Inorg. Chem. 2002, 41, 3805-3807

inorganic

Anionic Templating: Synthesis, Structure, and Characterization of Novel Three-Dimensional Mixed-Metal Oxychlorides Te₄M₃O₁₅·CI $(M = Nb^{5+} \text{ or } Ta^{5+})$

Kang Min Ok and P. Shiv Halasyamani*

Department of Chemistry, University of Houston, 4800 Calhoun Boulevard, Houston, Texas 77204-5003

Received May 20, 2002

Two new three-dimensional oxychlorides are reported, $Te_4M_3O_{15}$. CI ($M = Nb^{5+}$ or Ta⁵⁺). The isostructural materials were synthesized by chemical transport reactions utilizing TeO_2 , M_2O_5 , and MCI_5 (M = Nb^{5+} or Ta^{5+}) as reagents. The compounds exhibit a threedimensional cationic tunnel framework, with Cl⁻ anions occupying the tunnels. Crystal data: monoclinic, space group C2/c, a =18.9944(7) Å, b = 7.8314(3) Å, c = 21.1658(8) Å, $\beta =$ 116.6400(10)°, Z = 8 (T = 295 K).

Because of their intercalation behavior, high-temperature superconductivity, optical properties, as well as novel crystal chemistry, metal oxychlorides are of great interest.^{1–10} For example, a variety of amines have been intercalated into Fe-OCl, TiOCl, VOCl, and LnOCl (Ln = Ho, Er, Tm, and Yb).¹⁻³ In addition, (Ca,Na)₂CuO₂Cl₂¹¹ and (Ca,Na)₂CaCu₂O₄- Cl_2^{12} have been shown to be high T_c materials, whereas BiSeO₃Cl is SHG active.⁶ Metal oxychlorides are synthesized either through solid-state techniques,^{13,14} hydrothermal meth-

- (2) Song, K.; Kauzlarich, S. M. Chem. Mater. 1994, 6, 386-394.
- (3) Kargina, I.; Richeson, D. Chem. Mater. 1996, 8, 480-485.
- (4) Uitert Van, L. G.; Singh, S.; Levinsein, H. J.; Johnson, L. F.; Grodkiewicz, W. H.; Geusic, J. E. Appl. Phys. Lett. 1969, 15, 53-54. (5) Holsa, J.; Lamminmaki, R.-J.; Antic-Fidancev, E.; Lemaitre-Blaise, M.; Porcher, P. J. Phys.: Condens. Matter 1995, 7, 5127–5138.
- (6) Berdonosov, P. S.; Stefanovitch, S. Y.; Dolgikh, V. A. J. Solid State Chem. 2000, 149, 236-241.
- (7) Ackerman, J. F. J. Solid State Chem. 1986, 62, 92-104.
- (8) Fray, S. M.; Milne, C. J.; Lightfoot, P. J. Solid State Chem. 1997, 128, 115-120.
- (9) Nikiforov, G. B.; Kusainova, A. M.; Berdonosov, P. S.; Dolgikh, V. A.; Lightfoot, P. J. Solid State Chem. 1999, 146, 473-477.
- (10) Charkin, D. O.; Berdonosov, P. S.; Moisejev, A. M.; Shagiakhmetov, R. R.; Dolgikh, V. A.; Lightfoot, P. J. Solid State Chem. 1999, 147, 527 - 535
- (11) Hiroi, Z.; Kobayashi, N.; Takano, M. Nature 1994, 371, 139-140.
- (12) Jin, C.-Q.; Wu, X.-J.; Laffez, P.; Tatsuki, T.; Tamura, T.; Adachi, S.; Tamauchi, H.; Koshizuka, N.; Tanaka, S. *Nature* **1995**, *375*, 301– 302
- (13) Cava, R. J.; Bordet, P.; Capponi, J. J.; Chaillout, C.; Chenavas, J.; Fournier, T.; Hewat, E. A.; Hodeau, J. L.; Levy, J. P.; Marezio, M.; Batlogg, B.; Rupp, L. W. Physica C 1990, 167, 67-74.
- (14) Tatsuki, T.; Tamura, T.; Moriwaki, Y.; Wu, X.-J.; Adachi, S.; Tanabe, K. Physica C 1996, 270, 327-332.

10.1021/ic025733u CCC: \$22.00 © 2002 American Chemical Society Published on Web 06/26/2002

ods,¹⁵ chemical transport reactions,¹⁶ or, in the case of LnOCl, a two step pyrohydrolysis procedure.^{2,17} Structurally, except for the Sillen¹⁸ and other layered phases,^{7,19} the chloride anion is usually part of the framework, that is, directly bonded to one of the metal cations. Even in situations where the chloride is "free", a layered framework is usually observed.²⁰⁻²¹ We report in this communication the synthesis, structure, and characterization of two new three-dimensional oxychlorides, $Te_4M_3O_{15}$ ·Cl (M = Nb⁵⁺ or Ta⁵⁺). Similar to the Sillen and other layered phases, the chloride anions in our materials are not bonded to any of the metal cations. However, unlike the layered phases, the materials reported herein exhibit a three-dimensional channel structure with the chloride anion residing in the middle of the channel. To the best of our knowledge, only the naturally occurring mineral francisite, Cu₃Bi(SeO₃)₂O₂Cl,²² shares this three-dimensional cationic channel topology.

Polycrystalline Te₄Nb₃O₁₅·Cl and Te₄Ta₃O₁₅·Cl were obtained by standard solid-state techniques. Under an atmosphere of dry nitrogen, TeO_2 (4.9 mmol, 99+ %, Aldrich), Nb₂O₅ (1.8 mmol, 99.99%, Aldrich; or Ta₂O₅, 99%, Aldrich), and NbCl₅ (0.7 mmol, 99%, Aldrich; or TaCl₅, 99.8%, Alfa) were thoroughly ground and put into a quartz tube, which was evacuated and sealed. The tube was heated to 700 °C (60 °C h^{-1}), held for 24 h, and cooled to room temperature. White polycrystalline powders, subsequently shown to be Te₄Nb₃O₁₅·Cl and Te₄Ta₃O₁₅·Cl, were recovered. Single crystals of Te₄Nb₃O₁₅·Cl (Te₄Ta₃O₁₅·Cl) were grown by transport reaction. TeO₂ (1.0 mmol), Nb₂O₅ (Ta₂O₅) (2.0 mmol), and NbCl₅ (TaCl₅) (0.2 mmol) were placed in a quartz tube (length = 12 cm, o.d. = 1.3 cm) that was

- (15) Feger, C. R.; Kolis, J. W. Inorg. Chem. 1998, 37, 4046-4051.
- (16) Schaffrath, U.; Gruehn, R. J. Less-Common Met. 1988, 137, 61-73. (17) Garcia, E.; Corbett, J. D.; Ford, J. E.; Vary, W. J. Inorg. Chem. 1985, 24, 494-498.
- (18) Sillen, L. G. X-ray studies on oxides and oxyhlaides of trivalent bismuth. Inaugural Dissertation, Stockholm, 1940.
- (19) Bersonosov, P. S.; Charkin, D. O.; Kusainova, A. M.; Hervoches, C. H.; Dolgikh, V. A.; Lightfoot, P. S. Solid State Sci. 2000, 2, 553.
- (20) Grim, R. E. Clay Mineralogy; McGraw-Hill: New York, 1968.
- (21) Alonso, J. A. J. Chem. Soc., Dalton Trans. 1998, 1947.
- Pring, A.; Gatehouse, B. M.; Birch, W. D. Am. Mineral. 1990, 75, (22)1421

Inorganic Chemistry, Vol. 41, No. 15, 2002 3805

^{*} To whom correspondence should be addressed. E-mail: psh@uh.edu. (1) Rouxel, J.; Palvadeau, P.; Venien, J. P.; Villieras, J.; Janvier, P.; Bujoli, B. Mater. Res. Bull. 1987, 22, 1217-1224.

COMMUNICATION

evacuated and sealed. The tube was put in a tube furnace with a thermal gradient of 100 °C (cold zone 630° and hot zone 730 °C). Colorless block shaped crystals were observed in the cold zone (20% yield based on TeO₂) after 5 days. Crystals of Te₄Nb₃O₁₅•Cl were of much better quality than those of Te₄Ta₃O₁₅•Cl; thus, the former were used for single-crystal analysis.²³ Because both compounds can be made in bulk, powder X-ray diffraction was used to demonstrate the materials are isostructural.²⁷

Te₄Nb₃O₁₅·Cl has a three-dimensional structure consisting of NbO₆ octahedra linked to asymmetric TeO₃ polyhedra. Each Nb⁵⁺ is bonded to six oxygen atoms with bond distances ranging from 1.781(8) to 2.228(8) Å, whereas each Te⁴⁺ cation is connected to three oxygen atoms with bond distances ranging from 1.853(8) to 1.909(8) Å. The Te^{4+} cations are in a highly asymmetric coordination environment attributable to their nonbonded electron pair. Each Nb⁵⁺ is linked through oxygen to four Te⁴⁺ and two additional Nb⁵⁺ cations, whereas each Te⁴⁺ cation is connected through oxygen to three other Nb⁵⁺ cations. Thus, in connectivity terms, the framework can be described as a $[4(\text{TeO}_{3/2})^+3(\text{Nb} O_{6/2})^{-}$ ation, with charge balance retained by the Cl⁻ anion. Bond valence calculations resulted in values ranging from 5.06 to 5.15 and from 3.74 to 3.93 for Nb⁵⁺ and Te⁴⁺, respectively.28,29

The connectivity of the NbO₆ octahedra and TeO₃ polyhedra produce eight-membered ring (8-MR) channels that run along the [010] direction (see Figure 1). The walls of the channel consist of four NbO₆ octahedra and four TeO₃ polyhedra that alternate and are linked through oxygen atoms. The nonbonded electron pair on Te⁴⁺ points into the center of the channel, where the Cl⁻ anion resides (see Figure 2). The Cl⁻ anions are in an approximate square planar environment, surrounded by four Te⁴⁺ cations at a distance of 3.26(1) Å. The rings are connected along the [010] direction through corner linked NbO₆ octahedra, thus forming cationic channels. The 8-MR channels are separated along the [001] direction by columns of corner-shared NbO₆ octahedra.

- (24) SAINT, Version 4.05; Siemens Analytical X-ray Systems, Inc.: Madison, WI, 1995.
- (25) Sheldrick, G. M. SHELXS-97-A program for automatic solution of crystal structures; University of Goettingen: Goettingen, Germany, 1997.
- (26) Sheldrick, G. M. SHELXS-97-A program for crystal structure refinement; University of Goettingen: Goettingen, Germany, 1997.
- (27) For Te₄Ta₃O₁₅·Cl, a unit cell of a = 19.0249(7) Å, b = 7.7154(3) Å, c = 21.1662(9) Å, and $\beta = 116.662(2)^{\circ}$ was determined. The X-ray powder diffraction data for Te₄Nb₃O₁₅·Cl and Te₄Ta₃O₁₅·Cl have been deposited as Supporting Information.
- (28) Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244.
- (29) Brese, N. E.; O'Keefe, M. Acta Crystallogr. 1991, B47, 192.

Figure 1. Polyhedral and ball-and-stick diagram of Te₄Nb₃O₁₅·Cl in the *ac*-plane.

Figure 2. Ball-and-stick diagram of one ring of the 8-MR channel. Note how the Te^{4+} lone-pair (shown schematically) impedes the movement of the Cl^- anion.

Thermal analyses of both materials indicate the compounds are very robust with similar decomposition temperatures of 650 °C. For both materials, the chloride anion is initially lost at 650 °C. Immediately following this, the materials decompose and form Te₃Nb₂O₁₁³⁰ and Te₂Ta₂O₉³¹ for Te₄-Nb₃O₁₅•Cl and Te₄Ta₃O₁₅•Cl, respectively, as shown by powder X-ray diffraction measurements. The structural topology of the materials suggested the possibility for ionexchange behavior. Initial ion-exchange experiments on polycrystalline Te₄M₃O₁₅·Cl (M = Nb⁵⁺ or Ta⁵⁺) indicated that exchanging the Cl⁻ for other anions is difficult. If one examines the structures closely, it is not difficult to understand why no ion-exchange behavior is observed. Figure 2 shows one ring of the 8-MR channel with the lone-pair on the Te⁴⁺ cation represented schematically. A tetrahedral model is used to localize the lone-pair.³² As can be seen, all of the lone-pairs point above the chloride, effectively preventing any mobility for the anion. Thus, the chloride anions are "locked" in place within the channel.

In summary, we have demonstrated that new threedimensional oxychloride materials can be synthesized through

- (31) Alonso, J. A.; Castro, A.; Gutierrez-Puebla, E.; Monge, M. A.; Rasines, I.; Ruiz-Valero, C. J. Solid State Chem. **1987**, 69, 36.
- (32) Galy, J.; Meunier, G.; Andersson, S.; Astrom, A. J. Solid State Chem. 1975, 13, 142.

⁽²³⁾ For Te₄Nb₃O₁₅·Cl, a colorless faceted crystal (0.15 × 0.20 × 0.25 mm³) was used. Single-crystal data were collected on a Siemens SMART diffractometer equipped with a 1K CCD area detector using graphite monochromated Mo K α radiation at 293 K. The data were integrated using the Siemens SAINT²⁴ program, with the intensities corrected for Lorentz, polarization, air absorption, and absorption attributable to the variation in path length through the detector faceplate. ψ -Scan absorption corrections were applied. The structures were solved by direct methods using SHELXS-97²⁵ and refined using SHELXL-97.²⁶ Crystal data for Te₄Nb₃O₁₅·Cl: monoclinic, *C2/c*, *a* = 18.9944(7) Å, *b* = 7.8314(3) Å, *c* = 21.1658(8) Å, *β* = 116.6400(10)°, *V* = 2814.23(18) Å³, *Z* = 8, *R*(*F*) = 0.0369, GOF = 1.247.

⁽³⁰⁾ Galy, J.; Lindqvist, O. J. Solid State Chem. 1979, 27, 279

COMMUNICATION

chemical transport techniques. We have been able to extend this family of materials utilizing MBr_5 ($M = Nb^{5+}$ or Ta^{5+}) as transport agents, thereby synthesizing $Te_4M_3O_{15}$ ·Br ($M = Nb^{5+}$ or Ta^{5+}). This recent synthesis suggests a general methodology has been developed for creating threedimensional oxyhalide materials. We are in the process of growing crystals of the bromide phase, as well as synthesizing the fluoride and iodide analogues.

Acknowledgment. We thank the Robert A. Welch Foundation for support. This work used the MRSEC/TCSUH Shared Experimental Facilities supported by the National Science Foundation under Award DMR-9632667 and the Texas Center for Superconductivity at the University of Houston. This work was also supported by the NSF-Career Program through Grant DMR-0092054, and an acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. P.S.H. is a Beckman Young Investigator.

Supporting Information Available: Experimental and calculated powder diffraction data for Te₄Nb₃O₁₅·Cl and Te₄Ta₃O₁₅·Cl and crystallographic information (in CIF format). This material is available free of charge via the Internet at http://pubs.acs.org.

IC025733U