as they are only distorted by $\pm 3.6\%$ from perfect tetrahedral symmetry. This conflicting behavior suggests that interatomic forces other than Jahn-Teller stabilization must determine the degree of distortion of these tetrahedra. Anions that are not subject to the Jahn-Teller effect will sometimes distort from their idealized geometry. The driving forces for these distortions are Coulombic packing interactions within the crystal, that is, *matrix effects*. ²⁰ This argument is buttressed by several examples of distorted $3d^0$ and $3d^5$ tetrahedra.^{14,21} In $Ba₂FeO₄$ and $Ba₃FeO₅$, the efficacy of the Jahn-Teller effect is, no doubt, diminished relative to, say, the tetragonal distortion observed in octahedral complexes because of the nonbonding character of the t*²* orbitals in pseudotetrahedral symmetry. In short, while the $3d⁴$ electronic structure may provide an impetus for distortion, matrix effects play the predominate role in determining the degree of distortion in these compounds.

The average Fe-O bond length in Ba₂FeO₄ is 1.78 Å, remarkably shorter than the 1.84 Å average bond length found in $Ba₃FeO₅$. This disparity is likely a consequence of packing effects, but a small reduction in formal valence could also result from the longer bonds in $Ba₃FeO₅$. The relationship between metal-oxygen bond lengths and valence is

⁽²⁰⁾ Vaughey, J. T.; Corbett, J. D. *Chem. Mater.* **¹⁹⁹⁶**, *⁸*, 671-675.

^{(21) (}a) Jansen, M. *Z. Anorg. Allg. Chem.* **¹⁹⁷⁵**, *⁴¹⁷*, 35-40. (b) Boulahya, K.; Parras, M.; Vegas, A.; Gonzalez-Calbet, J. M. *Solid State Sci.* **²⁰⁰⁰**, *²*, 57-64.

Table 3. Mössbauer Spectral Parameters

compound	T,K	δ , mm/s ^a	ΔE_{Ω} , mm/s	Γ , mm/s
Ba ₂ FeO ₄	295	-0.244	0.33	0.34
	225	-0.185	0.34	0.37
	155	-0.169	0.35	0.37
	85	-0.152	0.36	0.35
Ba ₃ FeO ₅	295	-0.225	0.35	0.29
	240	-0.204	0.34	0.30
	190	-0.199	0.37	0.30
	140	-0.168	0.40	0.30
	90	-0.150	0.39	0.31
	78	-0.142	0.39	0.32

 a The isomer shifts are given relative to room temperature α -iron foil.

Figure 3. Mössbauer spectra of Ba₂FeO₄, top, and Ba₃FeO₅, bottom, obtained at 85 and 78 K, respectively.

often described by using bond valence theory.²² By using the procedure outlined by Brown, 23 we have calculated the bond valence parameter $R_0 = 1.798$ for Fe⁴⁺, a calculation which is based both on our crystallographic data and on existing data.²⁴ This yields an estimated valence of $+4.2$ and +3.6 for iron sites in $Ba₂FeO₄$ and $Ba₃FeO₅$, respectively. This method likely overestimates the deviation from the formal valence of $+4$, but it is worth noting that these values are in reasonable agreement with the expected tetravalence.

Iron-57 Mössbauer spectroscopy is also widely used to estimate the valence state of iron, but the isomer shift of tetrahedral oxoferrate(IV) has not been previously reported. Examples of octahedral oxoferrates(IV) are rare but are known to have room-temperature isomer shifts between -0.20 and $+0.05$ mm/s relative to α -iron.²⁵ The temperature dependence of the iron(IV) isomer shift is also of considerable interest because iron(IV) sites in other alkaline earth ferrates have been shown¹ to undergo charge disproportionation into Fe^{III} and Fe^{V} at low temperature.

The low-temperature isomer shifts of -0.152 and -0.142 mm/s relative to α -iron for Ba₂FeO₄ and Ba₃FeO₅, respectively (see Table 3), obtained from the experimental Mössbauer spectra (see Figure 3) are in agreement with the value of approximately -0.20 mm/s that we would predict from the empirical relationship²⁶ between the oxidation state,

- (23) Brown, I. D.; Altermatt, D. *Acta Crystallogr. B* **¹⁹⁸⁵**, *B41*, 244-247.
- (24) Dann, S. E.; Weller, M. T.; Currie, D. B. *J. Solid State Chem.* **1992**,

coordination number, and the iron-57 isomer shift for tetrahedral oxoferrate(IV). A calculation²⁷ of the iron(IV) Wigner-Seitz cell volumes for Ba_2FeO_4 and Ba_3FeO_5 yields values of 1.918 and 2.367 \AA^3 , respectively. As expected, Ba₃- $FeO₅$ with the larger Wigner-Seitz cell volume has the less negative isomer shift. On the basis of the spectral isomer shifts, the formal valence for iron in $Ba₂FeO₄$ is slightly greater than that in Ba_3FeO_5 , an increase which is consistent with our bond valence theory oxidation state estimates. No charge disproportionation is observed down to 85 K. As expected on the basis of the small distortion of the isolated $FeO₄^{4–} tetrahedral anions, the quadrupole splittings of both$ $Ba₂FeO₄$ and $Ba₃FeO₅$ are small. Surprisingly, the absolute value of the splitting of $Ba₂FeO₄$ is slightly smaller than that of the less distorted Ba3FeO5. However, the signs of the two quadrupole splittings may be different.

The utility of Mössbauer spectroscopy is underscored if one considers the case of $Ba₃FeS₅$ which has the same structure as Ba_3FeO_5 . On the basis of its stoichiometry, Ba_3 - $FeS₅$ should contain iron(IV). Magnetic results were inconclusive in determining the iron oxidation state, but a comparison of the Ba₃FeS₅ isomer shifts¹⁹ of 0.17 and 0.26 mm/s at 300 and 78 K, respectively, with known Mössbauer spectral isomer shifts clearly indicated the presence of tetrahedral iron(III) in Ba_3FeS_5 . Thus, Goodenough et al. described²⁸ Ba₃FeS₅ as BaS \cdot Ba²⁺₂[Fe³⁺(S₄)⁷⁻]; that is, the iron is reduced and gives rise to a hole in the S^{2-} 3p⁶ band. A similar behavior for Ba_2FeO_4 or Ba_3FeO_5 is unlikely because, as is well-known, the tetrahedral Q^{2-} ligand environment can stabilize iron valence states up to $+6$; nevertheless, the Mössbauer isomer shift provides a valuable confirmation of the iron(IV) oxidation state in both Ba_2FeO_4 and Ba_3FeO_5 . Therefore, bond valence theory and Mössbauer spectroscopy both support an approximate $d⁴$ configuration, with $Ba₂FeO₄$ achieving a slightly greater valence than $Ba₃$ -FeO₅.

A plot of the molar magnetic susceptibility as a function of temperature for $Ba₂FeO₄$, see Figure 4, shows a maximum at 25 K, a maximum which indicates the onset of short-range antiferromagnetic ordering. A Curie-Weiss law fit of the inverse susceptibility above 60 K yields a Weiss constant of -50 K, a negative value which is indicative of antiferromagnetic interactions. The Curie constant of 2.99 emu K/mol leads to an effective magnetic moment, μ_{eff} , of 4.89 $\mu_{\rm B}$, a value which is which is in excellent agreement with the theoretical spin only moment of 4.90 μ _B.

Though both ferrates contain similar $FeO₄⁴⁻$ anions, the magnetic behavior of Ba_3FeO_5 is rather different from that of Ba2FeO4. A plot of the inverse susceptibility versus temperature for Ba_3FeO_5 is also shown in Figure 4. The data were fit using the Curie-Weiss relationship, yielding a Curie

(28) Goodenough, J. B.; Fatseas, G. A. *J. Solid State Chem.* **¹⁹⁸²**, *⁴¹*, 1-22.

⁽²²⁾ Brown, I. D. *Chem. Soc. Re*V*.* **¹⁹⁷⁸**, *⁷*, 359-376.

⁹⁷, 179-185. (25) Menil, F. *J. Phys. Chem. Solids* **¹⁹⁸⁵**, *⁴⁶*, 763-789.

⁽²⁶⁾ Russo, U.; Long, G. J. In *Mössbauer Spectroscopy Applied to Inorganic Chemistry*; Long, G. J., Grandjean, F., Eds.; Plenum Press: New York, 1989; Vol. 3, p 289.

⁽²⁷⁾ The Wigner-Seitz cell volumes were calculated by using the method of: Gelato, L. *J. Appl. Crystallogr.* **¹⁹⁸¹**, *¹⁴*, 141-143 and ionic radii of 1.61, 0.54, and 1.28 Å for barium(II), iron(IV), and $oxygen(-II)$, respectively.

Figure 4. Molar magnetic susceptibility of Ba_2FeO_4 and Ba_3FeO_5 (top) as a function of temperature. The inverse molar magnetic susceptibility of $Ba₂FeO₄$ and $Ba₃FeO₅$ (bottom) as a function of temperature and its fit with the Curie-Weiss law.

constant of 3.50 emu K/mol and a Weiss temperature of -21 K. Thus, Ba_3FeO_5 is paramagnetic down to 5 K, but at temperatures below 5 K, a Neel temperature is anticipated. The Curie constant yields an effective magnetic moment of 5.29 μ _B. The deviation from the spin-only value likely results from spin-orbit coupling that is quenched in the distorted anion.

 $Ba₂FeO₄$ exhibits antiferromagnetic ordering below 25 K whereas $Ba₃FeO₅$ is paramagnetic down to 5 K. Thus, the intermolecular coupling is significantly reduced in $Ba₃FeO₅$ relative to that in Ba_2FeO_4 . This magnetic dilution results from the increased interanionic spacing that accompanies the

Delattre et al.

incorporation of an additional BaO per formula unit. The reduction in cooperative interaction is in accord with the crystallographic structures which reveal that the closest ironiron distances are 4.752 and 5.254 Å in Ba₂FeO₄ and Ba₃-FeO5, respectively. Most likely, the magnetic exchange pathways involve two intervening oxygen dianions; Fe-O' \cdot O-Fe. The shortest intertetrahedral O \cdot \cdot O distance in Ba₂- $FeO₄$ is 3.221 Å, whereas, because the tetrahedra are more isolated, the shortest O…O distance in Ba₃FeO₅ is 3.384 Å. Interestingly, the closest nonbonding Fe $\cdot\cdot\cdot$ O distance is 3.834 Å in Ba₂FeO₄ as compared to 3.686 Å in Ba₃FeO₅ which suggests that coupling through a single intervening oxygen, that is, $Fe-O \cdot \cdot \cdot Fe$, is not the dominant exchange pathway.

In conclusion, the structures of $Ba₂FeO₄$ and $Ba₃FeO₅$ have been found to contain discrete $FeO₄⁴⁻$ anions with differing bond lengths and degrees of distortion: a consequence of matrix effects. The negative Mössbauer effect isomer shifts observed for the tetrahedral oxoferrate(IV) ion are consistent with the presence of iron(IV). $Ba₃FeO₅$ is paramagnetic down to 5 K but has a negative Weiss temperature, whereas $Ba₂$ -FeO4 orders antiferromagnetically at 25 K. The weaker magnetic exchange coupling in $Ba₃FeO₅$ results from the magnetic dilution that accompanies the inclusion of an additional BaO in the formula unit.

Acknowledgment. A.M.S. thanks the Committee on Research at UC Berkeley for a Faculty Research Grant. G.J.L. thanks the U.S. National Science Foundation for Grant DMR95-21739 and the Fonds National de la Recherche Scientifique, Brussels, Belgium, for support during a sabbatical visit in 2000-2001. F.G. thanks the Fonds National de la Recherche Scientifique, Brussels, Belgium, for Grant 9.456595.

Supporting Information Available: X-ray crystallographic files, in CIF format, are available. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0113247