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The reaction between arachno-4-CB8H14 and PCl3 in the presence
of PS (PS ) proton sponge ) 1,8-dimethylamino naphthalene)
(dichloromethane, rt, 24 h) produced the neutral phosphacarborane
closo-2,1-PCB8H9 (35% yield), while a similar reaction of nido-1-
CB8H12 gave the isomeric compound closo-6,1-PCB8H9 (27% yield).
The structures of both compounds were derived on the basis of
the combined ab initio/GIAO/NMR (1H, 11B, 13C) approach. The
optimized structures at a correlated level of theory (MP2) with
6-31G* basis set were used as a basis for calculations of the 11B
and 13C chemical shifts at GIAO-SCF/II and GIAO-MP2/II, the latter
showing excellent agreement with experimental data.

Todd et al. found that reactions of PCl3 or RPCl2 (R )
alkyl or aryl) with open structured (nido or arachno) boron-
cluster substrates in the presence of deprotonation agents led
to phosphaboranes or phosphacarboranes.1 Thus, for example,
all three isomers, 1,2-, 1,7-, and 1,12-PCB10H11, were
prepared. These are analogous to the well-known 12-vertex
dicarbaboranes C2B10H12, CH and P units being isolobal.
Recent work by Sneddon at al.2 reported on a high-yield
synthesis of the 11-vertex P-substituted phosphadicarbabo-
ranes, 7-R-nido-7,8,9-PC2B8H10 (R ) alkyl or aryl), based
on the reaction betweennido-5,6-C2B8H12

3 and RPCl2 in the
presence of PS (PS) proton sponge) 1,8-dimethylamino

naphthalene); however, the same reaction with PCl3 generated
the unsubstituted phosphadicarbaboranenido-7,8,9-PC2B8H11.4

Reactions with some borane and carborane substrates may
also result in multiple insertion of P-cluster units, as
exemplified by the formation of 1,2-P2B8H10,5 isomeric
compounds P2C2B7H9,6 and the derivatives of P3CB7H8

7 from
reactions of PCl3 with B10H14 and the two (4,6- and 4,5-)
arachno-C2B7H13 isomers. We report here our preliminary
results on monophosphorus insertion reactions into the cages
of the 9-vertex monocarboranes8 arachno-4-CB8H14 and
nido-4-CB8H12 which produced the first representatives of
the 10-vertexcloso phosphacarborane series, neutral com-
pounds 2,1-PCB8H9 and 6,1-PCB8H9.

As shown in Scheme 1 (path i), the reaction between
arachno-4-CB8H14 (1) and PCl3 in the presence of PS in
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dichloromethane at ambient temperature for 24 h produced
the neutral phosphacarboranecloso-2,1-PCB8H9 (2) in 35%
yield as the main product after LC separation of the reaction
products.9 Side products from the reaction seem to be
consistent with P3CB7H8 and P2CB8H10 and will be charac-
terized in the full paper after isolating pure substances. The
formation of2 is consistent with the stoichiometry as in eq
1 and with the insertion of the P-vertex into the area
identified by the open-face cluster atoms C(4), B(5), B(6),
B(8), and B(9) in structure1 upon removal of all bridging
andendohydrogens as HCl (scavenged by PS) or H2.

A similar reaction betweennido-1-CB8H12 (3) and PCl3
in the presence of PS in dichloromethane at ambient
temperature for 24 h produced the neutral phoshacarborane
closo-6,1-PCB8H9 (4) in 27% yield as a single product, the
rest of3 or 4 being probably decomposed by hydrolysis.10

Compound4 is isomeric with 2, and its formation is
consistent with the simple stoichiometry of eq 2. The
P-vertex is obviously incorporated into the area identified
by the open-face cluster atoms B(2), B(3), B(6), B(7), and
B(9) in structure3 upon simultaneous removal of all bridging
hydrogens.

The Cs symmetry 10-vertexclosostructure with the CH
vertex at the apical site of lowest coordination is a common
feature of both isomeric compounds2 and4. These structures
are in agreement with the found molecular cutoffs in the

mass spectra and multinuclear NMR data.9,10 The11B NMR
spectra of both compounds consist of 1:1:2:2:2 patterns of
doublets and could be unabiguously assigned by two-
dimensional [11B-11B] COSY experiments11 combined with
1H{11B(selective)} measurements.12 A typical feature of their
1H NMR spectra is the presence of a broader low-field CH
resonance which is split into a doublet due to2JPH coupling
in the spectrum of2 while the corresponding spectrum of4
shows just a singlet CH resonance. The13C{11B, 1H} NMR
spectrum of2 displays one doublet due to1JPC coupling,
while the corresponding spectrum of4 shows one singlet
with a fine 1JCB splitting. The 31P NMR spectra of both
species exhibit one singlet resonance. It should be also noted
that there are straightforward NMR similarities between
compounds2 and4 and their dicarbaborane counterparts 1,2-
and 1,6-C2B8H10, which reflect the isolobality between CH
and bare P vertices. Moreover,2 and 4 resemble the 10-
vertex-closodicarbaboranes in their relative stabilities:4 is
favored over2 by 17.8 kcal/mol [RMP2(fc)/6-31G*+ ZPE
(HF/6-31G*), zero point energy corrections are scaled by
0.89].13

The relatively high volatility and solubility in hydrocarbons
precluded growing crystals suitable for X-ray diffraction
analyses. The molecular geometries of compounds2 and4
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2B, B3,5), -24.4 (br d,1JBH ) 165 Hz, 2B, B6,9), -26.6 (d,1JBH )
150 Hz, 2B, B7,8), all theoretical [11B-11B] COSY cross-peaks
observed.11B NMR (calcd, GIAO-MP2/II//RMP2(fc)/6-31G*):δ )
51.9 (B10), -4.7 (B4), -17.3 (B3,5), -26.0 (B6,9), -28.2 (B7,8).1H-
{11B} NMR (CDCl3): δ ) 6.94 (s, 1H, H10), 6.22 (d,2JPH ) 15.5
Hz, 1H, H1), 2.88 (s, 1H, H4), 1.71 (d,2JPH ) 14.5 Hz, 2H, H3,5),
1.31 (s, 2H, H7,8), 1.28 (d,2JPH ) 15.5 Hz, 2H, H6,9). 13C{11B,1H}
NMR (CDCl3): δ ) 54.4 (d,1JPC ) 74.4 Hz, 1C, C1). 13C{11B} NMR
(CDCl3): δ ) 54.4 (d,1JCH ) 191 Hz, 1C, C1). 13C NMR (calcd,
GIAO-MP2/II//RMP2(fc)/6-31G*): δ ) 63.6.31P{1H} NMR (CDCl3):
δ ) -129.9 (s, 1P, P2). IR (KBr): ν) 2576 (B-H) cm-1. MS (70
eV, EI), m/z (%): 140 (17) [M]+, 137 (100) [M - 3H]+ (( 5%
agreement between observed and calcd intensities in the parent
envelope). Anal. Calcd for CH9B8P (138.61): B, 62.45. Found: B,
60.71.
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CB8H14
1

+ PCl3 + 3PSf PCB8H9
2

+ 3 PSH+Cl- + H2 (1)

CB8H12
3

+ PCl3 + 3PSf PCB8H9
4

+ 3PSH+Cl- (2)
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were therefore derived computationally (Figure 1) at the
RMP2(fc)/6-31G* level, and the calculated parameters were
used for GIAO-SCF/II//RMP2(fc)/6-31G* and GIAO-MP2/
II//MP2(fc)/6-31G* calculations of the11B and 13C NMR
shifts.13-18 The GIAO-MP2/II//RMP2(fc)/6-31G* results
were superior to the GIAO-MP2/II//MP2(fc)/6-31G* ones
in terms of their relation to the experimental findings. There
is an excellent agreement between the theoretical and
experimental NMR spectra, which provide a good ground
for believing that the RMP2(fc)/6-31G* geometries of2 and
4 (maximum deviation∼1.5 ppm at GIAO-MP2/II//RMP2-
(fc)/6-31G*) are precise. The calculated nucleus independent
chemical shifts (NICS)15 (-28.9 ppm for2, -30.0 ppm for
4) revealed these species to exhibit “three-dimensional
aromaticity”, which is, on the basis of this criterion, very
similar to that for 1,2- and 1,6-C2B8H10 (-29.7 ppm,-30.6
ppm,15 respectively, at GIAO-SCF/6-31G*//RMP2(fc)/6-
31G*).

The most significant feature of the computed molecular
structures consists of considerable distortion of the Archime-
dean antiprismatic shape of the cages. In effect, the phos-
phorus atom is pushed away from the center of the cluster
relative to the positions they would have in a regular
bicapped square antiprism: this can clearly be seen in Figure
1. As a consequence, the B(3)P(2)B(5) and B(7)P(6)B(9)
bond angles in2 and 4, respectively, are closed by∼13°

from the value of 90° in the parent [B10H10]2-. The expanded
B(6)P(2)B(9) and B(2)P(6)B(3) triangles in2 and4, respec-
tively, are another structural consequence of the presence
of the phosphorus atoms (for example, B(6)-B(9) in 2 and
B(2)-B(3) in 4 are the longest B-B separations).

The neutral compoundscloso2,1- and 6,1-PCB8H9 (2 and
4) described in this paper are the first representatives of the
10-vertexcloso family of phosphacarboranes. Both com-
pounds can be now easily prepared by phosphorus insertion
from the readily available monocarboranes 4-CB8H14 (1) and
1-CB8H12 (3).8 The constitutions of2 and4 are analogous
to those of the correspondingclosodicarbaboranes 1,2- and
1,6-C2B8H10 because the bare P vertex is isolobal with a cage
CH group. We are now exploring various isomerization
cluster expansion and substitution reactions of the phosphac-
arborane species outlined in this paper. Moreover, main-
group element insertion reactions with other borane and
carborane compounds are also studied with the aim of
generating new types of chemically versatile heteroborane
and heterocarborane cages.
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Figure 1. RMP2(fc)/6-31G* optimized geometrical parameters for (a) 2,1-PCB8H10 (2) and (b) 6,1-PCB8H10 (4). Selected bond distances (Å) and angles
(deg) were (a) P(2)-C(1) 1.859, P(2)-B(3) 2.121, P(2)-B(6) 2.031, B(6)-B(9) 1.890, B(3)-P(2)-B(5) 76.8, P(2)-B(3)-B(4) 95.4, B(3)-B(4)-B(5)
92.4, B(7)-B(6)-B(9) 89.0; (b) P(6)-B(2) 2.077, P(6)-B(7) 2.104, B(2)-C(1) 1.592, B(3)-B(2) 1.953, B(7)-P(6)-B(9) 77.6, P(6)-B(7)-B(8) 94.8,
B(7)-B(6)-B(9) 89.0, B(7)-B(8)-B(9) 92.6, B(2)-B(3)-B(4) 87.9.
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