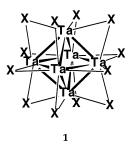
Inorg. Chem. 2002, 41, 4700-4707

Gallium and Gallium Dichloride, New Solid-State Reductants in Preparative Transition Metal Chemistry. New, Lower Temperature Syntheses and Convenient Isolation of Hexatantalum Tetradecachloride Octahydrate, $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄.4H₂O, and Synthesis and Solid-State Structure of a Tetraalkylammonium Derivative, [N(CH₂Ph)Bu₃]₄[Ta₆(μ -Cl)₁₂Cl₆], of the Reduced [Ta₆(μ -Cl)₁₂]²⁺ Cluster Core¹

Daniel N. T. Hay, Dale C. Swenson, and Louis Messerle*


Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242

Received February 22, 2002

Reduction of TaCl₅ with either Ga or Ga₂Cl₄, in the presence of NaCl, in a sealed borosilicate glass ampule at 500 °C, followed by aqueous Soxhlet extraction and treatment with SnCl₂ and hydrochloric acid, yielded Ta₆(μ -Cl)₁₂-Cl₂(OH₂)₄•4H₂O in 92% (Ga) or 96% (Ga₂Cl₄) yield. Ga₂Cl₄, a probable intermediate in the Ga-based reduction, is a more convenient reductant than Ga because it is readily dispersed in the reaction mixture, and these mixtures do not require homogenizations in order to afford high yields. Ta₆(μ -Cl)₁₂Cl₂(OH₂)₄•4H₂O was converted by ligand exchange to the first tetraalkylammonium derivative, [N(CH₂Ph)Bu₃]₄[Ta₆(μ -Cl)₁₂Cl₆], of the reduced cluster core Ta₆(μ -Cl)₁₂²⁺, in 88% yield. [N(CH₂Ph)Bu₃]₄[Ta₆(μ -Cl)₁₂Cl₆] crystallizes from 1,2-dichloroethane/toluene mixtures in two crystalline morphologies, a nonsolvated cubic form and a solvated needle form. The solid-state molecular structures of both crystalline morphologies of [N(CH₂Ph)Bu₃]₄[Ta₆(μ -Cl)₁₂Cl₆] consist of octahedral, 16 VEC hexatantalum cluster anions with an average Ta–Ta distance of 2.900[2] Å, a Ta–Cl(bridge) distance of 2.463[2] Å, a Ta–Cl(terminal) distance of 2.567[5] Å, and a Ta–Cl–Ta angle of 72.1[1]° for the cubic form, and for the solvated needle morphology, an average Ta–Ta distance of 2.900[1] Å, a Ta–Cl(bridge) distance of 2.461[1]Å, a Ta–Cl(terminal) distance of 2.567[3] Å, and a Ta–Cl–Ta angle of 72.19[7]°.

Introduction

Octahedral, hexanuclear cluster halides of the mid-valent second- and third-row early transition metals are found in two distinct structural types² as either discrete molecular clusters or as clusters linked in extended arrays by halide bridges. Group 5 hexanuclear clusters usually possess one bridging halide (X) along each of the twelve octahedral edges (1), and a halide or other ligand in a terminal position (not depicted) on each metal. Typical Group 6 hexanuclear halide clusters differ by having face-bridging μ_3 -halides in addition to terminal halides or other ligands.

Hexatantalum tetradecachloride, Ta₆Cl₁₄, was first prepared³ in 1907 by reduction of TaCl₅ with sodium amalgam and structurally characterized⁴ in 1950. The Ta₆(μ -Cl)₁₂ⁿ⁺

 $[\]ast$ Author to whom correspondence should be addressed. E-mail: loumesserle@uiowa.edu.

Facile Reduction of Early Transition Metal Halides with Nonconventional, Mild Reductants. Part 5.

 ^{(2) (}a) Ferguson J. Prepr. Inorg. React. 1971, 7, 93–163. (b) Prokopuk, N.; Shriver D. F. Adv. Inorg. Chem. 1999, 46, 1–49.

 ^{(3) (}a) Chabrie, M. C. Compt. Rend. 1907, 144, 804-6. (b) Chapin, W. H. J. Am. Chem. Soc. 1910, 32, 323-330.

⁽⁴⁾ Vaughan, P. A.; Sturdivant, J. H.; Pauling, L. J. Am. Chem. Soc. 1950, 72, 5477–86.

cluster core unit has been isolated⁵ in a variety of cluster oxidation states, with n = 2-4. Published synthetic approaches⁶ rely on high-temperature solid-state reduction in quartz ampules (in one case,⁷ by chemical transport) via either furnace or microwave⁸ methods. The discrete, hydrated cluster derivative⁹ Ta₆(μ -Cl)₁₂Cl₂(OH₂)₄•4H₂O is obtained after lengthy aqueous extraction/reduction of the solid-state product. The most commonly used approach¹⁰ to Ta₆(μ -Cl)₁₂-Cl₂(OH₂)₄•4H₂O involves reduction of TaCl₅ with a 4-fold excess of Ta powder at 700 °C, exhaustive extraction with substantial quantities of water (6 L for a ~40 g product scale reaction), filtration to remove finely divided Ta powder, addition of hydrochloric acid (6 L), and filtration of the resultant large volume to recover Ta₆(μ -Cl)₁₂Cl₂(OH₂)₄•4H₂O (in 85% yield).

While anhydrous tetraalkylammonium salts of the discrete anion Nb₆(μ -Cl)₁₂Cl₆⁴⁻ have been reported, no Ta analogues have been described. Tetraalkylammonium salts of Ta₆(μ -Cl)₁₂Cl₆⁴⁻ would be potentially anhydrous and soluble in organic solvents, which would broaden the types of derivatives (e.g., alkyl complexes) that could be accessed in nonprotic solvents.

We recently reported several convenient, lower temperature, high-yield syntheses of the hexatungsten cluster compounds W_6Cl_{12} and $(H_3O)_2[W_6(\mu_3-Cl)_8Cl_6](H_2O)_x$ by solidstate reduction of WCl₆ with the nonconventional reductants bismuth, antimony, and mercury.¹¹ This simple approach has been implemented in a local undergraduate inorganic synthesis lab course.¹² The known lower tungsten chloride¹³ $(WCl_4)_x$, the new tungsten chloride clusters¹⁴ W₃Cl₁₀ and Na₃W₃Cl₁₃, and the known hexamolybdenum clusters Mo₆- Cl_{12} and $(H_3O)_2[Mo_6(\mu_3-Cl)_8Cl_6](H_2O)_x^{15}$ have been prepared by this lower temperature methodology. We therefore examined its utility in Group 5 cluster chemistry for the synthesis of Ta₆X₁₄ derivatives, in part because of their potential as diagnostic medical X-ray contrast agents.^{16,17} This new reduction method has been successfully applied¹⁸ to the low-temperature synthesis and convenient isolation of Ta₆(µ-Br)₁₂Br₂(OH₂)₄•4H₂O, a frequently used¹⁹ high-electron-

- (5) (a) Hughes, B. G.; Meyer, J. L.; Fleming, P. B.; McCarley, R. E. Inorg. Chem. 1970, 9, 1343–6. (b) Spreckelmeyer, B. Z. Anorg. Allg. Chem. 1968, 358, 147–162.
- (6) Kuhn, P. J.; McCarley, R. E. Inorg. Chem. 1965, 4, 1482.
- (7) Schäfer, H.; Scholz, H.; Gerken, R. Z. Anorg. Allg. Chem. 1964, 331, 154–168.
- (8) Whittaker, A. G.; Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1995, 2073–9.
- (9) Schäfer, H.; Bauer, D. Z. Anorg. Allg. Chem. 1965, 340, 62-7.
- (10) Koknat, F. W.; Parsons, J. A.; Vongvusharintra, A. Inorg. Chem. 1974, 13, 1699–1702.
- (11) Kolesnichenko, V.; Messerle, L. Inorg. Chem. 1998, 37, 3660-3.
- (12) Messerle, L.; Hay, D. N. T. Presented at the 219th National Meeting of the American Chemical Society, Division of Chemical Education, San Francisco, CA, March 29, 2000; Abstract CHED 993.
- (13) Kolesnichenko, V.; Swenson, D. C.; Messerle, L. *Inorg. Chem.* **1998**, *37*, 3257–62.
- (14) Kolesnichenko, V.; Luci, J. J.; Swenson, D. C.; Messerle, L. J. Am. Chem. Soc. 1998, 120, 13260-1.
- (15) Hay, D. N. T.; et al. Inorg. Chim. Acta. Submitted for publication.
- (16) Yu, S.-B.; Watson, A. D. Chem. Rev. 1999, 99, 2353-2378.
- (17) Mullan, B. F.; Madsen, M. T.; Messerle, L.; Kolesnichenko, V.; Kruger, J. Acad. Radiol. 2000, 7, 254–260.
- (18) Hay, D. N. T.; Messerle, L. J. Struct. Biol. Submitted for publication. (19) Knäblein, J.; Neuefeind, T.; Schneider, F.; Bergner, A.; Messerschmidt,
- A.; Löwe, J.; Steipe, B.; Hüber, R. J. Mol. Biol. 1997, 270, 1-7.

density cluster for phase determination by isomorphous replacement in biomacromolecular crystallography.

Herein, we describe (1) new lower temperature (500 $^{\circ}$ C), solid-state approaches to Ta₆(µ-Cl)₁₂Cl₂(OH₂)₄•4H₂O via reduction of TaCl₅ with gallium or gallium dichloride (correctly formulated as $Ga^+(GaCl_4)^-$), (2) a simple isolation procedure for $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄·4H₂O based on Soxhlet extraction, (3) the first tetraalkylammonium salt of $Ta_6(\mu$ - $Cl_{12}Cl_6^{4-}$, and (4) the solid-state structure of [N(CH₂Ph)- $Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6]$. The only previous mention of the use of Ga in hexatantalum chemistry was the unsuccessful attempt to isolate $Ga_4[Ta_6Cl_{18}]$ (other product(s), if any, were not identified) from reduction of TaCl₅ with a mixture of Ta powder and Ga at 550 °C or 750-800 °C.²⁰ While Ga₂-Cl₄ has been used in kinetic studies²¹ to reduce a variety of inorganic substrates in dilute solution, to our knowledge it has not been employed as a reductant in preparative-scale transition metal compound synthesis or early transition metal chemistry.

Experimental Section

General Methods. TaCl₅ (Cerac), Ga₂Cl₄ (Alfa/Aesar), SnCl₂-(OH₂)₂ (Fisher Scientific), N(CH₂Ph)Bu₃Cl (Fluka), hydrochloric acid (12 M, Fisher), HNO₃ (69.8%, Fisher), hydrogen peroxide (30%, Fisher), ethanol (100%, AAPER Alcohol), benzene (Fisher), DMSO (Omnisolv, EM Scientific), and diethyl ether (anhydrous, Fisher) were used as received. Dichloromethane (Fisher) and 1,2dichloroethane (Fisher) were degassed and distilled from P₂O₅. Toluene (Fisher) was degassed and distilled from sodium/benzophenone. Gallium (99.999%, Atlantic Equipment Engineers, Bergenfield, NJ; phone 800-486-2436; cost \$0.95/g for 100 g) was converted into 1-2 mm diameter pellets by dropping small portions of molten Ga onto a cold glass surface and cooling the pellets overnight (in our case, at -40 °C, although 0 °C would be adequate; liquid gallium supercools readily and solidifies slowly with cooling). Ga₂Cl₄ was also prepared according to the method²² of Schmidt et al. by reduction of GaCl₃ (Alfa/Aesar) with Et₃SiH (Aldrich). NaCl (Fisher) was dried at 200 °C overnight.

Air- and moisture-sensitive precursors were manipulated in a Vacuum Atmospheres glovebox under a N2/He atmosphere. Solidstate syntheses were performed in Thermolyne model 21100 (\leq 1200 °C) with positionable thermocouple or Thermolyne model 79500 (≤1200 °C) tube furnaces, employing dual chamber 25 mm OD borosilicate glass ampules of 30-40 mL total chamber volume, with a 14/20 or 19/22 ground glass joint at one end and constriction between the end reaction chamber and receiver chamber and between the receiver chamber and ground joint. Ampules were oven dried at 130 °C overnight and then evacuated in the glovebox antechamber while cooling. Ga pellets were added to the ampule, and TaCl₅ and NaCl were mixed and then introduced into the ampule's end reaction chamber with use of a long stem funnel to minimize contamination of the constriction surface. In reductions employing Ga₂Cl₄, the TaCl₅, NaCl, and Ga₂Cl₄ were ground with a mortar and pestle prior to adding to the ampule. The ampule was capped with a gas inlet adapter, evacuated with a vacuum pump, and flame sealed under vacuum. The reactants were homogenized by shaking prior to heating.

- (21) Swavey, S.; Manivannan, V.; Gould, E. S. Inorg. Chem. 2001, 40, 1312–5.
- (22) Schmidt, E. S.; Schier, A.; Mitzel, N. W.; Schmidbaur, H. Z. *Naturforsch.* 2001, 17b, 337–341.

⁽²⁰⁾ Baján, B.; Meyer, H.-J. Z. Naturforsch. 1995, 50b, 1373-6.

Unless otherwise stated, standard Schlenk techniques were employed. UV/vis spectra were recorded on aqueous or DMSO solutions with a Hewlett-Packard model 8452A diode array spectrophotometer. Powder X-ray diffraction was performed on a Siemens D5000 diffractometer. Single-crystal X-ray diffractometry was performed on a Nonius KappaCCD diffractometer with an Oxford Cryosystems model 7000 low-temperature unit. Analyses for C, H, N, Ta, and Cl were performed by Desert Analytics, Tucson, AZ, and Ta analyses were also performed as described below.

Preparation of Ta₆Cl₁₄·8H₂O via Reduction of TaCl₅ with Gallium in the Presence of NaCl. A vacuum-sealed ampule with TaCl₅ (2.29 g, 6.41 mmol), Ga (0.40 g, 5.7 mmol), and NaCl (0.58 g, 10 mmol) in the end reaction chamber was placed in the center of a horizontal tube furnace at 100 °C for 15 min. The ampule was cooled, the mixture gently shaken (to disperse the gallium without causing agglomeration), and the ampule heated at 100 °C for 15 min. The ampule was removed and allowed to cool, and the contents homogenized by vigorous shaking. This 15-min heating/cooling/ homogenization cycle was repeated an additional three times to give a dark granular mixture. The ampule was placed in a furnace inclined at a 45° angle and heated to 250 °C over 4 h and at 250 °C for 12 h. After cooling, the mixture was homogenized by shaking and the ampule heated to 500 °C over 4 h and at 500 °C for 24 h.

After cooling, the ampule was opened in air and the dark solid ground with a mortar and pestle to yield a forest-green powder that became tacky upon atmospheric water absorption. The powder was transferred to a coarse fritted glass Soxhlet thimble (25 mm × 85 mm) containing a layer of borosilicate glass wool, the end packed with borosilicate glass wool, and the thimble placed in a Soxhlet extractor. The apparatus was evacuated and backfilled with argon three times, and then the powder was extracted under argon (to minimize air oxidation) with ~125 mL of argon-degassed distilled H₂O for ~1 day. The green-black solution was filtered through Celite on a medium porosity fritted glass funnel to remove a white insoluble powder, identified as GaO₂H (a monohydrate of gallium oxide with the aluminum diaspore structure)^{23,24} by powder X-ray diffraction with comparison to PDF Card Number 06-0180.

The green filtrate was converted to $Ta_6(\mu-Cl)_{12}Cl_2(OH_2)_4 \cdot 4H_2O$ by using an adaptation of a literature method.¹⁰ A stannous chloride solution was prepared by dissolving SnCl₂(OH₂)₂ (1.24 g, 5.50 mmol, \sim 5-fold excess) in hydrochloric acid and then filtering to remove minor insolubles. The green filtrate was treated with ~ 200 mL of hydrochloric acid and approximately two-thirds of the SnCl₂ solution. The mixture was stirred and heated to near boiling, then cooled, and the remaining SnCl₂ solution and \sim 25 mL of hydrochloric acid were added. The mixture was cooled in an ice bath, then filtered to isolate the dark forest green precipitate, which was washed with ~60 mL of hydrochloric acid and ~60 mL of Et₂O. The solid was then dried in vacuo over P_2O_5 to yield 1.69 g of dark green Ta₆(µ-Cl)₁₂Cl₂(OH₂)₄·4H₂O (92% yield based on TaCl₅). Anal. Calcd: Ta, 62.90; Cl, 28.75; Ga, 0.0. Found: Ta, 62.74; Cl, 28.70; Ga, <0.01. UV/vis (nm, water): 328, 398, 470 $(sh \equiv shoulder)$, 636, 750. UV/vis (nm, DMSO): 336, 406, 648, 764. Literature (aqueous): 330, 398, 638, 748 nm;⁸ 329, 398, 470 (sh), 637, 755 nm.⁶

Preparation of Ta₆Cl₁₄·8H₂O via Reduction of TaCl₅ with Ga₂Cl₄ in the Presence of NaCl. An ampule with TaCl₅ (0.96 g,

2.7 mmol), Ga₂Cl₄ (1.00 g, 3.56 mmol), and NaCl (0.52 g, 8.9 mmol) in the end reaction chamber was placed in the center of a 45° inclined tube furnace and heated to 500 °C over 5 h and at 500 °C for 24 h. After cooling, the ampule was opened in air. The contents were ground, transferred to a coarse fritted glass Soxhlet thimble, and extracted as described above with degassed H₂O under argon for ~1 day (extraction is essentially complete in 5 h). The black-green extract was filtered through Celite to remove a fine white solid that was identified as GaO₂H by X-ray diffraction.

The dark black-green filtrate was converted to Ta₆(µ-Cl)₁₂Cl₂-(OH₂)₄·4H₂O as described above by using three equal, prefiltered portions of SnCl₂(H₂O)₂ (0.51 g total, 2.3 mmol, ~5-fold excess) dissolved in hydrochloric acid. The black-green filtrate was first treated with a portion of the $SnCl_2(H_2O)_2$ in ~10 mL hydrochloric acid and stirred. To this stirring mixture was added a second portion of SnCl₂(H₂O)₂ in ~150 mL of hydrochloric acid. The mixture was brought to a boil, cooled, and stirred while adding the final portion of SnCl₂(H₂O)₂ and \sim 25 mL of hydrochloric acid. The mixture was cooled in an ice bath and a dark forest green solid was recovered by filtration through a medium porosity fritted glass funnel. The solid was washed with \sim 50 mL of hydrochloric acid, \sim 50 mL of Et₂O, \sim 30 mL of hydrochloric acid, and \sim 30 mL of Et₂O and then dried in vacuo over P₂O₅ to yield 0.74 g of black Ta₆(µ-Cl)₁₂Cl₂(OH₂)₄•4H₂O (96% yield based on TaCl₅). UV/vis (aqueous): 330, 400, 470 (sh), 638, 750 nm.

Preparation of [N(CH₂Ph)Bu₃]₄[Ta₆(µ-Cl)₁₂Cl₆]. Synthesis of this tetraalkylammonium salt of $Ta_6(\mu$ -Cl)₁₂Cl₆⁴⁻ was adapted from the method developed by McCarley28 for the synthesis of $(NMe_4)_4[Nb_6Cl_{18}]$. In the glovebox, $Ta_6(\mu-Cl)_{12}Cl_2(OH_2)_4 \cdot 4H_2O$ (0.50 g, 0.29 mmol) was placed into a coarse fritted glass Soxhlet thimble in a Soxhlet extractor. A condenser with gas inlet and small empty flask were added and the apparatus was attached to the Schlenk line. In a 100 mL Schlenk flask, a solution of N(CH₂Ph)-Bu₃Cl (0.36 g, 1.1 mmol) in \sim 50 mL of 100% ethanol was degassed with argon via a gas dispersion tube for \sim 30 min. The Soxhlet apparatus was joined to the Schlenk flask (with PTFE sleeves) under argon and the Ta₆(µ-Cl)₁₂Cl₂(OH₂)₄·4H₂O extracted under argon into the stirring N(CH₂Ph)Bu₃Cl/ethanol solution for ~ 17 h (the extraction was essentially complete after ~ 1 h), resulting in a dark green solution. The ethanol was removed under vacuum at 30 °C, and degassed benzene (~70 mL) was added to the dark forest green solid via cannula. A Dean-Stark trap was attached to the Schlenk flask and the solid dried via azeotropic distillation for ~ 21 h under argon. The remaining benzene was then removed under vacuum. The dark forest green solid was dissolved in a minimum of cold (-40 °C) CH₂Cl₂ in the glovebox and the resulting mixture filtered through Celite to remove a small amount of brown residue. The volume of the resulting green solution was reduced on a rotary evaporator and the solution cooled to -40 °C. On cooling, more of the brown residue was observed and removed by filtration. The green filtrate was treated dropwise with toluene ($\sim 25\%$ of the solution volume) and the volume reduced by rotary evaporation until a brown precipitate was noted. The solution was filtered and the volume reduced by rotary evaporation until a clear supernatant was observed over a green solid. The supernatant was decanted and the solid washed with three 2-mL portions of toluene and dried

⁽²³⁾ Foster, L. M.; Stumpf, H. C. J. Am. Chem. Soc. 1951, 73, 1590-1595.

⁽²⁴⁾ Roy, R.; Hill, V. G.; Osborn, E. F. J. Am. Chem. Soc. 1952, 74, 719– 722.

⁽²⁵⁾ Hughes, B. G.; Meyer, J. L.; Fleming, P. B.; McCarley, R. E. Inorg. Chem. 1970, 9, 1343–1346.

⁽²⁶⁾ Slougui, A.; Ouahab, L.; Perrin, C.; Grandjean, D.; Batail, P. Acta Crystallogr. **1989**, *C45*, 388–391.

⁽²⁷⁾ Slougui, A.; Ouahab, L.; Perrin, C.; Grandjean, D. Acta Crystallogr. 1991, C47, 1718–1721.

⁽²⁸⁾ Koknat, F. W.; McCarley, R. E. Inorg. Chem. 1972, 11, 812-816.

in vacuo. Weight 0.72 g (88% yield). Anal. Calcd for $C_{38}H_{68}N_2$ -Cl₉Ta₃: C, 32.26; H, 4.84; N, 1.98; Cl, 22.55. Found: C, 32.14; H, 5.04; N, 2.04; Cl, 22.14.

Recrystallization from CH_2Cl_2 yielded mosaic crystals that were unsuitable for single-crystal X-ray diffraction. The solid (containing CH_2Cl_2 as solvate) was recrystallized by slow diffusion from 1,2dichloroethane layered with toluene. The resulting crystals had two distinct morphologies, cubic and needlelike. By X-ray diffraction, the crystals of cubic appearance were nonsolvated and the needles were a solvate (vida infra).

Analytical Procedure for Tantalum. Tantalum was determined gravimetrically as the metal oxide Ta₂O₅. Samples were decomposed in tared borosilicate test tubes with concentrated nitric acid and hydrogen peroxide. The samples were dried and ignited.

Single-Crystal Diffractometry on [N(CH₂Ph)Bu₃]₄[Ta₆(μ -Cl)₁₂Cl₆]: Cubic Crystal Morphology. A dark green prism with a 0.42 × 0.29 × 0.23 mm³ dimension was mounted via grease to the tip of a glass fiber (epoxied to a brass pin) and placed on the diffractometer with the long physical dimension of the crystal (corresponding to the *a* unit cell direction) approximately parallel to the diffractometer phi axis.

Data were collected on a Nonius KappaCCD diffractometer (Mo K α radiation, graphite monochromator) at 190(2) K (cold N₂ gas stream), using standard CCD data collection techniques. Lorentz and polarization corrections were applied to the 20677 data. A correction for absorption using the multiscan technique was applied ($T_{\text{max}} = 0.2787$, $T_{\text{min}} = 0.1457$). Equivalent data were averaged yielding 10869 unique data (R(int) = 0.020, 10414, $F > 4 \operatorname{sig}(F)$). The space group $P\overline{1}$ was assigned on the basis of preliminary examination of the crystal. The computer programs from the HKLint package were used for data reduction, and structure refinement was performed with the SHELXTL v5.1 package.

The preliminary model of the structure was obtained with XS, a direct methods program. Least-squares refining of the model vs the data was performed with the XL program. Illustrations were made with the XP program and tables were made with the XCIF program. Thermal ellipsoids in the figures are at the 35% probability level.

All non-hydrogen atoms were refined with anisotropic thermal parameters. All H atoms were included with the riding model, using the XL program default values. No further restraints or constraints were imposed on the refinement model.

Single-Crystal Diffractometry on $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6] \cdot (C_2H_4Cl_2)_3(CH_2Cl_2)_{0.5}(C_6H_5CH_3)_{0.5}$: Needle Crystal Morphology. A dark green prism with a 0.40 × 0.10 × 0.08 mm³ dimension was mounted via grease to the tip of a glass fiber (epoxied to a brass pin) and placed on the diffractometer with the long physical dimension of the crystal (corresponding to the *c* unit cell direction) approximately parallel to the diffractometer phi axis.

Data were collected on a Nonius KappaCCD diffractometer (Mo K α radiation, graphite monochromator) at 190(2) K (cold N₂ gas stream), using standard CCD data collection techniques. Lorentz and polarization corrections were applied to the 78473 data. A correction for absorption using the multiscan technique was applied ($T_{\text{max}} = 0.6332$, $T_{\text{min}} = 0.1876$). Equivalent data were averaged yielding 21153 unique data (R(int) = 0.063, 16260; $F > 4 \operatorname{sig}(F)$). The space group $P2_1/c$ was assigned on the basis of preliminary examination of the crystal. The same software packages as listed above were used.

All anion atoms were refined with anisotropic thermal parameters. Two cations (N3, C41-C59 and N4, C61-C79) were refined anisotropically. Two cations and three solvent sites exhibited disorder. In all cases (including disordered molecules) the H atoms were included as riding atoms. Treatment of the disorder is described in the Supporting Information.

Results and Discussion

Ga as Reductant in Tantalum Cluster Chemistry. Tantalum is a relatively difficult element to reduce from the pentavalent state, as this reduction usually requires alkali metals, aluminum, or tantalum itself. The reduction of TaCl₅ with Ga (eq 1) is a surprisingly facile, low-temperature route to hexatantalum chloride clusters. The 500 °C reaction temperature allows the use of borosilicate glass tubing and minimizes the reaction of tantalum chlorides with the glass. With a 45 h total reaction time, the yield of Ta₆(μ -Cl)₁₂Cl₂-(OH₂)₄·4H₂O after workup (vide infra) was 92%. Bismuth and antimony, which are effective in Group 6 cluster synthesis, were inadequate for TaCl₅ reduction under the reaction conditions (Bi, 255 °C; Sb, 180 °C) employed, and reduction with Ga at 400 °C resulted in lower yield.

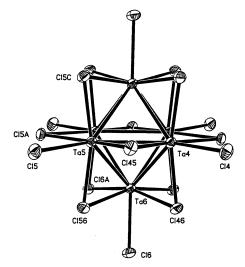
$$18\text{TaCl}_5 + 16\text{Ga} + 28\text{NaCl} \rightarrow 3\text{Na}_4\text{Ta}_6\text{Cl}_{18} + 16\text{NaGaCl}_4$$
(1)

Gallium is a relatively inexpensive reductant compared to Ta powder, especially if obtained from atypical chemical suppliers (\$0.95/g from Atlantic Equipment Engineers; \$22/ reduction equivalent; if purchased from Cerac, Inc. at 99.99% purity, \$5.00/g or \$117/reduction equivalent). These costs are less than that for tantalum powder (\$2.04/g for Ta powder, $\leq 2 \mu$ m particle size, Cerac, Inc.; \$159/reduction equivalent for Ta(V) reduction to Ta(+2.33)). Ga is also used in a stoichiometric amount rather than in 4-fold excess as in the case of Ta powder reduction of TaCl₅.¹⁰

The only minor complications of Ga use as a reductant are its tendencies to agglomerate and to adhere to borosilicate glass. The homogenization steps are important for maximizing yield of $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄·4H₂O, as homogenization results in more effective dispersal of the Ga throughout the reaction mixture.

Ga₂Cl₄ as Reductant in Tantalum Cluster Chemistry. We observed that Ga metal droplets became unobservable after one or two intermediate homogenizations, yet the yield of $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄·4H₂O was lowered with insufficient heating, so we postulated that the Ga metal was initially oxidized to an intermediate lower valent gallium chloride that was still effective in reduction of tantalum chlorides. Since Ga₂Cl₄ (actually, Ga⁺GaCl₄⁻) was a logical candidate, we examined the reduction of TaCl₅ with Ga₂Cl₄ (eq 2).

$$6\text{TaCl}_5 + 8\text{Ga}_2\text{Cl}_4 + 20\text{NaCl} \rightarrow \text{Na}_4\text{Ta}_6\text{Cl}_{18} + 16\text{NaGaCl}_4$$
(2)


These reductions were notably less labor-intensive: homogenization of the reaction mixture during heating was unnecessary because Ga_2Cl_4 was readily dispersed throughout the solid-state mixture. Ga_2Cl_4 is considerably more expensive than Ga if purchased directly but can be prepared readily from GaCl₃ and Et₃SiH. Workup (vide infra) of Ga₂Cl₄-based reductions gave Ta₆(μ -Cl)₁₂Cl₂(OH₂)₄·4H₂O in a virtually quantitative 96% yield based on TaCl₅. **Other Synthesis and Isolation Details.** Since $TaCl_5$ and Ga_2Cl_4 are moisture sensitive, and gallium is slowly oxidized by air, the ampules are best prepared under an inert atmosphere. While we employed a glovebox for the ampule loadings, a well-purged glovebag with a top-loading balance is adequate for this initial step.

Soxhlet extraction is a straightforward, easy method for isolating Ta₆(µ-Cl)₁₂Cl₂(OH₂)₄•4H₂O from the solid-state reduction product and byproduct, believed to be Na₄[Ta₆(µ-Cl)₁₂Cl₆] and NaGaCl₄. Soxhlet extraction minimizes the labor and solution volume needed for effective extraction. A subsequent filtration removes hydrated gallium oxides that are formed by slow hydrolysis of gallium chlorides. We were unable, under the conditions employed, to sublime GaCl₃ from mixtures lacking NaCl, as such mixtures exhibited chemical transport of colored Ta-containing volatiles along with some GaCl₃. The NaCl thus serves several roles by (1) providing the added chloride ligands to form discrete hexatantalum clusters, (2) complexing GaCl₃, and (3) complexing to intermediate tantalum chlorides and rendering them involatile under the low-temperature reaction conditions.

Since $Ta_6(\mu$ -Cl)₁₂ⁿ⁺ clusters with various terminal ligands are known in a variety of oxidation states, and can be readily oxidized in solution upon exposure to air, we took precautions to exclude air during Soxhlet extraction and subsequent workup and employed stannous chloride as a solution reductant. To verify that the isolated cluster compound was the fully reduced form (i.e., with a $Ta_6(\mu$ -Cl)₁₂²⁺ core) by UV-vis spectrophotometry, we deliberately oxidized the emerald green cluster compound with dioxygen in acidified aqueous solution, reexamined the UV-vis spectrum to verify oxidation via spectral changes, and then rereduced the compound with SnCl₂. The final UV-vis spectrum matched that of the initially isolated $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄•4H₂O. The UV-vis spectrum in DMSO of the originally isolated $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄•4H₂O also showed no change upon addition of SnCl₂.

Solid Ta₆(μ -Cl)₁₂Cl₂(OH₂)₄•4H₂O slowly oxidizes in air to yield a brown solid whose UV—vis spectrum in DMSO correspnds to that of oxidized cluster; the oxidized cluster can be rereduced back to emerald green Ta₆(μ -Cl)₁₂²⁺ in DMSO with SnCl₂. The oxidized cluster has very low solubility in water and can be removed by filtration combined with reduction of solutions with stannous chloride. Therefore, solid Ta₆(μ -Cl)₁₂Cl₂(OH₂)₄•4H₂O should be stored under inert atmosphere.

Synthesis of a Tetraalkylammonium Salt of the Reduced Cluster $[Ta_6(\mu-Cl)_{12}Cl_6]^{4-}$. Tetraalkylammonium salts of cluster compounds, with their potential solubility in organic solvents, are plausible synthons for new types of cluster compounds. Several organic cation salts of the oxidized clusters $[Ta_6(\mu-Cl)_{12}Cl_6]^{n-}$ (n = 2, 3) have been reported.^{25–27} A number of inorganic cation salts of the reduced cluster $[Ta_6(\mu-Cl)_{12}Cl_6]^{4-}$ are known, but in contrast to the case of hexaniobium chloride clusters, no tetraalkylammonium salts have been reported. We therefore adapted McCarley's method²⁸ for tetraalkylammonium derivatives of

Figure 1. Thermal ellipsoid plot of the molecular structure of the cluster anion portion of nonsolvated $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6]$, showing the atom numbering scheme.

Table 1. Crystal Data and Refinement Results for Nonsolvated $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_1_2Cl_6]$ and Solvated $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6] \cdot (C_2H_4Cl_2)_3(CH_2Cl_2)_{0.5}(C_6H_5CH_3)_{0.5}$ Crystalline Forms

form	nonsolvated	solvated
formula	C76H136Cl18N4Ta6	C86H152Cl25N4Ta6
fw	2829.69	3215.07
space group (no.)	$P\overline{1}(2)$	$P2_{1}/c$ (14)
a (Å)	12.9703(6)	27.259(6)
b (Å)	14.0317(8)	14.319(3)
c (Å)	14.0542(8)	30.788(6)
α (deg)	69.074(3)	90
β (deg)	83.616(3)	106.26(3)
γ (deg)	82.896(3)	90
$V(Å^3)$	2364.5(2)	11536(4)
Ζ	1	4
$T(\mathbf{K})$	190(2)	190(2)
λ (Å)	0.71073	0.71073
ρ_{calcd} (g cm ⁻³)	1.987	1.851
μ (mm ⁻¹)	7.462	6.287
R_1^a	0.0216	0.0377
wR_2^b	0.0512	0.0834

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| \sum |F_{o}| \text{ for } I \ge 2\sigma(I). \ {}^{b} wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2} \text{ for } I \ge 2\sigma(I).$

 $[Nb_6(\mu-Cl)_{12}Cl_6]^{4-}$ to $[Ta_6(\mu-Cl)_{12}Cl_6]^{4-}$. $Ta_6(\mu-Cl)_{12}Cl_2-$ (OH₂)₄·4H₂O can be extracted into ethanol containing N(CH₂-Ph)Bu₃Cl and the water removed by azeotropic distillation, yielding $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6]$ in 88% yield with appropriate anaerobic technique.

Solid-State Molecular Structures of $[N(CH_2Ph)Bu_3]_4$ -[Ta₆(μ -Cl)₁₂Cl₆]. Figure 1 shows the thermal ellipsoid plot for the cubic morphology, nonsolvated form of $[N(CH_2Ph)-Bu_3]_4[Ta_6(\mu$ -Cl)₁₂Cl₆]. Tables 1 and 2 list data collection parameters and chemically significant bond distances and bond angles, respectively, for both crystalline morphologies. The compound crystallizes in the triclinic space group $P\overline{1}$ for the nonsolvated form, with the octahedral metal cluster on the inversion center so that half of the cluster and two tetraalkylammonium cations are generated by inversion. The cluster has the expected octahedral Ta₆(μ -Cl)₁₂Cl₆⁴⁻ cluster structure, with an average Ta–Ta distance of 2.900[2] Å (numbers in square brackets represent the standard deviation

crystalline form	nonsolvated		solvated	
Та-Та	Ta(1)-Ta(2)	2.8968(2)	Ta(1)-Ta(2)	2.8929(6)
	Ta(2)-Ta(3)	2.9081(2)	Ta(2)-Ta(3)	2.8960(7)
	Ta(1)-Ta(3)	2.9030(2)	Ta(1)-Ta(3)	2.8946(8)
	Ta(1)-Ta(3)#1	2.8970(2)	Ta(1)-Ta(2)#1	2.9085(7)
	Ta(2) - Ta(1) # 1	2.8981(2)	Ta(1) - Ta(3) # 1	2.9031(6)
	Ta(2) - Ta(3) # 1	2.8982(2)	Ta(2) - Ta(3) # 1	2.9078(6)
			Ta(4)-Ta(5)	2.9001(6)
			Ta(4) - Ta(5)#2	2.8980(7)
			Ta(4) - Ta(6) # 2	2.9001(7)
			Ta(5)-Ta(6)	2.8921(7)
			Ta(4) - Ta(6)	2.9018(7)
			Ta(5) - Ta(6) #2	2.9011(7)
Ta-Cl(terminal)	Ta(1)-Cl(1)	2.5579(7)	Ta(1) - Cl(1)	2.554(1)
	Ta(2) - Cl(2)	2.5764(8)	Ta(1) = Cl(1) Ta(2) = Cl(2)	2.569(1)
			Ta(2) - Cl(2) Ta(3) - Cl(3)	
	Ta(3)-Cl(3)	2.5657(8)		2.566(2)
			Ta(4)-Cl(4)	2.567(2)
			Ta(5)-Cl(5)	2.572(1)
			Ta(6)-Cl(6)	2.572(2)
Ta-µ-Cl	Ta(1) - Cl(12)	2.4716(7)	Ta(1)-Cl(12)	2.463(1)
	Ta(1) - Cl(13)	2.4613(7)	Ta(1)-Cl(13)	2.457(2)
	Ta(1)-Cl(3A)#1	2.4686(7)	Ta(1)-Cl(1B)	2.451(1)
	Ta(1)-Cl(2A)#1	2.4616(7)	Ta(1)-Cl(1C)	2.463(2)
	Ta(2) - Cl(12)	2.4705(7)	Ta(2)-Cl(12)	2.470(1)
	Ta(2)-Cl(23)	2.4593(7)	Ta(2)-Cl(23)	2.461(2)
	Ta(2)-Cl(2A)	2.4593(7)	Ta(2)-Cl(1B)#1	2.451(1)
	Ta(2)-Cl(2C)	2.4642(7)	Ta(2)-Cl(2C)	2.470(2)
	Ta(3)-Cl(13)	2.4553(7)	Ta(3) - Cl(13)	2.464(1)
	Ta(3) - Cl(23)	2.4527(8)	Ta(3)-Cl(23)	2.454(1)
	Ta(3) - Cl(3A)	2.4674(7)	Ta(3) - Cl(1C) #1	2.467(1)
	Ta(3)-Cl(2C)#1	2.4616(8)	Ta(3)-Cl(2C)#1	2.469(1)
			Ta(4) - Cl(45)	2.458(1)
			Ta(4) - Cl(46)	2.459(2)
			Ta(4) - Cl(5A)#2	2.459(1)
			Ta(4) - Cl(6A)#2	2.458(2)
			$Ta(4) = CI(0A)\pi^2$ Ta(5)-CI(45)	2.455(2)
			Ta(5) - Cl(45) Ta(5) - Cl(56)	2.467(2)
			Ta(5) - Cl(5A)	2.459(1)
			Ta(5)-Cl(5C)	2.469(2)
			Ta(6)-Cl(46)	2.460(2)
			Ta(6)-Cl(56)	2.457(1)
			Ta(6) - Cl(5C)#2	2.465(1)
			Ta(6)-Cl(6A)	2.460(2)
Ta-Cl-Ta	Ta(1) - Cl(12) - Ta(2)	71.77(2)	Ta(1) - Cl(12) - Ta(2)	71.82(4)
	Ta(1) - Cl(13) - Ta(3)	72.38(2)	Ta(1) - Cl(13) - Ta(3)	72.06(4)
	Ta(1)#1-Cl(2A)-Ta(2)	72.16(2)	Ta(2) - Cl(23) - Ta(3)	72.21(4)
	Ta(1)#1-Cl(3A)-Ta(3)	71.88(2)	Ta(1)-Cl(1B)-Ta(2)#1	72.79(4)
	Ta(2)-Cl(23)-Ta(3)	72.60(2)	Ta(1)-Cl(1C)-Ta(3)#1	72.14(4)
	Ta(2)-Cl(2C)-Ta(3)#1	72.08(2)	Ta(2)-Cl(2C)-Ta(3)#1	72.13(4)
		• •	Ta(4) - Cl(45) - Ta(5)	72.36(4)
			Ta(4) - Cl(46) - Ta(6)	72.31(4)
			Ta(5) - Cl(56) - Ta(6)	71.94(4)
			Ta(5) - Cl(5C) - Ta(6)#2	72.03(4)
			Ta(4)#2-Cl(5A)-Ta(5)	72.03(4)

Table 2. Selected Bond Distances (Å) and Bond Angles (deg) for Nonsolvated and Solvated Crystalline Forms of $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6]^{\alpha}$

^{*a*} Symmetry operations used to generate equivalent atoms: #1, -x, -y + 1, -z + 1; #2, -x + 1, -y + 1, -z + 1.

of the mean²⁹), a Ta–Cl(bridge) distance of 2.463[2] Å, a Ta–Cl(terminal) distance of 2.567[5] Å, and a Ta–Cl–Ta angle of 72.1[1]°. The solvated needle morphology, which is of the formula [N(CH₂Ph)Bu₃]₄[Ta₆(μ -Cl)₁₂Cl₆]•(C₂H₄-Cl₂)₃(CH₂Cl₂)_{0.5}(C₆H₅CH₃)_{0.5} and crystallizes in the *P*2₁/*c* space group, exhibited some disorder for the solvate and cation molecules. Figures 2 and 3 show the crystallographically independent cluster anions for the solvated morphology, to illustrate the atom numbering scheme. The cluster anions, well-ordered crystallographically, exhibited nearly identical

metrical parameters to those for the nonsolvated cubic crystalline form, with an average Ta–Ta distance of 2.900-[1] Å, a Ta–Cl(bridge) distance of 2.461[1] Å, a Ta–Cl-(terminal) distance of 2.567[3] Å, and a Ta–Cl–Ta angle of 72.19[7]°. These values for both crystalline forms are very similar to averaged parameters for other structurally characterized clusters with Ta₆(μ -Cl)₁₂²⁺ cores, such as the hydrate³⁰ Ta₆Cl₁₄•7H₂O (Ta–Ta, range 2.63–3.27 Å, average 2.96 Å), H₄Ta₆Cl₁₂(CN)₆•12H₂O³¹ (Ta–Ta, 2.932(1) Å; Ta– μ -Cl, 2.44(1) Å; Ta–Cl–Ta, 73.6(4)°), Ta₆Cl₁₂Cl₂(PEt₃)4³²

⁽³⁰⁾ Burbank, R. D. Inorg. Chem. 1966, 5, 1491-1498.

⁽²⁹⁾ The value in brackets, the standard deviation of the mean, equals $[(\Sigma_m \Delta_i^2)/m(m-1)]^{1/2}$ with Δ_i defined as the deviation from the mean of the *i*th value in a set of *m* values.

⁽³¹⁾ Basson, S. S.; Leipoldt, J. G. Transition Met. Chem. 1982, 7,

^{207-9.}

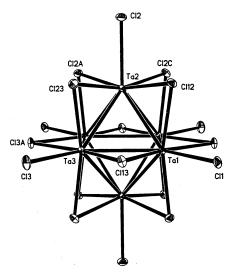


Figure 2. Thermal ellipsoid plot of the molecular structure of one of the crystallographically independent cluster anion portions of solvated [N(CH2-Ph)Bu₃]₄[Ta₆(µ-Cl)₁₂Cl₆]•(C₂H₄Cl₂)₃(CH₂Cl₂)_{0.5}(C₆H₅CH₃)_{0.5}, showing the atom numbering scheme.

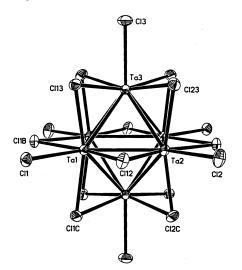


Figure 3. Thermal ellipsoid plot of the molecular structure of the other crystallographically independent cluster anion portion of solvated [N(CH2-Ph)Bu₃]₄[Ta₆(μ -Cl)₁₂Cl₆]•(C₂H₄Cl₂)₃(CH₂Cl₂)_{0.5}(C₆H₅CH₃)_{0.5}, showing the atom numbering scheme.

(Ta-Ta, 2.901 Å; Ta-µ-Cl, 2.462 Å; Ta-Cl(terminal), 2.531 Å), Cs₂PbTa₆Cl₁₈³³ (Ta-Ta, 2.888(1) Å; Ta-µ-Cl, 2.462(2) Å; Ta-Cl(terminal), 2.595(2) Å), In₄Ta₆Cl₁₈³⁴ (Ta-Ta, 2.889 Å; Ta-µ-Cl, 2.466 Å; Ta-Cl(terminal), 2.591 Å), CsErTa₆Cl₁₈³⁵ (Ta-Ta, 2.874 Å; Ta-µ-Cl, 2.463 Å; Ta-Cl-(terminal), 2.691 Å), the cluster cation³⁶ in $[Ta_6Cl_{12}(PrCN)_6]^{2+}$ - $[Ta_6Cl_{12}Cl_6]^{2-}$ (Ta-Ta, 2.8700 Å; Ta- μ -Cl, 2.458 Å), and the cluster cation³⁷ in $[Ta_6Cl_{12}EtOH)_6]^{2+}[Mo_6Cl_8Cl_6]^{2-}$ (Ta-Ta, 2.872 Å; Ta $-\mu$ -Cl, 2.464 Å).

- (32) Imoto, H.; Hayakawa, S.; Morita, N.; Saito, T. Inorg. Chem. 1990, 29, 2007-2014.
- (33) Cordier, S.; Loisel, C.; Perrin, C.; Sergent, M. J. Solid-State Chem. 1999, 147, 350-357.
- (34) Bajan, B.; Meyer, H.-J. Z. Naturforsch. 1995, 50b, 1373-1376.
- (35) Ogliaro, F.; Cordier, S.; Halet, J.-F.; Perrin, C.; Saillard, J.-Y.; Sergent, M. Inorg. Chem. 1998, 37, 6199-6207.
- (36) Brnicevic, N.; Sirac, S.; Basic, I.; Zhang, Z.; McCarley, R. E.; Guzei, I. A. Inorg. Chem. 1999, 38, 4159-4162.
- (37) Basic, I.; Brnicevic, N.; Beck, U.; Simon, A.; McCarley, R. E. Z. Anorg. Allg. Chem. 1998, 624, 725-732.

Neither the nonsolvated nor the solvated forms showed any close contacts between the tetraalkylammonium cations and the hexatantalum chloride anions, and the solvated form showed no close contacts between the disordered solvate molecules and either the cations or cluster anions.

Conclusion

Gallium and Ga2Cl4 are convenient reductants for the direct reduction of TaCl₅ to hexatantalum chlorides at significantly lower temperature compared to other methods, and we believe that Ga and Ga₂Cl₄ will prove to be useful reductants in preparative early transition metal chemistry. Reduction of TaCl₅ with Ga at 500 °C over 2 days in borosilicate glass tubing affords Ta₆(µ-Cl)₁₂Cl₂(OH₂)₄·4H₂O in 92% yield after aqueous Soxhlet extraction and precipitation with hydrochloric acid; the corresponding yield starting with Ga₂Cl₄ is 96%. Ga is a less expensive reductant than the Ta powder used in other, high-temperature methods of preparation. The GaCl₃ byproduct, were it to be liberated during reduction instead of associated with the reaction products, has significantly lower vapor pressure than that exhibited by AlCl₃ in Al-based reduction methods. Ga- and Ga₂Cl₄-based routes are thus inherently safer than other approaches that can lead to ampule rupture from internal overpressure. Ga₂Cl₄, while more expensive if purchased rather than prepared from Ga and Et₃SiH or Ga and GaCl₃,³⁸ is the more convenient reductant as rehomogenizations of the solid-state mixture at intermediate reduction stages are unnecessary. Aqueous Soxhlet extraction of the solid-state reduction product is a convenient, easy workup procedure for formation and isolation of the hydrated cluster, $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄·4H₂O. $Ta_6(\mu$ -Cl)₁₂Cl₂(OH₂)₄·4H₂O can be converted to the anhydrous, chlorocarbon-soluble tetraalkylammonium derivative $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6]$ in 88% yield by Soxhletassisted ligand exchange with N(CH₂Ph)Bu₃⁺Cl⁻. The solidstate molecular structures of the two crystalline morphologies of $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6]$, which represent the first structure determinations of the reduced $Ta_6(\mu-Cl)_{12}Cl_6^{4-1}$ cluster with an organic cation, have the expected M_6Y_{18} octahedral metal cluster structure by analogy to the Nb analogue, with average Ta-Ta distances of 2.900[2] and 2.900[1] Å that are very similar to structurally characterized salts of $Ta_6(\mu$ -Cl)₁₂Cl₆⁴⁻ with inorganic cations.

Acknowledgment. This research was supported in part with funds from the National Science Foundation (CHE-0078701), the National Cancer Institute (1 R21 RR14062-01), the Roy J. Carver Charitable Trust (grant 01-93), a pilot grant funded by NIH/NIDDK (P30 DK 54759) and the Cystic Fibrosis Foundation (ENGELH98S0), and the Department of Energy's Energy-Related Laboratory Equipment Program (tube furnace). The Siemens D5000 automated powder diffractometer and Nonius KappaCCD diffractometers were purchased with support from the Roy J. Carver Charitable Trust (grants 96-36 and 00-192). L.M. acknowledges the

⁽³⁸⁾ Beamish, J. C.; Wilkinson, M.; Worrall, I. J. Inorg. Chem. 1978, 17, 2026-2027.

support services for manuscript preparation provided by the Obermann Center for Advanced Studies at The University of Iowa.

Supporting Information Available: Crystallographic data and refinement details, alternate thermal ellipsoid plots including cations and solvate molecules, fractional coordinates, anisotropic

thermal parameters, CIF files, and tables of bond lengths and angles for both crystalline forms of $[N(CH_2Ph)Bu_3]_4[Ta_6(\mu-Cl)_{12}Cl_6]$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0201452