Inorg. Chem. **2002**, *41*, 3570−3577

Spin Dimer Analysis of the Spin Exchange Interactions in Paramelaconite Cu₄O₃ and Its Analogue Aq₂Cu₂O₃ and the Spin **Ordering of the Cu₂O₃ Spin Lattice Leading to Their Magnetic Phase Transitions**

M.-H. Whangbo* and H.-J. Koo

*Department of Chemistry, North Carolina State Uni*V*ersity, Raleigh, North Carolina 27695-8204*

Received February 19, 2002

The magnetic structures of the Cu₂O₃ spin lattices present in Cu₄O₃ and Ag₂Cu₂O₃ were analyzed by studying their spin exchange interactions on the basis of spin dimer analysis. Calculations of spin exchange parameters were calibrated by studying LiCuVO₄ whose intrachain and interchain antiferromagnetic spin exchange parameters are known experimentally. The magnetic phase transition of $Cu₄O₃$ at 42.3 K doubles the unit cell along each crystallographic direction. The spin arrangements of the $Cu₂O₃$ lattice consistent with this experimental observation are different from conventional antiferromagnetic ordering. Our analysis indicates that spin fluctuation should occur in Cu₄O₃, low-dimensional magnetism should be more important than magnetic frustration in Cu₄O₃, and Ag₂Cu₂O₃ and $Cu₄O₃$ should have similar structural and magnetic properties.

1. Introduction

Paramelaconite $Cu₄O₃¹$ is a mineral that shows puzzling magnetic properties.² The Cu₂O₃ lattice of spin- $\frac{1}{2}$ Cu²⁺ ions results from $Cu₄O₃$ when the diamagnetic $Cu⁺$ ions are removed (Figure 1). A neutron diffraction study² reveals that $Cu₄O₃$ undergoes a magnetic phase transition below 42.3 K leading to a supercell (2*a*, 2*b*, 2*c*); namely, the phase transition doubles the unit cell along each crystallographic direction.2 The intensity of a magnetic reflection was reported to show a temperature dependence that can be interpreted in terms of either low-dimensional magnetism or magnetic frustration.² The crystal structure¹ and the magnetic properties² of $Cu₄O₃$ have been studied using single-crystal mineral samples.³ So far, it is unknown how to synthesize homogeneous samples of $Cu₄O₃$, although extraction of copper or its oxides with concentrated aqueous ammonia was found

to produce a mixture of $Cu₄O₃$, $Cu₂O$, and $CuO⁴$ Mineral samples of $Cu₄O₃$ contain CuO and other unknown magnetic impurities, 2 so a quantitative analysis of the magnetic susceptibility of $Cu₄O₃$ is complicated. Nevertheless, the magnetic susceptibility shows a maximum around 75 K and a sharp decrease below 42.3 K ,² which suggest an antiferromagnetic phase transition. $Ag_2Cu_2O_3$ is isostructural and isoelectronic with $Cu₄O₃$.⁵⁻⁷ The structure of $Ag₂Cu₂O₃$ results when the Cu⁺ ions of Cu₄O₃ are replaced with $Ag⁺$ ions; that is, $Ag_2Cu_2O_3$ has the same Cu_2O_3 spin lattice as found for $Cu₄O₃$. The magnetic susceptibility of $Ag₂Cu₂O₃$ shows a broad maximum at \sim 80 K^{6,7} and a sharp decrease below 60 K, 6 which again suggest an antiferromagnetic phase transition. So far, no study has been reported concerning the magnetic structure of $\text{Ag}_2\text{Cu}_2\text{O}_3$ below 60 K.

There are several important questions concerning the magnetic structures of $Cu₄O₃$ and $Ag₂Cu₂O₃$. It should be noted that each $CuO₂$ ribbon chain has two spin- $\frac{1}{2}$ $Cu²⁺$ ^{*}To whom correspondence should be addressed. E-mail: ions per unit cell (Figure 1b) so that an antiferromagnetic the whom correspondence should be addressed.

mike_whangbo@ncsu.edu.

⁽¹⁾ O'Keeffe, M.; Bovin, J.-O. *Am. Mineral*. **1978**, *63*, 180.

⁽²⁾ Pinsard-Gaudart, J.; Rodriguez-Carvajal, J.; Gukasov, A.; Monod, P.; Dechamps, M.; Jegoudez, J. Propriétés magnétiques de Cu₄O₃-Un reseau pyrochlore à spin 1/2. Presented at Colloque Oxydes à Propriétés Remarquables: Ordre de spins, ordre de charges et phénomènes coopératifs; Berthier, C., Collin, G., Doumerc, J.-P., organizers; Bombannes, June $6-8$, 2001. The abstracts of the meeting are collected in the report GDR 2069.

⁽³⁾ Smithsonian 112878; Smithsonian Institution: Washington, DC.

⁽⁴⁾ Morgan, P. E. D.; Partin, D. E.; Chamberland, B. L.; O'Keeffe, M. *J. Solid State Chem*. **1996**, *121*, 33.

⁽⁵⁾ Gómez-Romero, P.; Tejada-Rosales, E. M.; Palacín, M. R. Angew. *Chem., Int. Ed*. **1999**, *38*, 524.

⁽⁶⁾ Adelsberger, K.; Curda, J.; Vensky, S.; Jansen, M. *J. Solid State Chem*. **2001**, *158*, 82.

⁽⁷⁾ Tejada-Rosales, E. M.; Rodriguez-Carvajal, J.; Palacin, M. R.; Gómez-Romero, P. *Mater. Sci. Forum* **²⁰⁰¹**, *³⁷⁸*-*381*, 606.

Figure 1. (a) Perspective view of the crystal structure of $Cu₄O₃$. (b) Perspective view of the $Cu₂O₃$ spin lattice of $Cu₄O₃$.

ordering such as $(V)_{\infty}$ along each chain does not double the unit cell along the *a*- and *b*-direction. There are four layers of CuO₂ ribbon chains in a unit cell of the Cu₂O₃ lattice (Figure 1b). Thus, an antiferromagnetic ordering such as $(VW)_{\infty}$ in the successive layers of CuO₂ ribbon chains does not double the unit cell along the *c*-direction. It is quite challenging to find what kind of spin ordering takes place in the $Cu₂O₃$ lattice of $Cu₄O₃$ below 42.3 K to double the unit cell along each crystallographic direction and see if the magnetic phase transition associated with such a spin ordering can be considered as an antiferromagnetic phase transition. So far, it has not been studied whether the spin exchange interactions of the $Cu₂O₃$ lattice support the suggestion² that low-dimensional magnetism or magnetic frustration is responsible for the observed temperature dependence of a magnetic reflection intensity in $Cu₄O₃$, and whether there exists an alternative explanation for this experimental observation. It is important to investigate if the answers to these questions are equally applicable to $Ag_2Cu_2O_3$.

In the present work, we probe these questions by analyzing the spin exchange interactions of the $Cu₂O₃$ lattices in $Ag_2Cu_2O_3$ and Cu_4O_3 on the basis of spin dimer analysis.

Our work is organized as follows: The essence of spin dimer analysis is briefly described in Section 2. The $Cu₂O₃$ lattices of $Cu₄O₃$ and $Ag₂Cu₂O₃$ are examined in Section 3 to identify their spin dimers (i.e., structural units containing two adjacent spin sites). In Section 4, we discuss how to calibrate our calculations of spin exchange parameters. In Section 5, we probe the spin ordering of $Cu₄O₃$ leading to its magnetic phase transition and its implications concerning low-dimensional magnetism and magnetic frustration. We then compare the spin exchange interactions of $Cu₄O₃$ and $Ag_2Cu_2O_3$. Important results of our work are summarized in Section 6.

2. Spin Dimer Analysis

Theoretically, physical properties of a magnetic solid are described in terms of a spin-Hamiltonian. This phenomenological Hamiltonian is expressed as a sum of pairwise spin exchange interactions. In terms of first-principles electronic structure calculations, the strengths of spin exchange interactions (i.e., spin exchange parameters *J*) can be calculated in two ways: (a) electronic structure calculations for the highand low-spin states of spin dimers (i.e., structural units consisting of two spin sites) $8-10$ and (b) electronic band structure calculations for various ordered spin arrangements of a magnetic solid.¹¹ For magnetic solids with large and complex unit cell structures, these quantitative methods become difficult to apply. In understanding physical properties of magnetic solids, however, it is often sufficient to estimate the relative magnitudes of their J values.¹²⁻¹⁸ In general, a spin exchange parameter J can be written as $J =$ $J_F + J_{AF}$, where the ferromagnetic term J_F (>0) is small so that the spin exchange becomes ferromagnetic (i.e., $J \geq 0$) when the antiferromagnetic term J_{AF} (\leq 0) is negligibly small in magnitude. Spin exchange interactions of magnetic solids are mostly antiferromagnetic (i.e., $J \leq 0$) and can be discussed by focusing on the antiferromagnetic terms J_{AF} .¹³⁻¹⁸

Suppose that each spin site of a magnetic solid contains one unpaired electron, the two spin sites of a spin dimer are equivalent, and the two spin sites of a spin dimer are represented by nonorthogonal magnetic orbitals (i.e., singly

- (9) Noodleman, L. *J. Chem. Phys.* **1981**, *74*, 5737.
- (10) Dai, D.; Whangbo, M.-H. *J. Chem. Phys*. **2001**, *114*, 2887.
- (11) Derenzo, S. E.; Klitenberg, M. K.; Weber, M. J. *J. Chem. Phys*. **2000**, *112*, 2074 and the references therein.
- (12) Kahn, O. *Molecular Magnetism*; VCH Publishers: Weinheim, 1993. (13) Hay, P. J.; Thibeault, J. C.; Hoffmann, R. *J. Am. Chem. Soc*. **1975**,
- *97*, 4884. (14) Koo, H.-J.; Whangbo, M.-H. *J. Solid State Chem*. **2000**, *151*, 96.
- (15) Koo, H.-J.; Whangbo, M.-H. *J. Solid State Chem*. **2000**, *153*, 263.
- (16) Koo, H.-J.; Whangbo, M.-H. *Inorg. Chem*. **2000**, *39*, 3599.
- (17) Koo, H.-J.; Whangbo, M.-H. *Inorg. Chem*. **2001**, *40*, 2169 and the references therein.
- (18) Dai, D.; Koo, H.-J.; Whangbo, M.-H. In *Solid State Chemistry of Inorganic Materials III*; Geselbracht, M. J., Greedan, J. E., Johnson, D. C., Subramanian, M. A., Eds.; Materials Research Society: Warrendale, PA, 2001; MRS Symposium Proceedings, Vol. 658, GG5.3.1-5.3.11 and the references therein.

⁽⁸⁾ Illas, F.; Moreira, I. de P. R.; de Graaf, C.; Barone, V. *Theor. Chem. Acc.* **2000**, *104*, 265 and the references therein.

Figure 2. Orbital interaction diagram between two magnetic sites in a spin dimer, where the spin-orbital interaction energy [∆]*^e* is defined as the energy difference of the two singly filled orbitals of the spin dimer.

occupied molecular orbitals of the spin monomers) ϕ_1 and *φ*2. Provided that *S*¹² and ∆*e* are, respectively, the overlap integral and the spin-orbital interaction energy (Figure 2) between ϕ_1 and ϕ_2 , then the antiferromagnetic term J_{AF} is related to S_{12} and Δe as $J_{AF} \propto -S_{12}\Delta e \propto -(\Delta e)^2$.^{12,13} In recent years, spin exchange interactions of various magnetic solids14-¹⁸ have been examined in terms of the ∆*e* values calculated for their spin dimers using the extended Hückel method.19,20

Because *J*_{AF} is proportional to $-(\Delta e)^2$, it can be written
L_E = $-\nu(\Delta e)^2$. For antiferromagnetic spin exchange as $J_{AF} = -\gamma(\Delta e)^2$. For antiferromagnetic spin exchange
interactions the proportionality constant γ can be estimated interactions, the proportionality constant γ can be estimated by comparing the calculated (∆*e*)2 values with the corresponding *J* values determined experimentally. The energy ∆*e* is equivalent to 2*t*, where *t* is the hopping integral between spin sites (i.e., the resonance integral between ϕ_1 and ϕ_2). From the relationship^{12,13,21}

$$
J_{\rm AF} = -4t^2/U_{\rm eff} = -(\Delta e)^2/U_{\rm eff}
$$

we obtain $\gamma = 1/U_{\text{eff}}$, where U_{eff} is the effective on-site repulsion. For a set of closely related magnetic solids, the *U*eff value would be nearly constant and hence could be used to approximate antiferromagnetic *J* by $-(\Delta e)^2/U_{\text{eff}}$.

3. Spin Dimers of the Cu2O3 Lattice

The $Cu₂O₃$ lattice can be regarded as constructed from $CuO₂$ ribbon chains, which are made up of edge-sharing $CuO₄$ square planes (Figure 1b). Each $CuO₄$ square plane (Figure 3a) is a spin monomer (i.e., a structural unit containing a spin site) of the $Cu₂O₃$ lattice. In the $Cu₂O₃$ lattice, layers of $CuO₂$ ribbon chains parallel to the *a*direction alternate with layers of $CuO₂$ ribbon chains parallel to the *b*-direction. In each layer of $CuO₂$ ribbon chains, the plane of each ribbon chain is perpendicular to the layer. The ribbon chains between adjacent layers are condensed by sharing their $O(2)$ atoms such that each $O(2)$ atom is located at the center of the Cu₄ tetrahedron made up of the four surrounding Cu(2) atoms. (In passing, we note that copper oxide CuO is also made up of corner-sharing $CuO₂$ ribbon

Figure 3. Spin carrying units of the Cu₂O₃ lattices in Cu₄O₃ and Ag₂Cu₂O₃. (a) Spin monomer CuO₄. (b) Spin dimer Cu₂O₆ for the intrachain NN interaction. (c) Spin dimer $Cu₂O₈$ for the intrachain NNN interaction. (d) Spin dimer $Cu₂O₇$ for the interchain NN interaction.

Table 1. Geometrical Parameters Associated with the Spin Dimers of the $Cu₂O₃$ Lattices Present in $Cu₄O₃$ and $Ag₂Cu₂O₃^a$

geometrical parameter	$Cu4O3b$	$Ag_2Cu_2O_3^c$
$Cu(2)-O(1)$	1.966	1.857
$Cu(2)-O(2)$	1.916	1.987
$O(1) \cdots O(2)$ (intrachain)	2.920	2.946
$\angle Cu(2)-O(1)-Cu(2)$ (intrachain)	95.8	104.8
$\angle Cu(2)-O(2)-Cu(2)$ (intrachain)	99.2	95.5
$\angle Cu(2)-O(1)\cdots O(2)$ (intrachain)	136.4	142.9
$\angle Cu(2)-O(2)\cdots O(1)$ (intrachain)	141.1	135.3
$\angle Cu(2)-O(2)-Cu(2)$ (interchain)	114.8	116.9

^a The distances in angstrom units and the angles in degrees. *^b* Taken from the crystal structure of ref 1. *^c* Taken from the crystal structure of ref 6.

chains²² and that CuO exhibits complex spin dynamics²³ and charge-spin-orbital correlation.24)

There are two kinds of $Cu-O-Cu$ superexchange paths to consider in the $Cu₂O₃$ lattice, that is, the intrachain and interchain Cu-O-Cu paths. As summarized in Table 1, the interchain Cu-O-Cu paths have a significantly larger \angle Cu-O-Cu angle than do the intrachain Cu-O-Cu paths. This difference has a profound effect on the relative strengths of the interchain and intrachain superexchange interactions (see later). In each $CuO₄$ square plane, two $O(1)$ atoms are located at diagonally opposite corners, and two O(2) atoms occupy the remaining corners. Thus, the $O(1)$ and $O(2)$ atoms alternate on one edge of each $CuO₂$ ribbon chain, but the O(2) and O(1) atoms do on the opposite edge. This structural feature of opposite senses of $O(1)$ and $O(2)$ alternation plays a vital role in the spin ordering along the *c*-direction (see later).

⁽¹⁹⁾ Hoffmann, R., *J. Chem. Phys*. **1963**, *39*, 1397.

⁽²⁰⁾ Our calculations were carried out by employing the *CAESAR* program package (Ren, J.; Liang, W.; Whangbo, M.-H. *Crystal and Electronic Structure Analysis Using CAESAR*; 1998; http:// www.PrimeC.com/.).

⁽²¹⁾ This expression is valid when spin exchange parameters of a spin Hamiltonian are written as *J* instead of 2*J*.

⁽²²⁾ Asbrink, S.; Norrby, L.-J. *Acta Crystallogr., Sect. B* **1970**, 26, 8. (23) Eroles, J. *Phys. Rev. B* **2002**, 65, 92404 and the references therein.

⁽²³⁾ Eroles, J. *Phys. Re*V*. B* **²⁰⁰²**, *⁶⁵*, 92404 and the references therein. (24) Zheng, X.-G.; Xu, C.-N.; Tanaka, E.; Tomokio, Y.; Yamada, H.; Soejima, Y.; Yamamura, Y.; Tsuji, T. *J. Phys. Soc. Jpn*. **2001**, *70*, 1054 and the references therein.

Figure 4. Magnetic orbitals of (a) the spin monomer CuO₄, (b) the spin dimer $Cu₂O₆$ for the intrachain NN interaction, and (c) the spin dimer $Cu₂O₈$ for the intrachain NNN interaction.

In calculating the ∆*e* values for various spin exchange paths of the $Cu₂O₃$ lattice, it is necessary to specify the corresponding spin dimers. Within each $CuO₂$ ribbon chain, the spin dimer for the nearest-neighbor (NN) interaction is the edge-sharing dimer $Cu₂O₆$ (Figure 3b), and that for the next-nearest-neighbor (NNN) interaction is the dimer $Cu₂O₈$ made up of two isolated monomers (Figure 3c). Between adjacent corner-sharing $CuO₂$ ribbon chains, the spin dimer for the NN interaction is the corner-sharing dimer $Cu₂O₇$, in which the planes of the two $CuO₄$ units are perpendicular to each other (Figure 3d). The intrachain NN spin exchange has two Cu-O-Cu superexchange paths, but the interchain NN spin exchange has one. The intrachain NNN spin exchange has two $Cu-O \cdots O-Cu$ super-superexchange paths. Table 1 summarizes some geometrical parameters associated with the spin dimers of the $Cu₂O₃$ lattices in $Cu₄O₃$ and $Ag_2Cu_2O_3$. Note that the two Cu-O-Cu intrachain superexchange paths are considerably more asymmetric in $Ag_2Cu_2O_3$ than in Cu₄O₃ and that the interchain Cu-O-Cu superexchange path has a slightly larger [∠]Cu-O-Cu angle in $Ag_2Cu_2O_3$ than in Cu₄O₃.

4. Magnetic Orbital Tails and Calibration of Spin Exchange Parameter Calculations

In the magnetic orbital of a spin monomer $CuO₄$ unit (i.e., the molecular orbital containing an unpaired spin) (Figure 4a), the Cu x^2-y^2 orbital is combined out-of-phase with the Ω 2p orbital contributions to O 2p orbitals. In general, such O 2p orbital contributions to magnetic orbitals are small, but they are important in determining the magnitude of spin-orbital interaction energies ∆*e*. ¹⁴-¹⁸ For example, the ∆*e* of the intrachain NN spin exchange is equal to the energy difference between the two magnetic orbitals shown in Figure 4b and depends critically

Table 2. Exponents ζ_i and Valence Shell Ionization Potentials H_i *i* of Slater-type Orbitals χ_i Used for Extended Hückel Tight-binding Calculation*^a*

atom	χi	H_{ii} (eV)	Č,	C_i^b		C_i^b
Cu	4s	-11.4	2.151	1.0		
Cu	4p	-6.06	1.370	1.0		
Cu	3d	-14.0	7.025	0.4473	3.004	0.6978
O	2s	-32.3	2.688	0.7076	1.675	0.3745
O	2p	-14.8	3.694	0.3322	1.659c	0.7448

 ${}^{\alpha}$ *H_{ii}*'s are the diagonal matrix elements $\langle \chi_i | H^{\text{eff}} | \chi_i \rangle$, where H^{eff} is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $H_{ij} = \langle \chi_i | H^{\text{eff}} | \chi_j \rangle$, the weighted formula was used. See: Ammeter, J.; Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. *J. Am. Chem. Soc*. **1978**, *100*, 3686. *^b* Coefficients used in the double-*ú* Slater-type orbital expansion. *^c* The calibration of our calculations was carried out using $\zeta'(x) = 1.659(1 + x)$ as a function of $x \ge 0$. The optimum ζ' value is found for $x = 0.125$ (see the text).

upon the overlap of the Cu x^2-y^2 orbital with the O 2p
orbitals of the Cu–O–Cu supersystems paths. Likewise orbitals of the $Cu-O-Cu$ superexchange paths. Likewise, the ∆*e* of the intrachain NNN spin exchange is given by the energy difference between the two magnetic orbitals shown in Figure 4c and depends sensitively on the overlap between the O 2p orbitals of the O \cdots O contacts in the Cu-O \cdots O-Cu super-superexchange paths. To reproduce the trends in spin exchange interactions of magnetic solids using ∆*e* values obtained from extended Hückel calculations, it is found¹⁴⁻¹⁸ necessary to employ double-*ú* Slater type orbitals (DZ STOs)²⁵ for both the 3d orbitals of the transition metal and the s/p orbitals of the surrounding ligand atoms.

The atomic orbital parameters of Cu and O employed for our extended Hückel tight-binding calculations are listed in Table 2. For magnetic solids consisting of $CuO₂$ ribbon chains, our calculations using these parameters, which are determined from atomic orbital calculations,²⁵ lead to an unreasonable result that the intrachain NN interaction is weaker than the intrachain NNN interaction. This result originates essentially from the fact that the O 2p orbital tail is too diffuse. The radial part of the O 2p orbital, $\chi_{2p}(r)$, is written as

$$
\chi_{2p}(r) = r[C \exp(-\zeta r) + C' \exp(-\zeta' r)]
$$

where the exponents ζ and ζ' describe contracted and diffuse STOs, respectively (i.e., $\zeta > \zeta'$). The diffuse STO provides an orbital tail that enhances overlap between O atoms in the short O…O contacts of the Cu-O…O-Cu super-superexchange paths as well as that between the Cu 3d and O 2p orbitals of the Cu-O-Cu superexchange paths. The [∆]*^e* values are affected most sensitively by the exponent ζ' of the diffuse STO of the O 2p orbital. To determine the appropriate ζ' value, it is necessary to carry out spin dimer analysis for a magnetic solid that has spin dimers similar to those found in $Cu₄O₃$ and whose antiferromagnetic spin exchange parameters are known experimentally.

The magnetic solid LiCuVO₄²⁶⁻²⁹ has spin-¹/₂ Cu²⁺ ions as the only magnetic ions and consists of isolated CuO4

- (25) Clementi, E.; Roetti, C. *At. Data Nucl. Data Tables* **1974**, *14*, 177.
- (26) Lafontaine, M. A.; Leblanc, M.; Frey, G. *Acta Crystallogr., Sect. C* **1989**, *45*, 1205.
- (27) Kanno, R.; Kawamoto, Y.; Takeda, Y.; Hasegawa, M.; Yamamoto, O.; Kinimura, N. *J. Solid State Chem*. **1992**, *96*, 397.
- (28) Vasil'ev, A. N. *JETP Lett*. **1999**, *69*, 876.

Figure 5. Arrangement of two adjacent CuO₂ ribbon chains present in every layer of CuO₂ ribbon chains in the magnetic solid LiCuVO₄.

octahedral chains aligned along the crystallographic *b*direction.^{26,27} Each CuO₄ octahedral chain is made up of edge-sharing $CuO₆$ octahedra, and every $CuO₆$ octahedron is axially elongated with the axial $Cu-O$ bonds perpendicular to the chain direction. Thus, the magnetic orbital of each $CuO₆$ octahedron is contained in the equatorial $CuO₄$ square plane, and such $CuO₄$ square planes form a $CuO₂$ ribbon chain. Thus, the spin lattice (i.e., the lattice containing magnetic orbitals) of $LiCuVO₄$ consists of layers of $CuO₂$ ribbon chains^{26,27} as depicted in Figure 5, where the CuO₂ ribbons are contained in the plane of the layer. Consequently, there occur three spin exchange interactions of interest, that is, the intrachain NN interaction (J_1) , the intrachain NNN interaction (J_2) , and the interchain NN interaction (J_3) . As far as their spin dimers are concerned, the interchain NN and the intrachain NNN interactions are similar in nature because both have two Cu-O \cdots O-Cu super-superexchange paths contained in the plane of their magnetic orbitals (e.g., Figure 3c). It is known experimentally^{28,29} that J_1 and J_3 are antiferromagnetic with values $J_1/k_B = -22.5$ K and $J_3/k_B =$ -1.3 K.

To determine the ζ' value of $\chi_{2p}(r)$ that reproduces the experimental J_3/J_1 ratio found for LiCuVO₄, we examine how the Δe values for the *J*₁, *J*₂, and *J*₃ interactions change when the ζ' value is gradually increased as $\zeta'(x) = 1.659(1 + x)$ (see Table 2), that is, as the diffuseness of the O 2p orbital tail is gradually decreased $(x \ge 0)$. Figure 6 shows that the intrachain NN interaction increases gradually with increasing *x* whereas both the interchain NN and the intrachain NNN interactions exhibit the opposite trend. The calculated (∆*e*3/ $(\Delta e_1)^2$ ratio becomes close to the experimental J_3/J_1 ratio when $x = 0.125$, for which $\Delta e_1 = 58$ meV, $\Delta e_2 = 25$ meV, and $\Delta e_3 = 17$ meV. From the equation $J_1 = -(\Delta e_1)^2 / U_{\text{eff}}$ with $\Delta e_1 = 58$ meV and $J_1 = -22.5$ K, we obtain $J_1 = 1.74$ $\Delta e_1 = 58$ meV and *J*₁ = -22.5 K, we obtain *U*_{eff} = 1.74 eV. Then, the J_2 and J_3 values are calculated to be -4.2 and -1.9 K, respectively, from the expression $J_i = -(\Delta e_i)^2 / U_{eff}$
(*i* = 2.3) with $\Delta e_i = 25$ meV and $\Delta e_i = 17$ meV $(i = 2, 3)$ with $\Delta e_2 = 25$ meV and $\Delta e_3 = 17$ meV.

Figure 6. ∆*e* values calculated for the intrachain NN, interchain NN, and intrachain NNN interactions in LiCuVO₄ as a function of the exponent $\zeta'(x)$ $= 1.659(1 + x)$ of the diffuse STO in the DZ STO representation for the O 2p orbital.

It is noted that the calculated J_2/J_1 ratio (i.e., 0.19) for LiCuVO₄ is smaller than the critical value α_c (i.e., 0.241) found for a spin- $1/2$ Heisenberg chain with both NN and NNN antiferromagnetic interactions.30,31 The ground state of such a chain is the spin liquid state characterized by no energy gap between the ground and the first excited states (as in the case of a spin- $1/2$ Heisenberg chain with only NN antiferromagnetic interactions) when $J_2/J_1 < \alpha_c$, but it is the dimer state characterized by nonzero energy gap between the ground and the first excited states when $J_2/J_1 > \alpha_c$.^{30,31}
Thus the fact that the calculated J_2/J_1 ratio is smaller than Thus, the fact that the calculated J_2/J_1 ratio is smaller than α_c is consistent with the experimental finding that the CuO₂ ribbon chains of LiCuVO4 undergo an antiferromagnetic ordering.28,29

As described previously, the use of $\zeta'(x)$ provides a satisfactory and consistent description of the spin exchange interactions of LiCuVO₄ when $x = 0.125$. Thus, we employ the $\zeta'(x) = 0.125$ value for the estimation of the spin exchange parameters for the intrachain NN (J_a) , the intrachain NNN (J_b) , and the interchain NN (J_c) interactions of the $Cu₂O₃$ lattices in $Cu₄O₃$ and Ag₂Cu₂O₃. Our results are summarized in Table 3, where the *J* values were calculated using the expression $J = -(\Delta e)^2 / U_{\text{eff}}$ with the value of $U_{\text{eff}} = 1.74 \text{ eV}$ deduced for the magnetic lattice of *I* iCuVO. $= 1.74$ eV deduced for the magnetic lattice of LiCuVO₄.

5. Spin Ordering in the Cu2O3 Lattice Leading to Magnetic Phase Transition

5.1. Cu₄O₃. Table 3 reveals that the interchain NN interaction is more strongly antiferromagnetic than the intrachain NN interaction (i.e., $|J_c| > |J_a|$). This finding is explained by the fact that the $Cu-O-Cu$ superexchange path has a significantly larger [∠]Cu-O-Cu angle in the interchain

⁽²⁹⁾ Vasil'ev, A. N.; Ponomarenko, L. A.; Manaka, H.; Yamada, I.; Isobe, M.; Ueda, Y. *Physica B* **²⁰⁰⁰**, *²⁸⁴*-*286*, 1619.

⁽³⁰⁾ Okamoto, K.; Nomura, K. *Phys. Lett. A* **1992**, *169*, 433.

⁽³¹⁾ Tonegawa, T.; Harada, I. *J. Phys. Soc. Jpn*. **1987**, *56*, 2153.

Magnetic Interactions in Cu₄O₃ and Ag₂Cu₂O₃

Table 3. ∆*E* and *J* Values Calculated for the Intrachain NN, Interchain NN, and Intrachain NNN Interactions of the Cu₂O₃ Lattices in Cu₄O₃ and $Ag_2Cu_2O_3^a$

	$Cu4O3$ ^b		$Ag_2Cu_2O_3^c$	
interaction	e (meV)	J(K)	Δe (meV)	J(K)
intrachain NN (J_a)	51	-17.4	42	-11.8
intrachain NNN (J_h)	24	-3.9	22	-3.2
interchain NN (J_c)	85	-48.3	91	-55.4

a The *J* values were calculated using the expression $J = -(\Delta e)^2/U_{\text{eff}}$ with $U_{\text{eff}} = 1.74$ eV. *b* Calculated using the crystal structure of ref 1. *c* Calculated using the crystal structure of ref 6.

Figure 7. Three spin arrangements around a shared O(2) atom between adjacent CuO₂ ribbon chains: (a) $\frac{1}{4}$ / $\frac{1}{4}$, (b) $\frac{1}{4}$ / $\frac{1}{4}$, and (c) $\frac{1}{4}$ / $\frac{1}{4}$. Filled and empty circles represent the Cu^{2+} ions with up- and down-spins, respectively.

Figure 8. Two periodic spin arrangements in a $CuO₂$ ribbon chain: (a) (\mathcal{W})_∞ and (b) (\mathcal{W})_∞. Filled and empty circles represent the Cu²⁺ ions with up- and down-spins, respectively.

than in the intrachain NN interaction (Table 1). Table 3 also shows that the intrachain NN interaction is more strongly antiferromagnetic than the intrachain NNN interaction (i.e., $|J_a| > |J_b|$). Thus, the ordering of the spins in the Cu₂O₃ lattice of $Cu₄O₃$ should be determined primarily by the interchain NN interactions and then by the intrachain NN interactions. Each O(2) atom is the common bridging point of four interchain Cu-O-Cu superexchange paths (Figure 1b). Figure 7 depicts three arrangements of the four Cu^{2+} spins surrounding a single O(2) atom, that is, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$ and \mathcal{W} . Because $|J_c|$ is larger than $|J_a|$, the \mathcal{W} arrangement is more stable than the $\frac{1}{\sqrt{N}}$ and $\frac{1}{\sqrt{N}}$ arrangements. The latter two arrangements are equal in stability. Other possible interchain spin arrangements around $O(2)$ (e.g., $\frac{M}{V}$ and $\frac{M}{V}$ \hat{v}) are less stable than those shown in Figure 7. Two periodic spin arrangements of a CuO₂ ribbon chain, that is, $(\mathcal{N})_{\infty}$ and ($\text{M}\}\text{W}_{\infty}$, are shown in Figure 8. For a spin- $\frac{1}{2}$ Heisenberg chain with both NN and NNN antiferromagnetic interactions, 30,31 the spin arrangement (\mathcal{W})_∞ does not represent the ground state of the chain, regardless of whether the J_b/J_a ratio is smaller or larger than the critical value α_c . When J_a and J_b are both antiferromagnetic and $J_b/J_a \leq 1$, the $(\mathcal{W})_{\infty}$ arrange-

Figure 9. (a) Most favorable interchain spin arrangement between adjacent layers of $CuO₂$ ribbon chains, leading to a $\frac{M}{V}$ -double-layer. (b, c) Two equivalent interchain spin arrangements that can be used for the stacking between two $\frac{M}{V}$ -double-layers. Filled and empty circles represent the Cu²⁺ ions with up- and down-spins, respectively.

ment is more stable than the $(\uparrow \uparrow \downarrow \downarrow)$ _∞ arrangement. The most energetically favorable arrangement between two adjacent layers of $CuO₂$ ribbon chains is shown in Figure 9a, where every shared O(2) atom between the two layers has the interchain spin arrangement $\frac{M}{W}$. This forces each CuO₂ ribbon chain to adopt the $(\uparrow\uparrow\downarrow\downarrow)_{\infty}$ spin arrangement and hence doubles the unit cell along the two chain directions, that is, the *a*- and *b*-directions.

To consider the spin ordering along the *c*-direction, we recall that the $O(1)$ and $O(2)$ atom alternations on the two edges of a CuO₂ ribbon chain have opposite senses (Figure 1b). Suppose that we add a layer of $CuO₂$ ribbon chains to a " $\uparrow\uparrow\downarrow\downarrow$ -double-layer" in which each shared O(2) atom has the interchain $\frac{M}{V}$ arrangement (e.g., that shown in Figure 9a). Then, the new set of shared O(2) atoms generated by the additional layer can adopt either the spin arrangement in Figure 9b or that in Figure 9c, because the two interchain spin arrangements $\frac{1}{4}$ and $\frac{1}{4}$ available for the O(2) atoms are the same in energy. It is convenient to describe the spin ordering of the $Cu₂O₃$ lattice along the *c*-direction in terms of stacking $\uparrow\uparrow/\downarrow\downarrow$ -double-layers. Because the stacking between two $\frac{M}{V}$ -double-layers can achieved by adopting the $\frac{N}{V}$ or \mathcal{W} spin arrangement between them, the stacking of two \mathcal{W} W -double-layers can lead to the " $\alpha\alpha$ " arrangement shown in Figure 10a or the " $\alpha\beta$ " arrangement shown in Figure 10b. The stacking of $\frac{M}{V}$ -double-layers can give rise to a large number of repeat patterns. The patterns such as $(\alpha \alpha)_{\infty}$ and $(αβ)$ _∞ do not double the unit cell along the *c*-direction, while the patterns such as $(\alpha\beta\alpha\alpha)_{\infty}$, $(\alpha\alpha\beta\alpha)_{\infty}$, $(\alpha\alpha\alpha\beta)_{\infty}$, $(\alpha\beta\beta\alpha)_{\infty}$, and $(\alpha \alpha \beta \beta)$ _∞ do. As an example, Figure 11 depicts the repeat pattern $(\alpha\beta\beta\alpha)_{\infty}$. In principle, the unit cell along the *c*-direction can be increased by a factor of any integer $n \geq$

Figure 10. Two possible stacking arrangements between two MW-doublelayers: (a) $\alpha \alpha$ and (b) $\alpha \beta$. Filled and empty circles represent the Cu²⁺ ions with up- and down-spins, respectively.

Figure 11. Stacking arrangement ($\alpha\beta\beta\alpha$)∞ in the Cu₂O₃ lattice that doubles the unit cell along the *a*-, *b*-, and *c*-directions. Filled and empty circles represent the Cu^{2+} ions with up- and down-spins, respectively. Each rectangular box represents a unit cell in the absence of the magnetic phase transition.

2. The experimental observation of the *c*-axis doubling is explained by noting that the spin orderings such as $(\alpha\beta\beta\alpha)_{\infty}$, $(\alpha \alpha \beta \beta)_{\infty}$, ($\beta \alpha \alpha \beta$)_∞, and ($\beta \beta \alpha \alpha$)_∞ are statistically the most probable arrangements, given the fact that the spin arrangements $\mathbb{W}\mathbb{N}$ and $\mathbb{W}\mathbb{V}$ are equally valid for the stacking between M/W-double-layers.

This discussion of spin ordering along the *c*-direction leads to two important implications. First, the freedom of choice between the $\frac{1}{\sqrt{k}}$ and $\frac{1}{\sqrt{k}}$ arrangements for the stacking between 11/ \forall -double-layers should give rise to spin fluctuation in the $Cu₂O₃$ spin lattice, and the extent of this spin fluctuation should depend on temperature. Second, the ordered spin arrangements of the $Cu₂O₃$ lattice that explain the observed superlattice formation differ from conventional antiferromagnetic ordering.

As already pointed out, the $(\uparrow\uparrow\downarrow)_{\infty}$ spin ordering is not the most stable arrangement of an isolated $CuO₂$ ribbon chain. Thus, the interlayer $\frac{M}{V}$ spin ordering around each O(2) atom, which induces the $(MW)_{\infty}$ spin ordering in the associated ribbon chains, would prevent the chains from adopting their most stable spin states. Namely, the interchain spin ordering frustrates the intrachain spin ordering, and vice versa. The extent of this magnetic frustration would be strongly enhanced if the J_a/J_c value were increased toward 1. If the J_a/J_c value were reduced toward 0, the magnetic structure of the $Cu₂O₃$ lattice would be dominated by the interchain spin ordering along the *c*-direction, thereby inducing a onedimensional magnetic character. The calculated J_a/J_c value (i.e., 0.36) is closer to the limit of one-dimensional magnetism than to that of magnetic frustration, so that lowdimensional magnetic character would be more important than magnetic frustration in $Cu₄O₃$.

5.2. Ag₂Cu₂O₃. Table 3 reveals that the spin exchange parameters *J* calculated for $Ag_2Cu_2O_3$ are very similar to those calculated for Cu₄O₃, that is, $|J_c| > |J_a| > |J_b|$. Thus, it is expected that the magnetic phase transition of $Ag_2Cu_2O_3$ at 60 K should double the unit cell along each crystallographic direction, the Cu₂O₃ lattice of Ag₂Cu₂O₃ should exhibit spin fluctuation, and low-dimensional magnetic character would be more important than magnetic frustration for $Ag_2Cu_2O_3$.

Nevertheless, $Ag_2Cu_2O_3$ and Cu_4O_3 should show subtle differences because their J_a/J_c and J_b/J_a values are different. The $|J_c|$ value is slightly larger for $Ag_2Cu_2O_3$ than for Cu₄O₃, because the interchain Cu-O-Cu superexchange path has a slightly larger ∠Cu-O-Cu angle in Ag₂Cu₂O₃. The $|J_a|$ value is smaller for $Ag_2Cu_2O_3$ than for Cu_4O_3 , because the two Cu-O-Cu intrachain superexchange paths are considerably more asymmetric in $Ag_2Cu_2O_3$. Consequently, $Ag_2Cu_2O_3$ has a smaller J_a/J_c value than does Cu_4O_3 (0.21) vs 0.36) so that $Ag_2Cu_2O_3$ should be more strongly affected by low-dimensional magnetic character than is $Cu₄O₃$. Another small difference between $Ag_2Cu_2O_3$ and Cu_4O_3 is that $J_b/J_a > \alpha_c$ for Ag₂Cu₂O₃ while $J_b/J_a < \alpha_c$ for Cu₄O₃ (i.e., 0.27 vs 0.22).

6. Concluding Remarks

In the $Cu₂O₃$ spin lattice of $Cu₄O₃$, the most favorable spin arrangement between adjacent layers of $CuO₂$ ribbon chains is M/\sqrt{W} , which forces the CuO₂ ribbon chains to adopt the $(\uparrow\uparrow\downarrow\downarrow)$. spin arrangement, hence doubling the unit cell along the *a*- and *b*-directions. The spin ordering along the *c*direction is determined by the stacking of such $\frac{\gamma}{\gamma}$ doublelayers. The ordered spin arrangements in the $Cu₂O₃$ lattice

Magnetic Interactions in Cu₄O₃ and Ag₂Cu₂O₃

consistent with the observed superlattice formation are statistically the most probable arrangements, and they differ from conventional antiferromagnetic ordering. Because the spin arrangements $\mathbb{W}\mathbb{N}$ and $\mathbb{W}\mathbb{N}$ are equally valid for the stacking between $\uparrow\uparrow/\downarrow\downarrow$ -double-layers, there should occur spin fluctuation in the $Cu₂O₃$ lattice, the extent of which should depend on temperature. The calculated spin exchange parameters suggest that low-dimensional magnetic character is more important than magnetic frustration in determining the magnetic properties of $Cu₄O₃$. It would be interesting to examine spin fluctuation as a possible cause for the observed

temperature dependence of a magnetic reflection intensity.2 The spin exchange interactions of the $Cu₂O₃$ spin lattice in $Ag_2Cu_2O_3$ are very similar to those in Cu₄O₃. Thus, $Ag_2Cu_2O_3$ and Cu_4O_3 should be similar in their structural and magnetic properties.

Acknowledgment. The work at North Carolina State University was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259.

IC020141X